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A BI-PROJECTION METHOD FOR BINGHAM TYPE FLOWS

LAURENT CHUPIN, THIERRY DUBOIS

Abstract. We propose and study a new numerical scheme to compute the isothermal and
unsteady flow of an incompressible viscoplastic Bingham medium. The main difficulty, for both
theoretical and numerical approaches, is due to a lack of definition of the plastic stress tensor
in aeras where the deformation tensor vanishes. This is handled by introducing a projection
formulation for the yield stress tensor. A new time scheme based on the classical incremental
projection method for the Newtonian Navier-Stokes equations is proposed. The plastic tensor
is treated implicitely in the first sub-step of the projection scheme and is computed by using
a fixed point procedure, which is shown to converge geometrically. This key feature of our
method ensures its numerical efficiency. Stability and error analyses of the numerical scheme
are provided. A first-order estimate of the time error is obtained for the velocity field. A
second-order cell-centered finite volume scheme on a staggered grid is applied for the spatial
discretization. The scheme is assessed against previous plubished benchmark results for both
Newtonian and Bingham flows in a lid-driven cavity at Reynolds number equals 103. The
proposed numerical scheme is able to reproduce the fundamental property of cessation in finite
time of a viscoplastic medium in the absence of any energy source term in the equations.

1. Introduction

Many materials occuring in industrial or geophysical problems, such as pastes or polymer
suspensions, muds used in drilling technologies, lavas, even blood in arterioles and capilliries,
behave as viscous fluid flows in regions of high shear stress and as rigid bodies where the stress
is below a critical value, called the yield stress. A typical situation found in engineering context
is the solidification of flows of a viscoplastic medium in pipes. An important property of flows
of non-newtonian materials, called Bingham fluids, is that the velocity fields goes to zero (the
flow halts) in a finite time in the absence of any energy source terms. The model which takes
into account such viscoplastic behavior is known as the Bingham model and corresponds to the
momentuum conservation law for which the stress has a singularity (corresponding to the yield
stress). More precisely, when the shear strain rate magnitude vanishes, the shear stress is not
defined.

This singularity is a permanent source of challenging problems both from the theoretical
point of view and in the design of efficient numerical algorithms capable to produce reliable and
accurate numerical simulations. In order to handle this non-differentiability of the constituve
rheological law, two approaches have been mainly used both in the fields of theoretical studies
and numerical simulations. The first one consists in approximating the Bingham model by a
smooth (differentiable) functionnal, see for instance [3] and [20]. Such regularizing methods are
appealing as they can be easily incorporated in classical numerical schemes and implemented in
many existing codes designed for the numerical simulation of flows of newtonian viscous fluids.
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They have been widely used to perform numerical simulations of flows of an incompressible
Bingham medium, see for instance [3], [15] and [5]. As it is mentioned in [5], regularization
methods do not accurately reproduce the cessation of Bingham fluid flows in finite time. Let us
mention that Zhang in [27] performed a numerical analysis of a regularized Bingham model [3]
and derived both time and spatial error bounds for a fully discrete system of equations.

The second approach, used to overcome the difficulty due to the non-differentiable form of
the constitutive law, relies on the theory of variational inequalities due to Duvaut and Lions [9].
In this context the Bingham equations can be interpreted with Lagrange multipliers so that
the problem reduces in solving several saddle-point problems. These minimisation problems are
generally solved by using the Augmented Lagrangian method [10] or the Uzawa-like method [11].
A review of numerical schemes based on this approach can be found in [7]. The variational
inequality formulation is particularly well suited for finite element approximations. Therefore,
these methods have been mostly used in the context of finite element method for the spatial
discretization of the equations [7, 26, 21]. Numerical schemes based on the finite difference
method to discretize the spatial partial derivatives have been more recently proposed and used.
Two type of schemes have been employed whose main differences rely in the choice of the
locations of the dicrete variables on the computational grid, namely staggered in [17, 16] and
semi-staggered in [19, 18].

Regarding the time discretization of the (non-regularized) Bingham problem, operator split-
ting methods are commonly used (see [22, 6, 26]). Most contributions in this context use three
sub-steps for the computation of the velocity field over one time step. They decouple the resolu-
tion of the Stokes operator, that is the viscous term including the incompressibility constraint,
the nonlinear (transport) terms and the (plastic) Bingham contribution. Obviously, the main
advantage of this type of scheme is to separate and isolate the difficulties so that efficient and
well-known numerical schemes can be applied for solving each sub-steps.

