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A transmission problem across a fractal self-similar interface

Yves Achdou ∗, Thibaut Deheuvels†

Abstract

We consider a transmission problem in which the interior domain has infinitely ramified structures.
Transmission between the interior and exterior domains occurs only at the fractal component of the
interface between the interior and exterior domains. We also consider the sequence of the transmission
problems in which the interior domain is obtained by stopping the self-similar construction after a
finite number of steps; the transmission condition is then posed on a prefractal approximation of the
fractal interface. We prove the convergence in the sense of Mosco of the energy forms associated with
these problems to the energy form of the limit problem. In particular, this implies the convergence
of the solutions of the approximated problems to the solution of the problem with fractal interface.
The proof relies in particular on an extension property.
Emphasis is put on the geometry of the ramified domain. The convergence result is obtained when
the fractal interface has no self-contact, and in a particular geometry with self-contacts, for which an
extension result is proved.

1 Introduction

Transmission problems naturally arise in various fields of physics and have been extensively studied. An
introduction to this class of problems can be found in [20] and several applications are detailed in [14].
Such problems were more recently studied in the case when the interface is irregular, Lipschitz contin-
uous or even fractal. These problems find many applications, such as the study of rough electrodes in
electrochemistry or diffusion across irregular membranes in physiological processes, etc. (see [41, 19]).
Several transmission problems with fractal interfaces have been studied in the case of the Koch flake or
the Sierpiński gasket in 2D and 3D (see e.g. [28, 37, 38, 29, 11, 10, 13, 12]).

This paper deals with transmission problems between two domains Ωint and Ωext where Ωint is a
ramified bounded domain as defined in Section 2.2 (see Figure 2). The domain Ωint presents infinitely
many ramifications, and its boundary contains a fractal self-similar set Γ which plays the role of the
interface.
The domain Ωint can be seen as a bidimensional idealization of the bronchial tree, for example. Since
the exchanges between the lungs and the circulatory system take place only in the last generations of the
bronchial tree (the smallest structures), it is reasonable to consider transmission problems with specific
transmission conditions accross the fractal boundary Γ of the tree. We will however limit ourselves to
simple transmission conditions.
The fractal boundary Γ belongs to a family of self-similar sets introduced by Mandelbrot et al. in [30].
Elliptic boundary value problems in the domain Ωint have been studied in [3], and traces and extension
results for these domains have been proved in [1, 16].
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

The considered problem can be formally stated as





−∆u = f in Ωint ∪Ωext,

[u] = 0 on Γ,

[∂nu] = αu on Γ,

∂nuint = ∂nuext = 0 on ∂Ωint \ Γ,
∂nuext = 0, uint = u0 on Γ0,

∂nuext = 0 on ∂D,

(P )

where α is a positive real number, D is a regular bounded open domain in the plane with D = Ωint∪Ωext

such that Γ ⋐ D, and Γ0 is a line segment included in the boundary of Ωint. The sets Ωint and Ωext are
disjoint subdomains of D, and [u] (resp. [∂nu]) denotes the jump of u (resp. of the “normal derivative”
∂nu of u) accross the fractal set Γ. Since the interface Γ is fractal, the normal derivative on Γ has to be
understood in a suitable weak sense, which will be made precise later.
Problem (P ) is a model problem. Its study is the first step in the modelling of physical transmission
problems in ramified structures.

The goal is to study approximations (Pn) of problem (P ), obtained by stopping the construction of the
ramified domain Ωint at step n. The interfaces in the problems (Pn) are called prefractal approximations
of the fractal set Γ. They consist of disjoint finite unions of line segments, which makes problems (Pn)
much simpler than problem (P ). A natural question is to understand the asymptotic behavior of the
problems (Pn) as n → ∞, and in particular to investigate the convergence of the solutions un of the
problems (Pn) to the solution u of problem (P ).

Remark 1. In contrast with the references [28, 37, 38, 29, 11, 10, 13, 12], the boundary value problem
does not only involve transmission conditions at the interface between Ωint and Ωext: there are also
homogeneous Neumann conditions on the polygonal part of ∂Ωint; as a consequence, the traces of uint and
uext on this set do not match a priori. Coping with these discontinuities will be a difficulty in studying
the convergence of the solutions un of the problems (Pn) to the solution u of problem (P ).

Remark 2. We have chosen that the source term in (P ) appear both in the Dirichlet boundary condition
on Γ0 for uint and in the Poisson equations in Ωint and Ωext; this is of course completely arbitrary.

A crucial step in the study of the asymptotic behavior of (Pn) is the question of extending functions
defined in the domain Ωint. More precisely, it is of particular importance that Ωint should satisfy a
W 1,p-extension property for some p ∈ [1,∞], i.e. there should exist a bounded linear operator

E : W 1,p(Ωint) → W 1,p(R2)

such that E(u)|Ωint
= u for all u ∈ W 1,p(Ωint). The domains satisfying this property for all p ∈ [1,∞] will

often be referred to as Sobolev extension domains.
It is well known that every Lipschitz domain in R

n, that is every domain whose boundary is locally
the graph of a Lipschitz function, is a Sobolev extension domain. Calderón proved the W 1,p-extension
property for p ∈ (1,∞) (see [9]), and Stein extended the result to the cases p = 1 and p = ∞ (see [42]).
In [22], Jones generalized this result to the class of (ε, δ)-domains, also referred to as Jones domain,
or locally uniform domains (see [31]). In dimension two, the definition of (ε, δ)-domains is equivalent
to that of quasi-disks, see [32]. This extension result is almost optimal in the plane, in the sense that
every plane finitely connected Sobolev extension domain is an (ε, δ)-domain, see [22, 32]. The case of an
unbounded domain in R

2 has been studied in [44]. Extension properties for domains which do not have
the (ε, δ)-property have been studied e.g. in [33], where the authors examine in particular the case of
domains with cusps.

When the fractal boundary Γ of the domains Ωint studied in this paper has no self-contact, Ωint can
be proved to be an (ε, δ)-domain, and and is therefore a Sobolev extension domain. However, in the
case when the boundary self-intersects, Ωint does not have the W 1,p-extension property for all p > 1. In
particular, the extension property does not hold for p = 2, which is the relevant case here, since the vari-
ational formulations of (P ) naturally involve the spaces H1(Ωint). In the particular geometry considered
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in Section 5, it will be proved that the transmission condition imposed on Γ yields a better regularity of
the trace on Γ, for functions belonging to the function space arising in the variational formulation. It is
then possible to deduce an extension result in this case (see Theorem 9).

The main question investigated in this paper is the question of the convergence in the sense of Mosco
of the energy forms associated with problem (Pn) to the energy form of the problem (P ). The notion of
Mosco-convergence, or M -convergence, was introduced in [35], see also [36]. It is a stronger convergence
in the space of forms than Γ-convergence. In particular, it also implies the convergence of minimizers of
the energy forms to the minimizer of the limit form. The M -convergence of forms is equivalent to the
convergence of the resolvent operators associated with the relaxed forms in the strong operator topology
(see [36]).

The main results of this paper are Theorems 6 and 9. Theorem 6 is about the convergence of the
energy forms associated with (Pn) in the sense of Mosco to the energy form associated with (P ), in the
case when the fractal interface has no self-contact. The proof uses the extension operator from H1(Ωint)
to H1(R2) as a main ingredient. The existence of a continuous extension operator from H1(Ωint) to
H1(R2), for a particular geometry where the fractal interface self-intersects, is stated in Theorem 9. As
a consequence, the proof of Theorem 6 can be reproduced in this case, to show the M -convergence of the
energy forms.

The paper is organized as follows: the geometry of the interior and exterior domains is detailed in
Section 2, as well as the prefractal geometry. Section 3 is devoted to the study of the function spaces
involved in the paper, and emphasis is put on trace and extension results for the domains under study. The
considered transmission problem is described in Section 4. Section 4.3 is devoted to the M -convergence of
the energy forms associated with the problem with prefractal interface to the energy form of the problem
with fractal interface, in the case when the boundary of Ωint has no self-contact. In Section 5, a particular
geometry in which the fractal part of the boundary of Ωint self-intersects is considered; an extension result
is proved in this particular case and the M -convergence of the energy forms follows.

2 The geometry

2.1 The fractal interface

2.1.1 Definitions

Consider four real numbers r, β1, β2, θ such that 1/2 6 r < 1/
√
2, β1 > 0, β2 > 0 and 0 6 θ < π/2. Let

fi, i = 1, 2 be the two similitudes in R
2 given by

f1

(
x1

x2

)
=

(
−β1

β2

)
+ r

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
,

f2

(
x1

x2

)
=

(
β1

β2

)
+ r

(
x1 cos θ + x2 sin θ
−x1 sin θ + x2 cos θ

)
.

The two similitudes have the same dilation ratio r and opposite angles ±θ. One can obtain f2 by
composing f1 with the symmetry with respect to the vertical axis {x1 = 0}.
Let Γ denote the self-similar set associated with the similitudes f1 and f2, i.e. Γ is the unique compact
subset of R2 such that

Γ = f1(Γ) ∪ f2(Γ).

It was stated in [30] (see [15] for a complete proof) that for any θ, 0 6 θ < π/2, there exists a unique
positive number r⋆θ ∈ [1/2, 1/

√
2[ which only depends on the angle θ such that

⋄ if 0 < r < r⋆θ , then Γ is totally disconnected,
⋄ if r = r⋆θ , then Γ is connected.

In the following, we will always assume that r 6 r⋆θ .
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Notations For every integer n > 0, we note An = {1, 2}n. For σ ∈ An, we note fσ the similitude
fσ1 ◦ . . . ◦ fσn . We agree to extend the notation to the case n = 0: fσ = Id if σ ∈ A0. We also introduce
the notation A :=

⋃
n>0 An.

For σ ∈ A, we note Γσ = fσ(Γ
0), and for every integer n > 0, Γn =

⋃

σ∈An

fσ(Γ
0).

2.1.2 Hausdorff dimension of Γ

If r 6 r⋆θ , then it can be seen that the open set condition (or Moran condition) holds, see [34] or [25] for
a definition. The open set condition is satisfied e.g. for the domain Ωint defined in (6), if Assumption 1
below is satisfied (Theorem 2 proves the existence of such a domain).
The open set condition implies that the Hausdorff dimension of Γ is

d := dimH Γ = − log 2

log r

see [34, 25]. If 0 6 θ < π/2, then 1/2 6 r 6 r⋆θ < 1/
√
2 and thus 1 6 d < 2.

In the case when r = r⋆θ , introduce the set

Ξ = f1(Γ) ∩ f2(Γ). (1)

In this case, the fractal set Γ self-intersects, and union of the images of Ξ by the similitudes fσ1 ◦ . . .◦fσn ,
σ1, . . . , σn ∈ {1, 2} is the set of the multiple points of Γ.
Two situations can occur, depending on the angle θ (see [30]):

– if θ is not of the form π
2k for any integer k > 0, then Ξ is reduced to a single point, and Γ has

countably many multiple points,

– if θ is of the form π
2k where k > 0 is an integer, then Ξ is a Cantor set, and the Hausdorff dimension

of Ξ, noted dimH Ξ, is dimH Γ
2 .

2.1.3 The self-similar measure µ

Recall the classical result on self-similar measures, see [17, 21] and [25] page 26.

Theorem 1. There exists a unique Borel regular probability measure µ on Γ such that for any Borel set
A ⊂ Γ,

µ(A) =
1

2
µ
(
f−1
1 (A)

)
+

1

2
µ
(
f−1
2 (A)

)
. (2)

The measure µ is called the self-similar measure defined in the self-similar triplet (Γ, f1, f2).

Let Lp
µ(Γ), p ∈ [1,+∞) be the space of the measurable functions v on Γ such that

´

Γ |v|p dµ < ∞,

endowed with the norm ‖v‖Lp(Γ) =
(´

Γ |v|p dµ
)1/p

. A Hilbert basis of L2
µ(Γ) can be constructed e.g.

with Haar wavelets.

The space W s,p(Γ) for s ∈ (0, 1) and p ∈ [1,∞) is defined as the space of functions v ∈ Lp(Γ) such that
|v|W s,p(Γ) < ∞, where

|v|W s,p(Γ) =

(
ˆ

Γ

ˆ

Γ

|v(x) − v(y)|p

|x− y|d+ps
dµ(x) dµ(y)

) 1
p

.

Endowed with the norm ‖v‖W s,p(Γ) = ‖v‖Lp(Γ) + |v|W s,p(Γ), the spaces W s,p(Γ) are Banach spaces. In

the special case p = 2, the space W s,p(Γ) is a Hilbert space, and is noted Hs(Γ).
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Remark 3. In the special case when θ = 0 and r = r⋆θ = 1/2, the set Γ is in fact a line segment. This
geometry will be discussed in Section 5 (see Figure 3). In this case, it can be proved that if s ∈ (0, 1),
then an equivalent norm of the space W s,p(Γ) is given by

‖v‖pLipp,p
s (Γ) :=

ˆ

Γ

|v|p dµ+
∑

k>0

2skp
∑

σ∈Ak

ˆ

2fσ(Γ)

|v − 〈v〉2fσ(Γ)|
p
dx (3)

where 2fσ(Γ) is the intersection with Γ of the segment obtained by expanding the line segment fσ(Γ) with
a factor 2 around its center (see [23, 24]). As in the rest of the paper, if v is a measurable function in a
measured space (X,m), the notation 〈v〉X refers to the mean value 1

m(X)

´

X v dm.

2.2 The domains Ωint and Ωext

Call P1 = (−1, 0) and P2 = (1, 0) and Γ0 the line segment Γ0 = [P1P2]. Let us assume that f2(P1) and
f2(P2) have positive coordinates, i.e. that

r cos θ < β1 and r sin θ < β2. (4)

Let us also assume that the open domain Y 0 inside the closed polygonal line joining the points P1, P2,
f2(P2), f2(P1), f1(P2), f1(P1), P1 in this order must be convex and hexagonal, except if θ = 0, in which
case it is trapezoidal. With (4), this is true if and only if

(β1 − 1) sin θ + β2 cos θ > 0. (5)

Under assumptions (4) and (5), the domain Y 0 is contained in the half-plane x2 > 0 and symmetric with
respect to the vertical axis x1 = 0.

Call K0 = Y 0. It is possible to glue together K0, f1(K
0) and f2(K

0) and obtain a new polygonal domain.
The assumptions (4) and (5) imply that Y 0 ∩ f1(Y

0) = ∅ and Y 0 ∩ f2(Y
0) = ∅.

Γ0

Y 0

f1(Γ
0) f2(Γ

0)

P2P1

Figure 1: The construction of the first cell Y 0

Let the open domain Ωint (see Figure 2) be defined as follows:

Ωint = Interior

(
⋃

σ∈A

fσ(K
0)

)
, (6)

with the notations of §2.1.1.

For a given θ, with r⋆θ defined as above, the following assumption on (α, β) will be made:

Assumption 1. For 0 6 θ < π/2, the parameters α and β satisfy (4) and (5) for r = r⋆θ , and are such that




i. for all r, 0 < r 6 r⋆θ , the sets Y 0, fσ(Y
0), σ ∈ A, are pairwise disjoint,

ii. for all r, 0 < r < r⋆θ , f1(Ωint) ∩ f2(Ωint) = ∅,
iii. for r = r⋆θ , f1(Ωint) ∩ f2(Ωint) 6= ∅.
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Remark 4. Assumption 1 implies that if r = r⋆θ , then f1(Ωint) ∩ f2(Ωint) = ∅.
In the case θ = 0, Assumption 1 is satisfied by any α > r⋆θ = 1/2 and β > 0. The following theorem,
proved in [5], asserts that for all θ ∈ (0, π/2), there exists (α, β) satisfying Assumption 1.

Theorem 2. If θ ∈ (0, π/2), then for every α > r⋆θ cos θ, there exists β̄ > 0 such that for all β > β̄, (α, β)
satisfies Assumption 1.

Let D be an open bounded domain with a Lipschitz boundary, containing the closure of Ωint. The
exterior domain Ωext is defined by

Ωext := Interior(D \ Ωint). (7)

Remark 5. The assumption that Ωint ⋐ D may be relaxed: in fact, it would be enough to assume that
Γ ⋐ D.

Displayed on Figure 2 are examples of the domains Ωint and Ωext, for the parameters θ = π/5 in the
left-hand side and θ = π/4 in the right-hand side.

Γ

Ωint

D

Ωext

Γ

Ωext

D
Ωint

Figure 2: The ramified domain Ω for θ = π/5 (left) and θ = π/4 (right) when r < r⋆θ , β1 = 0.7, β2 = 4.

2.3 The truncated domain Ωn

int and the prefractal interface

For every integer n > 0, the truncated domain Ωn
int is defined by

Ωn
int = Interior


 ⋃

06k6n

⋃

σ∈Ak

fσ(K
0)


 , (8)

with the notations of §2.1.1. As above, the exterior domain associated to Ωn
int is

Ωn
ext = Interior(D \ Ωn

int). (9)

Note that the set Γn defined in §2.1.1 is a part of the boundary of Ωn
int. The sets Γn, n > 0, will be

referred to as prefractal approximations of the fractal set Γ.

3 Function spaces

Hereafter, we consider a domain Ωint as defined in 2.2, with θ in [0, π/2) and r 6 r⋆θ , and we assume that
the parameters α, β are such that Assumption 1 is satisfied.
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We define W 1,p(Ω), p = [1,∞], Ω = Ωint or Ω = Ωext, to be the space of functions in Lp(Ω) with first
order partial derivatives in Lp(Ω).

The space W 1,p(Ω) is a Banach space with the norm
(
‖u‖pLp(Ω) + ‖ ∂u

∂x1
‖pLp(Ω) + ‖ ∂u

∂x2
‖pLp(Ω)

)1/p
, see for

example [6]. Elementary calculus shows that ‖u‖W 1,p(Ω) :=
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

)1/p
is an equivalent

norm, with ‖∇u‖pLp(Ω) :=
´

Ω |∇u|p and |∇u| =
√
| ∂u
∂x1

|2 + | ∂u
∂x2

|2.
In the special case p = 2, the space W 1,p(Ω) is a Hilbert space, and is noted H1(Ω).

The spaces W 1,p(Ωint) as well as elliptic boundary value problems in Ωint have been studied in [3], with,
in particular Poincaré inequalities and a Rellich compactness theorem. The same results in a similar but
different geometry were proved by Berger [8] with other methods.

3.1 Trace results

3.1.1 The classical definition of traces

We recall the classical definition of a trace operator on ∂ω when ω is an open subset of R2 (see for instance
[24] p. 206).

Definition 1. Consider an open set ω ⊂ R
2. The function u ∈ L1

loc(ω) can be strictly defined at x ∈ ω if
the limit

u(x) = lim
r→0

1

|B(x, r) ∩ ω|

ˆ

B(x,r)∩ω

u(y) dy (10)

exists, where |B(x, r) ∩ ω| is the 2-dimensional Lebesgue measure of the set B(x, r) ∩ ω. In this case, x
is said to be a Lebesgue point of u.
The trace u|∂ω is defined to be the function given by u|∂ω(x) = u(x) at every point x ∈ ∂ω such that the
limit u(x) exists.