Projection methods are widely used for the time discretization of the incompressible Navier-
stokes equations [12] especially in the context of the numerical simulation of turbulent flows.
Indeed, coupling a projection scheme with a cell-centered finite difference/volume scheme for
the nonlinear (advection) terms on a staggered grid allows to recover at the discrete level the
fundamental orthogonality property (with respect to the L2-inner product and its discrete coun-
terpart) of the nonlinear terms with the velocity field. This ensures conservation of the kinetic
energy for an inviscid flow. Surprisingly, projection schemes have not been used in the numer-
ical studies of Bingham viscoplastic flows until recently. Indeed, Muravleva in [16] proposed a
three-level splitting scheme consisting of a second-order (BDF2) projection scheme for the first
two steps followed by a plasticity step computing the plastic stress tensor.

In this paper, we introduce a new time discretization scheme to solve the non-regularized
Bingham problem. The main idea is to couple an incremental projection scheme with a pro-
jection, of the Uzawa-like method type (see [7, 16]), to treat the Bingham singularity. Unlike
in [16], the plastic stress tensor is added implicitely in the prediction step of the projection
scheme and is computed as the fixed point of a projection operator. The Bingham projection is
solved with a fixed point procedure which is shown to convergence geometrically. This ensures
the computational efficiency of the proposed scheme. The objective of this paper is first to per-
form a numerical analysis (stability study and error analysis) of our bi-projection scheme and
to show the efficiency of the proposed new methodologies by performing numerical simulations
on classical and well-known computational configurations.
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The outline of the rest of the paper is as follows. In section 2 we precisely provide the math-
ematical formulation, and the notations, for a Bingham (non-regularized) viscoplastic model.
We also introduce the projection formulation, used to compute the extra (plastic) stress ten-
sor, which will be used in the next parts. In section 3 we introduce an iterative method (with
respect to the time) in order to approximate the continuous model. In this section, we prove
that this method is well posed, stable and converging. In the last section 4, we first describe in
details the spatial and time discretization scheme used for the numerical simulations. Finally,
some numerical experiments, highlighting the efficiency of the proposed new methodologies, are
performed and analyzed.

2. The model of a Bingham viscous plastic flow

2.1. Mathematical modelling. Let T > 0 be a positive real number and Ω be a domain
of Rd. The isothermal flow of an incompressible Bingham viscoplastic medium is modeled by
the following system of equations on the velocity u and the pressure p:

(1)

{
ρ0
(
∂tu+ u · ∇u

)
+∇p = div τ in (0, T ) × Ω,

divu = 0 in (0, T ) × Ω,

where the stress τ is given with respect to the deformation tensor Du by the relation

(2) τ = 2µ0Du+ σ0
Du

|Du| .

In this system (1)–(2), the constant ρ0 represents the density of the medium, the constant µ0

corresponds to its viscosity and the constant σ0 is the plasticity yield1. The tensor Du repre-
sents the deformation tensor, i.e. the symmetric part of the velocity gradient, and |Du| is its
Froebenius norm:

Du =
1

2

(
∇u+ T(∇u)

)
and |Du|2 =

∑

1≤i,j≤d

|(Du)ij |2.

Finally the system is closed given an initial condition (u = u0 for t = 0) and boundary con-
ditions (u = ub on ∂Ω). For the sake of simplicity and only for the theoretical analysis of the
numerical scheme, we shall consider only homogeneous Dirichlet boundary conditions, namely:
ub = 0. We point out that some of our results remain true for the case of nonhomogeneous
boundary conditions when ub is tangent to the boundary.

We observe that (if σ0 > 0) the above model makes no sense on the rigid set, that is where the
deformation tensor Du vanishes. Indeed the equation (2) must read

τ = 2µ0 Du+ σ0 σ,

where the extra-stress tensor σ satisfies

(3)





σ =
Du

|Du| if |Du| 6= 0,

|σ| ≤ 1 if |Du| = 0.

Consequently the stress contribution σ is not always well-defined.