Remark 6. Recall that for any p > 1, a function which belongs to W 1,p(Rn) can be strictly defined except
on a set with zero p-capacity, see for example [18] and [26].

3.1.2 A trace theorem on Γ

It has been shown in [2] (see Theorem 11) that every function in W 1,p(Ωint) can be strictly defined on
Γ H1-almost everywhere, where H1 is the one-dimensional Hausdorff measure. Moreover, the following
trace result holds.

Theorem 3. (see [1])

• Assume r < r⋆θ . For all p ∈]1,∞], if u ∈ W 1,p(Ωint), then u|Γ ∈ W 1− 2−d
p ,p(Γ), and there exists a

constant C > 0 independent of u such that

‖u|Γ‖
W

1− 2−d
p

,p
(Γ)

6 C‖u‖W 1,p(Ωint)
.

• Assume r = r⋆θ , then

⋄ the previous result holds if 1 < p < 2− dimH Ξ,

⋄ if p > 2−dimH Ξ, then W 1,p(Ωint)|Γ ⊂ W s,p(Γ) for all s < 1
p (d−dimH Ξ), and the embedding

is continuous. Moreover, if s > 1
p (d− dimH Ξ), then W 1,p(Ωint)|Γ 6⊂ W s,p(Γ).

Remark 7. The space of the traces on Γ of functions in W 1,p(Ωint), 1 < p < ∞ was characterized in [5],
whether r < r⋆θ or r = r⋆θ , as the space JLip(1 − 2−d

p , p, p; 0; Γ), which was first introduced in [23]. Of

course, if r < r⋆θ , then JLip(1− 2−d
p , p, p; 0; Γ) coincides with W 1− 2−d

p ,p(Γ). An easy consequence of this

characterization is that the space of the traces on Γ of functions in W 1,p(Ωint) is relatively compact in
Lp
µ(Γ).
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Proposition 1 below will be useful in the proofs of the main theorems of this paper.

Proposition 1. For every u ∈ H1(Ωint),

1

|Γn|

ˆ

Γn

u|Γn
2 dx −→

n→∞

ˆ

Γ

u|Γ
2 dµ.

Proof. The present proof relies on Proposition 1 in [3], which states that for any u ∈ H1(Ωint), the
sequence of piecewise constant functions (ũn)n∈N defined on Γ:

ũn =
∑

σ∈An

〈u〉Γσ 1fσ(Γ),

where 〈u〉Γσ = 1
|Γσ|

´

Γσ u|Γσ(z) dz, is such that limn→∞ ‖ũn − u|Γ‖L2
µ(Γ)

= 0. Note also that
´

Γ
ũ2
ndµ =

∑
σ∈An

|Γσ|
|Γn| 〈u〉

2
Γσ . Hence, in order to prove Proposition 1, it is enough to prove that∣∣∣ 1

|Γn|

´

Γn u|Γn
2 dx−

´

Γ ũ
2
ndµ

∣∣∣ −→
n→∞

0, or in an equivalent manner, that Sn −→
n→∞

0, where

Sn =
1

|Γn|
∑

σ∈An

(
ˆ

Γσ

u2
|Γσ(z) dz − |Γσ| 〈u〉2Γσ

)
=

1

|Γn|
∑

σ∈An

ˆ

Γσ

[
u|Γσ(z)− 〈u〉Γσ

]2
dz.

From a standard trace result on Γ0 and appropriate rescalings, we know that for a positive constant

independent of n, σ ∈ An and u ∈ H1(Ωint),
´

Γσ

[
u|Γσ(z)− 〈u〉Γσ

]2
dz ≤ C|Γσ|

´

fσ(Ωint)
|∇u|2. Hence,

Sn ≤ C
∑

σ∈An

|Γσ |
|Γn|

´

fσ(Ωint)
|∇u|2 = C

2n

∑
σ∈An

´

fσ(Ωint)
|∇u|2, which implies that Sn −→

n→∞
0. ⊓⊔

We also recall the following refined trace inequality, we refer to [5] for the proof.

Theorem 4. [see [5], Th. 11] Assume that r > 1/2, then for all real number κ ∈ (2r2, 1), there exists a
constant C such that for all v ∈ H1(Ωint) with v|Γ0 = 0,

‖v|Γ‖2L2
µ(Γ)

6 C
∑

m>0

κm
∑

τ∈An

‖∇v‖2L2(fτ (Y 0)). (11)

3.2 Extension results

3.2.1 The subcritical case r < r⋆θ

As seen in § 1, it was proved in [4] that if r < r⋆θ , then Ωint is an (ε, δ)-domain (see [22] for a definition), or
in an equivalent manner, a quasi-disk (see [32]). Hence, the extension result of Jones and Vodop’janov et
al. applies, and Ωint is a Sobolev extension domain (see [22]), i.e. Ωint has the W 1,p-extension property
for every p ∈ [1,∞]: there exists a continuous linear operator E from W 1,p(Ωint) to W 1,p(R2) such that

E(u)|Ωint
= u, ∀u ∈ W 1,p(Ωint). (12)

Similarly, the set Ωext = D \ Ωint is an (ε, δ)-domain, and thus a Sobolev extension domain.

3.2.2 The critical case r = r⋆θ

When r = r⋆θ , it is easily seen that Ωint is not an (ε, δ)-domain, and the extension results of Jones and
Vodop’janov et al. do not apply. In fact, if p ∈ (1,∞), it is easy to construct a function u ∈ W 1,p(Ωint)
such that u ≡ 1 in f1(Ωint) and u ≡ −1 in f2(Ωint). If p > 2, u cannot be extended to a function
belonging toW 1,p(R2) because the existence of such an extension would contradict the Sobolev imbedding
of W 1,p(R2) in C(R2).
In the case when r = r⋆θ , the situation depends in fact on the Hausdorff dimension of the set Ξ =
f1(Γ) ∩ f2(Γ). The following extension theorem holds.
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Theorem 5. see [16, 2] Set p⋆ = 2− dimH Ξ (recall that Ξ is defined in (1)).

1. If p ∈ (1, p⋆), then Ωint has the W 1,p-extension property.

2. If p > p⋆, then Ωint does not have the W 1,p-extension property.

Point 1 in Theorem 5 was obtained in [16]. Point 2 is a consequence of [1] and [2]: by Theorem 3, if

p > p⋆, then W 1,p(Ωint)|Γ 6⊂ W 1− 2−d
p ,p(Γ) = W 1,p(R2)|Γ. This is in contradiction with the existence of

a continuous extension operator from W 1,p(Ωint) to W 1,p(R2) (see [1] for the proof that the notions of
traces coincide µ-almost everywhere on Γ).

Remark 8. As it was seen in §2.1.2, only two situations can occur, depending on the geometry of Ωint:

– if θ is not of the form π/(2k) for any integer k, then dimH Ξ = 0 and p⋆ = 2,

– if θ is of the form π/(2k) for an integer k, then dimH Ξ = (dimH Γ)/2, and p⋆ = 2− (dimH Γ)/2.

Remark 9. The special case p = p⋆ is not dealt with in Theorem 5. The latter is of particular importance
in case 1 of Remark 8 above, since the case p = p⋆ = 2 corresponds to the question of the H1-extension
property.
In fact, it was proved by Koskela in [27] that if a domain in R

n has the W 1,n-extension property, then it
must have the W 1,p-extension property for every p > n. Hence, a consequence of Theorem 5 is that Ωint

cannot have the W 1,p-extension property when p = 2. In particular, the domains that we will consider in
Section 5 fail to satisfy the H1-extension property.
To the best of our knowledge, the question of the extension property for p = p⋆ in case 2 of Remark 8
seems to be open.

4 The transmission problem in the case r < r⋆θ

4.1 The transmission problem with fractal interface

The transmission problem can be formally stated as




−∆u = f in Ωint ∪Ωext,

[u] = 0 on Γ,

[∂nu] = αu on Γ,

∂nuint = ∂nuext = 0 on Σ,

∂nuext = 0, uint = u0 on Γ0,

∂nuext = 0 on ∂D,

(13)

where α > 0, Σ = ∂Ωint \ (Γ∪Γ0), [u] (resp. [∂nu]) denotes the jump of u (resp. of the normal derivative
of u) across Γ, f ∈ L2(D) and u0 ∈ H1/2(Γ0). We also use the notations uint := u|Ωint

and uext := u|Ωext
.

The transmission condition [∂nu] = αu on Γ has no real meaning, since the normal is not defined on Γ.
The rigorous meaning of (13) is the following variational formulation:

find u ∈ V such that for all v ∈ V0,

a(u, v) =

ˆ

D

fv dx,
(P )

where V is the affine space defined by

V = {u ∈ L2(D), uint ∈ H1(Ωint), uext ∈ H1(Ωext), uint|Γ0 = u0, uint|Γ = uext|Γ}. (14)

Recall that v ∈ H1(Ωint) 7→ v|Γ ∈ H1/2(Γ) and v ∈ H1(Ωext) 7→ v|Γ ∈ H1/2(Γ) are continuous maps,
hence V is closed. Note that if u ∈ H1(D) and u|Γ0 = u0 then u ∈ V .
The vector space V0 is defined as V , except that the condition uint|Γ0 = u0 is replaced by uint|Γ0 = 0.
Finally,

a(u, v) =

ˆ

Ωint

∇uint · ∇vint dx+

ˆ

Ωext

∇uext · ∇vext dx+ α

ˆ

Γ

u|Γv|Γ dµ. (15)
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Remark 10. The traces in the condition uint|Γ = uext|Γ in (14) are meant in the sense of Definition 1.
The above definition of the space V is suitable when r < r⋆θ and in the special case when r = r⋆θ and θ = 0
discussed in Section 5. In the other cases, the transmission condition has to be considerably changed, see
Remark 14.

Note that the space V0, equipped with the norm a(u, u)1/2 is a Hilbert space. From the Lax-Milgram
theorem, we see that for every function f given in L2(D), there exists a unique weak solution u ∈ V to
(P ). Moreover, u minimizes the functional

v ∈ V 7→ a(v, v)− 2

ˆ

D

fv dx. (16)

4.2 The transmission problem with prefractal interface

For any positive integer n, let us consider the similar transmission problem in which the interior domain
has been truncated by stopping the construction at step n. This class of problems is much more standard
since the interface Γn consists of 2n pairwise disjoint line segments. The boundary value problem reads:





−∆u = f in Ωn
int ∪Ωn

ext,

[u] = 0 on Γn,

[∂nu] =
α

|Γn|u on Γn,

∂nu
n
int = ∂nu

n
ext = 0 on Σn,

∂nu
n
ext = 0, un

int = u0 on Γ0,

∂nu
n
ext = 0 on ∂D,

(17)

where Σn = ∂Ωn
int \ (Γn ∪Γ0), and [u] (resp. [∂nu]) denotes the jump of u (resp. of the normal derivative

of u) across Γn. We also use the notations un
int = u|Ωn

int
and un

ext = u|Ωn
ext

.

The variational formulation of problem (17) can be stated as follows:

find u ∈ V n such that for all v ∈ V n
0 ,

an(u, v) =

ˆ

D

fv dx,
(Pn)

where V n is the affine space defined by

V n = {u ∈ L2(D), un
int ∈ H1(Ωn

int), un
ext ∈ H1(Ωn

ext), un
int|Γ0 = u0, un

int|Γn = un
ext|Γn}. (18)

Remark 11. Let Gn be the closure of the set ∂Ωn
int \ (Γ0 ∪ Γn), which is a finite union of polygonal lines.

It is easy to see that V n is the set of the functions in H1(D \Gn) such that uint|Γ0 = u0.
Similarly, if we define G as ∂Ωint \ (Γ0 ∪ Γ), we observe that G is not closed, since its closure contains
Γ. Observe that, in general, the functions u ∈ H1(D \G) do not satisfy uint|Γ = uext|Γ, so V cannot be

identified with the set of the functions u ∈ H1(D \G) satisfying the Dirichlet boundary condition on Γ0.
On the other hand, since D \G is not an open set, dealing with H1(D \G) is not very straightforward.

Here also, V n
0 is defined as V n, except that the condition un

int|Γ0 = u0 is replaced by un
int|Γ0 = 0, and

an is defined by

an(u, v) =

ˆ

Ωn
int

∇un
int · ∇vnint dx+

ˆ

Ωn
ext

∇uext · ∇vnext dx+
α

|Γn|

ˆ

Γn

u|Γnv|Γn dx. (19)

The space V n
0 , equipped with the norm an(u, u)

1/2 is a Hilbert space. We also remark that V n ⊂ V
with a continuous imbedding. Again, the Lax-Milgram theorem implies that for every function f given
in L2(D), there exists a unique weak solution un ∈ V n to that problem, and un minimizes the functional

v ∈ V n 7→ an(v, v)− 2

ˆ

D

fv dx. (20)
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Lemma 1. The sequence un is bounded in V .

Proof. Let ũ0 be a function in H1(D) such that ũ0|Γ0 = u0, and such that ũ0 is supported in a compact
set which does not intersect the sets Γn, ∀n ≥ 1. It is clear that ũ0 ∈ V and that ũ0 ∈ Vn for all n ≥ 1.
Let us define C0 =

´

D

(
|∇ũ0|2 − 2fũ0

)
dx. Thus, for all n ≥ 1,

an(un, un)− 2

ˆ

D

fun dx 6 an(ũ0, ũ0)− 2

ˆ

D

fũ0 dx = C0, (21)

because ũ0|Γn = 0. On the other hand, since V n ⊂ V ,

an(un, un) >

ˆ

Ωn
int

|∇un|2 dx+

ˆ

Ωn
ext

|∇un|2 dx =

ˆ

Ωint

|∇un|2 dx+

ˆ

Ωext

|∇un|2 dx. (22)

We shall also use the following Poincaré inequality: there exists a constant C > 0 such that, for all v ∈ V ,

‖v‖2L2(D) 6 C

(
‖v|Γ0‖2L2(Γ0) +

ˆ

Ωint

|∇v|2 dx+

ˆ

Ωext

|∇v|2 dx

)
. (23)

From (21), (22) and (23), we deduce that

ˆ

Ωint

|∇un|2 dx+

ˆ

Ωext

|∇un|2 dx−2
√
C‖f‖L2(D)

[
‖u0|Γ0‖2L2(Γ0) +

ˆ

Ωint

|∇un|2 dx+

ˆ

Ωext

|∇un|2 dx

] 1
2

6 C0,

which implies that the quantity
´

Ωint
|∇un|2 dx+

´

Ωext
|∇un|2 dx is bounded by a constant independent

of n. Using (23) again, this implies that ‖un‖L2(D) is also bounded by a constant independent of n.
Combining the previous two observations, we obtain that the sequence un is bounded in V . ⊓⊔

4.3 M-convergence of the energy forms in the case r < r⋆
θ

We start by extending the definition of the forms a and an to the whole space L2(D) by setting

a(u, u) = ∞ if u ∈ L2(D) \ V, (24)

an(u, u) = ∞ if u ∈ L2(D) \ V n. (25)

We are interested in proving the convergence of the forms an to a in the following sense, introduced by
Mosco (see [36]).

Definition 2. A sequence of forms (an)n is said to M-converge to a form a in L2(D) if

i. for every sequence (un)n weakly converging to a function u in L2(D),

lim an(un, un) > a(u, u) as n → ∞, (26)

ii. for every u ∈ L2(D), there exists a sequence (un)n converging strongly in L2(D) such that

lim an(un, un) 6 a(u, u) as n → ∞. (27)

Theorem 6. Assume that r < r⋆θ , then the energy forms an M-converge in L2(D) to the form a.

Remark 12. The M -convegence of forms differs from the Γ-convergence only in that the sequence (un)
in point i. of Definition 2 is assumed to converge weakly instead of strongly. In the following, only the
Γ-convergence of the energy forms an will be needed.

Proof. We will prove separately points i. and ii. in Definition 2.

Proof of point i. Suppose that (un) weakly converges to u in L2(D). Without loss of generality, one can
suppose lim an(un, un) is finite. We may further assume that there exists a subsequence, still called (un),
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such that an(un, un) converges to some real number as n → ∞; as a consequence, there exists a constant
c independent of n such that

an(un, un) 6 c. (28)

In particular, for all n, un ∈ V n, which implies that un ∈ V . Then, (66) implies that (un|Ωint
) is

bounded in H1(Ωint), and (un|Ωext
) is bounded in H1(Ωext). Therefore, there is a subsequence that we

still note (un) such that (un|Ωint
) converges weakly in H1(Ωint), and strongly in L2(Ωint). Since un ⇀ u

in L2(D), we see that un|Ωint
⇀ uint in H1(Ωint). Similarly, up to a further extraction of a subsequence,

un|Ωext
⇀ uext in H1(Ωext). Consequently,

lim

(
ˆ

Ωn
int

|∇un|2 dx+

ˆ

Ωn
ext

|∇un|2 dx

)
>

ˆ

Ωint

|∇u|2 dx+

ˆ

Ωext

|∇u|2 dx.

We will now prove that 1
|Γn|

´

Γn u2
n dx →

´

Γ
u2 dµ as n → ∞, which will yield point i.

The following inequality was proved in [3]: for every v ∈ H1(Ωint), ‖v − 〈v〉Γ0‖L2
µ(Γ)

6 C‖∇v‖L2(Ωint)
.

This implies that
|〈v〉Γ0 | 6 ‖v‖L2

µ(Γ)
+ C‖∇v‖L2(Ωint)

.

Similarly, ‖v − 〈v〉Γ0‖L2(Γ0) 6 C‖∇v‖L2(Ωint)
implies that

1√
|Γ0|

‖v‖L2(Γ0) 6 |〈v〉Γ0 |+ C‖∇v‖L2(Ωint)
.

for some constant independent of v that we still note C. Combining these two inequalities, we obtain
that

1√
|Γ0|

‖v‖L2(Γ0) 6 ‖v‖L2
µ(Γ)

+ C‖∇v‖L2(Ωint)
.

Hence, for every σ ∈ An,

1√
|Γσ|

‖v‖L2(Γσ) 6 ‖v ◦ fσ‖L2
µ(Γ)

+ C‖∇(v ◦ fσ)‖L2(Ωint)

= 2
n
2 ‖v‖L2

µ(fσ(Γ))
+ C‖∇v‖L2(fσ(Ωint))

.

This yields that

1

|Γσ| ‖v‖
2
L2(Γσ) 6 2n‖v‖2L2

µ(fσ(Γ))
+ 2C2

n
2 ‖v‖L2

µ(fσ(Γ))
‖∇v‖L2(fσ(Ωint))

+ C2‖∇v‖2L2(fσ(Ωint))
.

Therefore

1

|Γn|

ˆ

Γn

un
2 dx =

1

2n

∑

σ∈An

1

|Γσ|

ˆ

Γσ

un
2 dx

6 ‖un‖2L2
µ(Γ)

+ 2C2−
n
2

∑

σ∈An

‖un‖L2
µ(fσ(Γ))

‖∇un‖L2(fσ(Ωint))
+

C2

2n

∑

σ∈An

‖∇un‖2L2(fσ(Ωint))

6 ‖un‖2L2
µ(Γ)

+ 2C2−
n
2 ‖un‖L2

µ(Γ)

(
∑

σ∈An

‖∇un‖2L2(fσ(Ωint))

) 1
2

+
C2

2n

∑

σ∈An

‖∇un‖2L2(fσ(Ωint))
.

Since un|Ωint
is a bounded sequence in H1(Ωint), there exists a constant M such that

1

|Γn|

ˆ

Γn

un
2 dx 6 ‖un‖2L2

µ(Γ)
+ 2CM2−

n
2 ‖un‖L2

µ(Γ)
+

C2M2

2n
.

Moreover, since un weakly converges to u in H1(Ωint), then up to the extraction of a subsequence, un|Γ

strongly converges to u|Γ in L2
µ(Γ), from Remark 7. Hence, we obtain that

lim
1

|Γn|

ˆ

Γn

un
2 dx 6

ˆ

Γ

u2 dµ.



M-convergence of the energy forms in the case r < r⋆θ 

Similarly, the following inequality holds for every v ∈ H1(Ωint):

‖v‖L2
µ(Γ)

6
1√
|Γ0|

‖v‖L2(Γ0) + C′‖∇v‖L2(Ωint)
(29)

for some constant C′ independent of v. As above, we deduce that

lim
1

|Γn|

ˆ

Γn

un
2 dx >

ˆ

Γ

u2 dµ,

and we obtain the desired result.

Proof of point ii. Take u ∈ L2(D). By (24), we may assume that u ∈ V . We must construct (un)
converging strongly in L2(D) such that (27) holds. Note that the choice un = u cannot be made, since
u 6∈ V n in general.
Take δ > 0 and consider a neighborhood ω ⊂ D of Ωint such that Ωint ⋐ ω and supx∈ω d(x,Ωint) < δ,
where d(x,Ωint) = infy∈Ωint |x−y|. We introduce the notations ωσ = fσ(ω) for σ ∈ A and ωn =

⋃
σ∈An

ωσ

for all integer n.

For every n, introduce the cut-off function χn in D defined by

χn(x) = (1− δr−nd(x, ωn))
+
, (30)

where α+ stands for the positive part of a real number α. Hence, χn ≡ 1 in ωn and χn ≡ 0 outside
ω̃n := {x ∈ D, d(x, ωn) < δrn}. Note that if we set ω̃ := {x ∈ D, d(x, ω) < δ} and ω̃σ := fσ(ω̃) = {x ∈
D, d(x, ωσ) < δrn} for σ ∈ An, then ω̃n =

⋃
σ∈An

ω̃σ.

We can assume that δ is small enough so that ω̃σ ∩ ω̃τ = ∅ when σ, τ ∈ An and σ 6= τ , since fσ(Ωint) ∩
fτ (Ωint) = ∅.
We now define a sequence of functions un by

un = (1− χn)u+ χnE(uint), (31)

where E is the extension operator introduced in (12) and as above, uint = u|Ωint
. Obviously, un belongs to

the space V n and the sequence (un) strongly converges to u in L2(D). We will prove that lim an(un, un) =
a(u, u) as n → ∞. We start by showing that

In :=

ˆ

Ωint

|∇u|2 dx+

ˆ

Ωext

|∇u|2 dx−
(
ˆ

Ωn
int

|∇un|2 dx+

ˆ

Ωn
ext

|∇un|2 dx

)
−→ 0 (32)

as n → ∞. First observe that

In =

ˆ

ω̃n\Ωint

|∇u|2 dx−
ˆ

ω̃n\Ωint

|∇un|2 dx.

Hence, it is enough to show that
´

ω̃n\Ωint
|∇(u− un)|2 dx → 0 as n → ∞. Note that

ˆ

ω̃n\Ωint

|∇(u − un)|2 dx =

ˆ

ω̃n\Ωint

|∇(χn(E(uint)− u))|2 dx 6 2(I1n + I2n) (33)

where I1n =
´

ω̃n\Ωint
|∇(E(uint)− u)|2 dx and I2n =

´

ω̃n\Ωint
|(∇χn)(E(uint)− u)|2 dx.

First observe that I1n → 0 as n → ∞ since ∇(E(uint)− u) ∈ L2(Ωext). We are left with dealing with I2n.
One has

I2n 6 c r−2n

ˆ

ω̃n\Ωint

|E(uint)− u|2 dx

6 c r−2n
∑

σ∈An

ˆ

ω̃σ\Ωint

|E(uint)− u|2 dx.
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where c > 0 is a constant independent of n. Introduce the set ω̂ = f1
−1(f1(ω̃) \ Ωint). We have the

following Poincaré inequality: there exists a constant C such that for every v ∈ H1(ω̂) such that v|Γ = 0,
ˆ

ω̂

|v|2 dx 6 C

ˆ

ω̂

|∇v|2 dx. (34)

Observe that if δ is small enough, then ω̃σ \Ωint = fσ(ω̂) for every σ ∈ A. Therefore, applying a rescaled
version of (34) to the function E(uint) − u, we obtain that there is a constant c′ > 0 indenpendant of n
such that

I2n 6 c′
∑

σ∈An

ˆ

ω̃σ\Ωint

|∇(E(uint)− u)|2 dx

= c′
ˆ

ω̃n\Ωint

|∇(E(uint)− u)|2 dx

since the sets ω̃σ, σ ∈ An are pairwise disjoint. We deduce that I2n → 0 as n → ∞, since E(uint) − u ∈
H1(Ωext), which yields (32).
We will now prove that

1

|Γn|

ˆ

Γn

un
2 dx −→

ˆ

Γ

u2 dµ (35)

as n → ∞, which will conclude the proof of point ii.. Observe that for every integer n, E(uint)|Γn = u,

which implies that un|Γn = u. We are left with proving that 1
|Γn|

´

Γn u2 dx −→
´

Γ
u2 dµ as n → ∞,

which holds by Proposition 1. ⊓⊔
A standard consequence of the Mosco-convergence of the energy forms proved in Theorem 6 is the

convergence of the solutions of the problems (Pn) to the solution of problem (P ), in L2(D) and in V
(recall that un is bounded in V from Lemma 1).

Theorem 7. Take f ∈ L2(D), and note un (resp. u) the solution of problem (Pn) (resp. (P )). The
sequence (un) converges to u in the space V .

5 A particular geometry with r = r⋆θ

As seen before, the proof of Theorem 6 is based on the extension result of §3.2.1. In the case r = r⋆θ , the
H1-extension property is no longer true for the domain Ωint (see Remark 9). In what follows, we focus
on the special case when θ = 0. We will see that in this case, the transmission condition imposed on Γ
yields an extension result (see Theorem 9) which is the main ingredient for proving the M -convergence
of the energy forms.

In the case θ = 0, it can be seen that r⋆θ = 1
2 , and the ramified domain described in §2.2 is as in Figure

3. In this particular case, the set f1(Γ) ∩ f2(Γ) is reduced to a single point that we call A. Observe that
the self-similar part Γ of the boundary is a line segment, and the self-similar measure µ associated with
Γ is the normalized one-dimensional Hausdorff measure.
Since r = r⋆θ , the domain Ωext has infinitely many connected components. Call U the outer connected
component of Ωext, ie the only connected component which has a nonempty intersection with ∂D (see
Figure 3). Observe that Γ is a subset of ∂U , and that the intersection of Γ with the boundary of every
other connected component of Ωext is reduced to a single point. Apart from U , each connected component
of Ωext is a triangle whose top vertex is at a dyadic point of Γ. The largest triangle is named T , see
Figure 3, and all the other triangles are the images of T by fσ, σ ∈ An, n ≥ 1.
We consider the transmission problem





−∆u+ βu = f in Ωint ∪Ωext,

uint|Γ = uext|Γ

[∂nu] = αu on Γ,

∂nuint = ∂nuext = 0 on ∂Ωint \ Γ,
∂nuext = 0, uint = u0 on Γ0,

∂nuext = 0 on ∂D,

(36)
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where α and β are positive numbers. The trace uext|Γ in the transmission condition is meant as the trace
of the function u|U on the set Γ.

Remark 13. The reason for considering the operator −∆u + βu with β > 0 instead of −∆u as in the
former case is that, in the present case, Ωext is an infinite union of disjoint connected sets: Ωext =
U ∪⋃σ∈A fσ(T ). Therefore, (36) involves Neumann problems in T and in fσ(T ), σ ∈ An, n ≥ 1, which
are not well posed if β = 0 and the average of f in these sets is not zero. It would also be possible to
consider the case β = 0 under additional assumptions, on the support of f for example, but this would
imply further technical details, because the solutions of Neumann problems in the holes would then be
defined up to the addition of constants.

Remark 14. When θ > 0 and r = r∗, the situation is quite different: Γ is not entirely contained in the
boundary of any connected component of Ωext. It can be shown that there exists δ ∈ (1, d) such that the
intersections of Γ with the boundary of the connected components of Ωext have Hausdorff dimension δ.
These sets are called the canopies of the domain Ωint. In this case, the transmission condition has to be
described more carefully. This is the topic of a work in progress.

The meaning of (36) is the variational formulation (P ) where V is defined by (14) and

a(u, v) =

ˆ

Ωint

(∇uint ·∇vint+βuintvint) dx+

ˆ

Ωext

(∇uext ·∇vext+βuextvext) dx+α

ˆ

Γ

u|Γv|Γ dµ. (37)

In order to set the transmission problems in the geometries with prefractal interfaces, we first need to
define some trapezoidal subsets of the triangular holes as follows: let H be the height of the triangle T .
Choosing the coordinates in such a way that Γ0 is a segment of the line {x2 = 0}, we see that Γ is a

segment of the line {x2 = 2H}. Then, we can also define T̂ n and T̂ n
σ by T̂ n = T ∩ {(2 − 3/2n+1)H <

x2 < (2 − 2−n)H} and T̂ n
σ = fσ(T ) ∩ {(2− 3/2n+1)H < x2 < (2− 2−n)H} for σ ∈ Am and m < n.

Finally we define

ω̂n
ext =

n−1⋃

m=0

⋃

σ∈Am

T̂ n
σ ⊂ Ωn

ext ∩
{
2H − 3

2n+1
H < x2 < 2H − 2−nH

}
. (38)

The transmission problem with interface Γn is then




−div (νn∇u) + βu = f in Ωn
int ∪Ωn

ext,

[u] = 0 on Γn,

[∂nu] =
α

|Γn|u on Γn,

∂nu
n
int = ∂nu

n
ext = 0 on Σn,

∂nu
n
ext = 0, un

int = u0 on Γ0,

∂nu
n
ext = 0 on ∂D,

(39)

where
νn = 2−2n1ω̂n

ext
+ 1D\ω̂n

ext
. (40)

Note that νn = 1 in Ωn
int and that the Lebesgue measure of the set where νn = 2−2n vanishes as n → ∞.

Hence νn tends to 1 almost everywhere in D. The variational formulation of (39) is (Pn) with Vn defined
in (18), and an defined as follows:

an(u, v)

=

ˆ

Ωn
int

(∇un
int · ∇vnint + βun

intv
n
int) dx+

ˆ

Ωn
ext

(νn∇un
ext · ∇vnext + βun

extv
n
ext) dx+

α

|Γn|

ˆ

Γn

u|Γnv|Γn dx.

(41)

Remark 15. The reason for modifying the partial differential equation in (39) by taking −div (νn∇u)
instead of −∆u in (17) is that for a function u ∈ V , u|Ωint

is completely independent from u|fσ(T ). This
explains why the construction of a sequence of functions (un) such that un ∈ Vn, un → u in L2(D) and
an(un, un) → a(u, u), is difficult without modifying the coefficients of the partial differential equation near
the top of the triangles T and fσ(T ) in order to cope with the possibly strong gradients of un. Although
we have not tried it, it may be possible to choose a parameter larger than 2−2n in the definition of νn.
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T

D

Γ

U

A

Ωint

Y 0

Figure 3: An exemple of the domains Ωint and Ωext in the case θ = 0

The main result of this paragraph is the following theorem

Theorem 8. Assume that θ = 0 and r = r⋆θ = 1
2 . Then the energy forms an defined in (41) M-converge

in L2(D) to the form a defined in (37).

Since ∂U is Lipschitz-continuous, a standard trace result yields that for every u ∈ V , uext|Γ ∈ H1/2(Γ).
Hence, the transmission condition in (36) implies that

uint|Γ ∈ H1/2(Γ). (42)

Note that (42) is not only a consequence of the fact that uint ∈ H1(Ωint), because the latter property
only implies that uint|Γ in Hs(Γ) for all s < 1

2 (see Theorem 3).

For proving Theorem 8, we need the following extension result, which is not available in the literature:

Theorem 9. There exist a linear extension operator F from {v ∈ H1(Ωint), v|Γ ∈ H1/2(Γ)} to H1(D)

and a constant C > 0 such that for every v ∈ H1(Ωint) with v|Γ ∈ H1/2(Γ)},

‖ṽ‖2H1(D) 6 C
(
‖v‖2H1(Ωint)

+ ‖v|Γ‖2H1/2(Γ)

)
. (43)

Theorems 10 and 11 below will play an important role in the proof of Theorem 9. We start by recalling
an extension result for multiple cones from [7].

Theorem 10. [see [7], Th. 5.1] Call C the double cone in R
2 defined by |x1| < |x2|. Write ρ(x) = ‖x‖

(the notation ‖ . ‖ stands for the euclidean norm), and, for every v ∈ H1(C), introduce the antiradial
part va of v in the cone C, defined by

va(x) = v(x) − 〈v〉Sρ(x)
,

where for any R > 0, SR = {x ∈ C, ‖x‖ = R}, and 〈v〉SR
is the mean value of v along the arc SR.

There exists a linear extension operator

Λ :

{
v ∈ H1(C),

va
ρ

∈ L2(C)

}
→ H1(R2), (44)

such that for every v ∈ {v ∈ H1(C), va/ρ ∈ L2(C)},

‖Λv‖H1(R2) 6 c

(
‖v‖H1(C) +

∥∥∥∥
va
ρ

∥∥∥∥
L2(C)

)

where c > 0 is a constant independent of v.
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Remark 16. The construction in [7] is such that if v is radial (resp. constant) in C ∩ B(0, R), then Λv
is radial (resp. constant) in B(0, R).

As mentioned in [7], Theorem 10 can be immediately extended in R
n to the case of a union of two half-

cones sharing the same vertex, separated by a hyperplane passing through the vertex and not containing
any direction of the boundaries.

Theorem 11 : Peetre-Tartar. [see [40, 43]] Let E,E1, E2, F be Banach spaces, and let Ai, i = 1, 2, be
continuous linear operators from E to Ei, and suppose A1 is compact. Further assume that there exists
a constant c0 > 0 such that for any v ∈ E,

‖v‖E 6 c0(‖A1v‖E1
+ ‖A2v‖E2

). (45)

If L is a coninuous linear operator from E to F such that L| kerA2
≡ 0, then there exists a constant c1 > 0

such that for any v ∈ E,

‖Lv‖F 6 c1‖A2v‖E2
. (46)

Notations We start by introducing notations for the proof of Theorem 9.

We first introduce a domain C which is the union of two truncated half-cones included in Ωint, whose
common vertex is the point A. Recall that T is the main hole of the domain Ωint. Call ϕ0 ∈ (0, π

2 ) the
upper half-angle of the triangular domain T (see Figure 4), and take ϕ1 > ϕ0. Call C the half-cone whose
boundary is made of the two half-lines through A with respective angles ϕ0 and ϕ1 with the vertical axis
(see Figure 4). Call C2 = C ∩ (Ω̃int \Y 0). We can assume that ϕ1 > ϕ0 is small enough so that C2 ⊂ Ωint,
in other words C2 does not intersect any of the holes of Ωint. We define C1 to be the symmetric of C2

with respect to the vertical axis x2 = 0, and we write C = C1 ∪ C2.

We also introduce the sets Y k,1 := f1 ◦ f2k−1(Y 0) and Y k,2 := f2 ◦ f1k−1(Y 0) for every k > 1 (see Figure
4), and we write Y k := Y k,1 ∪ Y k,2. We also note γ := f1

2(Γ) ∪ f2
2(Γ) (see Figure 5).

Y 2,2

Y 1,2Y 1,1

Y 2,1

T C2C1

ϕ0

ϕ1

A

OP1 P2

Figure 4: The region C = C1 ∪ C2 and the domains Y k,i, k, i = 1, 2.

Call Ω1,1 := f1
(
Ωint \ f2(Ωint)

)
and Ω1,2 := f2

(
Ωint \ f1(Ωint)

)
(see Figure 5). We introduce the sets Ωk,i

defined by Ωk,i := gk−1(Ωi), k > 1, i = 1, 2, where g is the homothety centered at A with ratio 1/2, see
Figure 5.
For every integer k > 1, we introduce Σk := {τ ∈ A, fτ (Y

0) ⊂ Ωk,1 ∪Ωk,2}, with the notations of §2.1.1.
Take κ ∈ (1/2, 1). We introduce the space G = {v ∈ L1

loc(Ω
1,1 ∪ Ω1,2), ‖v‖G < ∞}, where

‖v‖2G =
∑

m>1

κm
∑

τ∈Σ1∩Am

ˆ

fτ (Y 0)

|v|2 dx. (47)
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γ = f1
2(Γ) ∪ f2

2(Γ)

f2
2(Γ)f1

2(Γ)

Ω1,1

Ω2,2Ω2,1

Ω1,2

Figure 5: The domains Ωk,i, k, i = 1, 2 (in light grey: Ω1,1 and Ω1,2, in dark grey: Ω2,1 and Ω2,2) and
the sets fi

2(Γ), i = 1, 2.

Endowed with the norm ‖ · ‖G, the space G is a Hilbert space.

We also introduce the space H = {v ∈ L2(Ω1,1 ∪Ω1,2), ∇v ∈ G}, which is a Hilbert space with the norm

(
‖∇v‖2G + ‖v‖2L2(Ω1,1∪Ω1,2)

) 1
2

.

Moreover, from Theorem 4, we see that v ∈ H 7→ v|γ is a continuous operator from H to L2
µ(γ). Arguing

by contradiction, we can show that (
‖∇v‖2G + ‖v|γ‖2L2

µ(γ)

) 1
2

is an equivalent norm on H .

We first state and prove two lemmas which will be useful in the proof of Theorem 9.

Lemma 2. There exists a constant c > 0 such that for every v ∈ H,

ˆ

Y 1

(
|v(x)− 〈v〉Y 1,1 |2 + |v(x) − 〈v〉Y 1,2 |2

)
dx 6 c

(
ˆ

γ

|v − 〈v〉γ |
2
dµ+ ‖∇v‖2G

)
. (48)

Proof. We introduce the Hilbert space E = {(v, w) ∈ H × L2
µ(γ), v|γ = w}, endowed with the norm

‖ · ‖E given by ‖(v, w)‖2E = ‖∇v‖2G + ‖w‖2L2
µ(γ)

.

We now introduce the operators

A1 : (v, w) ∈ E 7→ 〈v〉γ ,
A2 : (v, w) ∈ E 7→ (∇v, w − 〈w〉γ),
L : (v, w) ∈ E 7→ (v − 〈v〉Y 1,1 , v − 〈v〉Y 1,2).

With the notations of Theorem 11, E1 = R, E2 = G×L2
µ(γ) and F = L2(Y 1)

2
. It is easily seen that A1,

A2 and L are continuous linear operators, and A1 is compact. Moreover, (45) is clearly satisfied.
Observe that (v, w) ∈ E lies in kerA2 if and only if v is constant in Ω1,1 and in Ω1,2. Hence, it is obvious
that L| kerA2

≡ 0. From this, we deduce by Theorem 11 that there exists a constant c > 0 such that
‖L(v, w)‖F 6 c‖A2(v, w)‖E2

for all (v, w) ∈ E, which yields (48). ⊓⊔

Lemma 3. Assume that v ∈ H1(Ωint) and v|Γ ∈ H1/2(Γ), then va
ρ ∈ L2(C), and

ˆ

C

∣∣∣∣
va
ρ

∣∣∣∣
2

dx 6 c


∑

k>1

2k
ˆ

γk

|v − 〈v〉γk
|2 dµ+

∑

k>1

∑

p>k

κp−k+1
∑

τ∈Σk∩Ap

ˆ

fτ (Y 0)

|∇v|2 dx



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for some constant c > 0 independent of v, where γk = gk−1(γ) (recall that g is the homothety centered at
A, with ratio 1/2).

Proof. We first observe that, by self-similarity, there exists a constant c1 > 0 such that for all x ∈ Y k,
ρ(x) > c1

2k
. Therefore,

ˆ

C

∣∣∣∣
va
ρ

∣∣∣∣
2

dx 6 c1
∑

k>1

22k
ˆ

Y k

|va|2 dx,

since C ⊂ ⋃k>1 Y
k by construction. Hence, there is a constant c2 > 0 such that

ˆ

C

∣∣∣∣
va
ρ

∣∣∣∣
2

dx 6 c2(I1+I2),

where

I1 =
∑

k>1

22k
ˆ

Y k

|v(x) − 〈v〉Y k |2 dx, (49)

I2 =
∑

k>1

22k
ˆ

Y k

|〈v〉Y k − 〈v〉Sρ(x)
|2 dx. (50)

We start by dealing with I1. We note that

I1 6
1

2

∑

k>1

22k
ˆ

Y k

(
|v − 〈v〉Y k,1 |2 + |v − 〈v〉Y k,2 |2

)
dx. (51)

For every k > 1, we can apply Lemma 2 to the function v ◦ gk−1. Since γk = gk−1(γ), we obtain

I1 6 c



∑

k>1

2k
ˆ

γk

|v − 〈v〉γk
|2 dµ+

∑

k>1

∑

m>1

κm
∑

τ∈Σ1∩Am

ˆ

gk−1(fτ (Y 0))

|∇v|2 dx




= c



∑

k>1

2k
ˆ

γk

|v − 〈v〉γk
|2 dµ+

∑

k>1

∑

p>k

κp−k+1
∑

τ∈Σk∩Ap

ˆ

fτ (Y 0)

|∇v|2 dx


 , (52)

for some constant c > 0 independent of v, since {gk−1 ◦ fτ , τ ∈ Σ1 ∩ Am} = {fτ , τ ∈ Σk ∩ Am+k−1}.
Let us now deal with I2. For every R > 0 and i = 1, 2, call Si

R = SR ∩Ci and 〈v〉Si
R
the mean value of v

on the set Si
R. We note that

I2 6
1

2

∑

i=1,2

∑

k>1

22k
(
ˆ

Y k

|〈v〉Y k,i − 〈v〉Si
ρ(x)

|2
)
. (53)

Take i ∈ {1, 2} and x0 ∈ fi(Y
0), and, for every integer k > 1, ρk = ρ(x0)/2

k−1.

We observe that
∑

k 2
2k
´

Y k |〈v〉Y k,i − 〈v〉Si
ρ(x)

|2 6 2(J1 + J2), where

J1 =
∑

k>1

22k+1|Y k,i|(〈v〉Y k,i − 〈v〉Si
ρk

)2, (54)

J2 =
∑

k>1

22k
ˆ

Y k

|〈v〉Si
ρk

− 〈v〉Si
ρ(x)

|2 dx. (55)

Let us first examine J1. The following Poincaré inequality holds in Y 1,i = fi(Y
0): for every v ∈ H1(Y 1,i),

ˆ

Y 1,i

|v(x)− 〈v〉Sρi
|2 dx 6 M

ˆ

Y 1,i

|∇v|2 dx, (56)

where the constant M > 0 is independent of v.
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Observe that for every integer k > 1, Y k,i = gk−1(Y 1,i), and Si
ρk

= gk−1(Si
ρ1
). Then

|〈v〉Y k,i − 〈v〉Si
ρk

|2 =
1

|Y k,i|2
∣∣∣∣
ˆ

Y k,i

(v(x) − 〈v〉Si
ρk

) dx

∣∣∣∣
2

6
1

|Y k,i|

ˆ

Y k,i

|v(x) − 〈v〉Si
ρk

|2 dx

6
1

22(k−1)|Y k,i|

ˆ

Y 1,i

|v ◦ gk−1(x)− 〈v ◦ gk−1〉Si
ρ1

|2 dx

6
M

22(k−1)|Y k,i|

ˆ

Y 1,i

|∇(v ◦ gk−1)|2 dx

=
M

22(k−1)|Y k,i|

ˆ

Y k,i

|∇v|2 dx,

where we used (56). From this and (54), we deduce that

J1 6 8M
∑

k>1

ˆ

Y k,i

|∇v|2. (57)

To deal with J2, we use polar coordinates (ρ, ϕ) centered at A. Introduce the positive constants R0, R1

such that for all (ρ, ϕ) ∈ Y 1,i, R0 6 ρ 6 R1. Observe that if x ∈ Y k,

|〈v〉Si
ρ(x)

− 〈v〉Si
ρk

|2 =

∣∣∣∣
1

ϕ1 − ϕ0

ˆ ϕ1

ϕ0

(v(ρ(x), ϕ) − v(ρk, ϕ)) dϕ

∣∣∣∣
2

=

∣∣∣∣∣
1

ϕ1 − ϕ0

ˆ ϕ1

ϕ0

ˆ ρ(x)

ρk

∂v

∂ρ
(s, ϕ) ds dϕ

∣∣∣∣∣

2

6
1

(ϕ1 − ϕ0)2

∣∣∣∣∣

ˆ ϕ1

ϕ0

ˆ ρ(x)

ρk

∣∣∣∣
∂v

∂ρ
(s, ϕ)

∣∣∣∣
2

s ds dϕ

∣∣∣∣∣×
∣∣∣∣∣

ˆ ϕ1

ϕ0

ˆ ρ(x)

ρk

ds

s
dϕ

∣∣∣∣∣

6
log R1

R0

ϕ1 − ϕ0

ˆ ϕ1

ϕ0

ˆ R1/2
k−1

R0/2k−1

∣∣∣∣
∂v

∂ρ
(s, ϕ)

∣∣∣∣
2

s ds dϕ

=
log R1

R0

ϕ1 − ϕ0

ˆ

C(k)

|∇v(y)|2 dy,

where C(k) = {(ρ, ϕ), R0

2k−1 < ρ < R1

2k−1 , ϕ1 < |ϕ| < ϕ0}. Hence,

J2 6
log R1

R0

ϕ1 − ϕ0

∑

k>1

22k
ˆ

Y k

ˆ

C(k)

|∇v(y)|2 dy dx,

and there is a constant c3 > 0 independent of v such that

J2 6 c3
∑

k>1

ˆ

C(k)

|∇v(y)|2 dy.

Note that every point (ρ, ϕ) in C(k) lies in at most log2
R1

R0
sets C(l), l > 1. Therefore,

J2 6 c3 log2
R1

R0

ˆ

C

|∇v(y)|2 dy 6 c3 log2
R1

R0

∑

k>1

ˆ

Y k

|∇v|2 dx. (58)

By the inequalities (57) and (58), I2 6 c4
∑

k>1

´

Y k |∇v|2 dx for some constant c4 > 0 independent of v.
Hence,

I2 6
c4
κ

∑

k>1

∑

p>k

κp−k+1
∑

τ∈Σk∩Ap

ˆ

fτ (Y 0)

|∇v|2 dx. (59)
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Indeed, observe that the terms in the sum of (59) for which p = k are exactly κ
´

Y k |∇v|2 dx.

Therefore, (52) and (59) yield, which (49), which achieves the proof. ⊓⊔
Proof of Theorem 9. In the proof we will write . when there may arise in the inequality a constant that
does not depend on the function v ∈ H1(Ωint) we consider.
By Lemma 3 and Theorem 10, for every v ∈ H1(Ωint) such that v|Γ ∈ H1/2(Γ), there exists Λv ∈ H1(R2)
such that (Λv)|C = v and

‖Λv‖2H1(R2) . ‖v‖2H1(C) +

∥∥∥∥
va
ρ

∥∥∥∥
2

L2(C)

.

Define Ĉ = Int(C ∪ Y
0
) (see Figure 4). Introducing a cut-off function with support in the main hole T

and using the operator Λ and Remark 16, we can construct a linear extension operator F0 from H1(Ĉ)

to H1(Ĉ ∪ T ) such that F1 = 1 and for all v ∈ H1(Ĉ)
ˆ

T

|∇(F0v)|2 dx .

ˆ

Ĉ

|∇v|2 dx+

ˆ

C

∣∣∣∣
va
ρ

∣∣∣∣
2

dx, (60)

which also implies

‖F0v‖2H1(Ĉ∪T ) . ‖v‖2H1(Ĉ) +

∥∥∥∥
va
ρ

∥∥∥∥
2

L2(C)

. (61)

We will now define an extension ṽ ∈ H1(Ω̃int) of a function v as in Theorem 9, where Ω̃int is the convex
hull of the domain Ωint. Recall that T is the main hole and {fσ(T ), σ ∈ A} is the collection of the holes

of the domain Ωint (see Figure 4). Introduce the function ṽ defined in Ω̃int by
{

ṽ := v in Ωint,

ṽ := F0(v ◦ fσ) ◦ fσ−1 in fσ(T ), σ ∈ A.

By Lemma 3 and (60), we get the estimate
ˆ

T

|∇(F0v)|2 dx .
∑

k>1

2k
ˆ

γk

|v − 〈v〉γk
|2 dµ+

∑

k>0

∑

p>k

κp−k+1
∑

τ∈Σk∩Ap

ˆ

fτ (Y 0)

|∇v|2 dx. (62)

Indeed, κ
´

Y 0 |∇v|2 dx (resp. κ
´

C
|∇v|2 dx) is bounded from above by the terms for which k = p = 0

(resp. k > 1, p = k) in the second sum in (62).

Observe that for every integer k > 1, γk ⊂ Γ̃σk

where σk = (1, 2, . . . , 2) ∈ Ak−2, (recall that the sets Γ̃σ

have been introduced in Remark 3). Therefore,
ˆ

γk

|v − 〈v〉γk
|2 dµ .

ˆ

Γ̃σk
|v − 〈v〉Γ̃σk |2 dx, (63)

for i = 1, 2, where the constant in the inequality does not depend on k. Take σ ∈ An, one has
ˆ

fσ(T )

|∇ṽ|2 dx =

ˆ

T

|∇(F0(v ◦ fσ))|2 dx

.
∑

k>1

2k+n

ˆ

fσ(Γ̃σk )

|v − 〈v〉fσ(Γ̃σk )|
2
dµ

+
∑

k>0

∑

p>k

κp−k+1
∑

τ∈Σk∩Ap

ˆ

fστ (Y 0)

|∇v|2 dx,

where we applied (62) to the function v ◦ fσ, and we used (63). The constant in the inequality does not
depend on n. The notation στ for τ ∈ Ak stands for (σ(1), . . . , σ(n), τ(1), . . . , τ(k)) ∈ An+k.
We can write

ˆ

Ω̃int

|∇ṽ|2 dx =

ˆ

Ωint

|∇ṽ|2 dx+
∑

σ∈A

ˆ

fσ(T )

|∇ṽ|2 dx

.

ˆ

Ωint

|∇ṽ|2 dx+ S1 + S2,
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where

S1 =
∑

n>0

∑

σ∈An

∑

k>1

2k+n

ˆ

fσ(Γ̃σk )

|v − 〈v〉fσ(Γ̃σk )|
2
dµ,

S2 =
∑

σ∈A

∑

k>0

∑

p>k

κp−k+1
∑

τ∈Σk∩Ap

ˆ

fστ (Y 0)

|∇v|2 dx.

We first deal with S1. Take σ, τ ∈ A and k, l > 1. Note that if σσk = τσl, then k = l and σ = τ .
Therefore,

S1 6
∑

k>0

2k
∑

σ∈Ak

ˆ

Γ̃σ

|v − 〈v〉Γ̃σ |2 dµ . ‖v|Γ‖2H1/2(Γ)
(64)

by (3).

We are left with dealing with S2. Assume that η ∈ AN and η = στ with τ ∈ Σk ∩Ap, then p 6 N . Since

the sets Σk, k > 1, are pairwise disjoint, this means that the term
´

fη(Y 0) |∇v|2 dx appears at most N

times in the sum S2.
Moreover, we observe that p − k + 1 ∈ [1, N + 1]. It can be seen that there is at most one quadruplet
(σ′, τ ′, l, q) with σ′ ∈ A, τ ′ ∈ Σl ∩ Aq, l > 1 and q > l distinct from (σ, τ, k, p) such that η = σ′τ ′ and
p− k + 1 = q − l + 1. As a consequence,

S2 6 2
∑

N>0

∑

η∈AN

N+1∑

m=1

κm

ˆ

fη(Y 0)

|∇v|2 dx

6
2

1− κ

∑

η∈A

ˆ

fη(Y 0)

|∇v|2 dx =
2

1− κ

ˆ

Ωint

|∇v|2 dx. (65)

Therefore, (64) and (65) give

‖ṽ‖2H1(Ω̃int)
. ‖v‖2H1(Ωint)

+ ‖v|Γ‖2H1/2(Γ)
.

Since Ω̃int is a polygonal domain, we can further extend ṽ into a function Fv in H1(D), where F is a
linear operator satisfying (43). ⊓⊔

Proof of Theorem 8 We will prove separately points i. and ii. in Definition 2.

Proof of point i. Suppose that (un) weakly converges to u in L2(D). Without loss of generality, one can
suppose lim an(un, un) is finite. We may further assume that there exists a subsequence, still called (un),
such that an(un, un) converges to some real number as n → ∞; as a consequence, there exists a constant
c independent of n such that

an(un, un) 6 c. (66)

In particular, for all n, un ∈ V n, which implies that un ∈ V . Then, (66) implies that (un|Ωint
) is bounded

in H1(Ωint) and that
√
νn∇un|Ωext

is bounded in L2(Ωext). Therefore, there exists a subsequence that
we still denote (un) such that

• (un|Ωint
) converges to u|Ωint

weakly in H1(Ωint), and strongly in L2(Ωint)

• √
νn ∇un|Ωext

converges weakly in L2(Ωext) to ∇u|Ωext
(recall that νn converges to 1 almost every-

where, so the weak limit of
√
νn ∇un|Ωext

must be ∇u|Ωext
.)

Thus

lim

(
ˆ

Ωn
int

(
|∇un|2 + βu2

n

)
dx+

ˆ

Ωn
ext

(
νn|∇un|2 + βu2

n

)
dx

)

>

ˆ

Ωint

(
|∇u|2 + βu2

)
dx+

ˆ

Ωext

(
|∇u|2 + βu2

)
dx.
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Moreover, exactly as in the proof of Theorem 6, we see that 1
|Γn|

´

Γn u2
n dx →

´

Γ u
2 dµ as n → ∞. We

have proved point i.

Proof of point ii. Take u ∈ L2(D). By (24), we may assume that u ∈ V . We must construct (un)
converging strongly in L2(D) such that (27) holds.
Recall that H is the height of the triangle T and that Γ0 is a segment of the line {x2 = 0}, Γ is a
segment of the line {x2 = 2H}. We then introduce a sequence of smooth cut-off functions χn(x2) such
that χn(x2) = 0 if x2 ≤ 2H − 3H

2n+1 , χn(x2) = 1 if x2 ∈ [2H − H
2n , 2H ] and that 2−n‖χ′

n‖L∞ + ‖χn‖L∞ is
bounded by a constant independent of n.

We now define the functions un by

un(x) =





uint(x) ∀x ∈ Ωint,
uext(x) ∀x ∈ U,

E(uint)(x) ∀x ∈
⋃

m≥n

⋃

σ∈Am

fσ(T ),

χn(x2)E(uint)(x) + (1 − χn(x2))uext(x) ∀x ∈
n−1⋃

m=0

⋃

σ∈Am

fσ(T ),

(67)

where E is the extension operator introduced in Theorem 9, uint = u|Ωint
and uext = u|Ωext

. It is easy to
check that un belongs to the space V n and that the sequence (un) strongly converges to u in L2(D). We
claim that

n−1∑

m=0

∑

σ∈Am

ˆ

fσ(T )

νn(x) |∇ (χn(E(uint)− uext))|2 dx −→ 0, (68)

∑

m≥n

∑

σ∈Am

ˆ

fσ(T )

|∇ (E(uint)− uext)|2 dx −→ 0. (69)

Indeed, we readily obtain (69) from the fact that the measure of
⋃

m≥n

⋃
σ∈Am

fσ(T ) tends to zero
and the fact that ‖E(uint)‖H1(D) and ‖uext‖H1(D) are finite. We obtain (68) because ‖√νn∇χn‖L∞ is
bounded uniformly with respect to n and χn is supported in a region with vanishing measure, and because
‖E(uint)‖H1(D) and ‖uext‖H1(Ωext) are finite.
Therefore,

lim
n→∞

(
ˆ

Ωn
int

(|∇un
int|2 + β|un

int|2) dx+

ˆ

Ωn
ext

(νn|∇un
ext|2 + β|un

ext|2) dx
)

=

ˆ

Ωint

(|∇uint|2 + βu2
int) dx+

ˆ

Ωn
ext

(|∇uext|2 + βu2
ext) dx,

where un
int := un|Ωn

int
and un

ext := un|Ωn
ext

. Finally, from Proposition 1, 1
|Γn|

´

Γn u2 dx −→
´

Γ
u2 dµ as

n → ∞. Collecting all the above results, we obtain that lim an(un, un) = a(u, u) as n → ∞, thus point
ii.

References

[1] Y. Achdou, T. Deheuvels, and N. Tchou. JLip versus Sobolev spaces on a class of self-similar fractal foliages.
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