1Note that in some papers (for instance [7]), the plasticity yield is
√

2σ0.
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2.2. The projection formulation. In order to avoid this problem of non-well-definition of the
stress σ, several methods are possible. We chose a method of projection type, as defined in the
following proposition.

Proposition 1. For all r > 0 the condition (3) is equivalent to the relation

(4) σ = P(σ + rDu),

where P is the projector on the closed convex set defined by

Λ :=
{
σ ∈ L2(Ω)d×d ; |σ(x)| ≤ 1 a.e. on Ω

}
.

Proof. If |Du| = 0 the equivalence is obvious: we have σ ∈ Λ.
We now assume that |Du| 6= 0. Note that an explicit expression of the projection P is given by
(almost everywhere on Ω):

(5) P(σ) =

{
σ if |σ| ≤ 1,

σ/|σ| if |σ| > 1.

Consequently if σ =
Du

|Du| then σ + rDu = (1 + r|Du|) Du

|Du| satisfies the equality

P(σ + rDu) =
Du

|Du| ,

so that P(σ + rDu) = σ.
Reciprocally, if σ = P(σ + rDu) then |σ + rDu| > 1 (otherwise, using (5) we would have
Du = 0) and we have

σ =
σ + rDu

|σ + rDu| .

In particular we have |σ| = 1 and

σ =
r

|σ + rDu| − 1
Du.

We then deduce that σ =
Du

|Du| . �

Remark 1.

X The most usual method to solve the Bingham problem (1)–(2) is to rewrite the condition (3)
using a variational inequality model (see [9]). This method has been widely used (both theoret-
ically and numerically) and is suitable for numerical schemes of finite volume type since it is
written using integral formulation.

X Another idea is to introduce a small parameter ǫ and to reguralize (2) by writing

τ = 2µ0 Du+ σ0
Du

|Du|+ ε
.

This approach has many advantages from a theoretical point of view. One can relatively easily
show the existence of a solution (uε, pε) for each value of ε. Passing to the limit ε → 0, the
existence of a solution (u, p) to the original problem (1)–(2) can be obtained. Nevertheless,
from a numerical point of view the behavior of (uε, pε), even for small values of ε, can be quite
different from the desired behavior. For instance, without source term (that is without external
volume force as in (1) and with ub = 0) the well-known property that u(t) → 0 in finite time is
lost.
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2.3. Dimensionless Bingham system. In order to write the system in dimensionless form we
introduce a characteristic length L and a characteristic velocity V . Consequently, the natural
characteristic time is given by L/V , a characteristic pressure by ρ0V

2 and a characteristic stress
by σ0. We denote the Reynolds number and the Bingham number by

Re =
ρ0V L

µ0
and Bi =

σ0L

µ0V
,

so that the model of a Bingham viscous plastic flow (1)–(2) reads in dimensionless form:

(6) ∂tu+ u · ∇u+∇p− 1

Re
∆u =

Bi

Re
divσ,

under the two conditions (r being any positive parameter)

(7) divu = 0 and σ = P(σ + rDu).

3. Theoretical results on a simple scheme

3.1. Time discretization. In this section, we propose a new scheme to discretise with respect
to the time variable the Stokes-Bingham equations, that is the previous equations (6)–(7) without
taking into account the convective term u · ∇u:

(8)





∂tu+∇p− 1

Re
∆u =

Bi

Re
divσ,

divu = 0,

σ = P(σ + rDu).

Remark 2. In practice, the nonlinear term u · ∇u, which can be rewritten as div (u ⊗ u)
due to the incompressibility constraint, will be taken into account when performing numerical
simulations (see the section 4). However, in order to avoid unnecessary technical difficulties,
we present hereafter a convergence and error analysis only in the linear (Stokes) case. Indeed,
the essential difficulty here comes from the coupling between a projection scheme for the Stokes
operator with the projection (4) of the yield stress tensor.

In order to solve (8) we advocate the fixed point algorithm below in which we introduce four
numerical parameters (δt, r, α and θ):

We start with u0 = u0 and with arbitrary σ
0 and p0.

For n ≥ 0, assuming that un, σn and pn is known, we compute (ũn+1,σn+1) as the solution of

(9)





ũn+1 − un

δt
+∇pn − 1

Re
∆ũn+1 =

Bi

Re
divσn+1,

σ
n+1 = P(σn+1 + rDũn+1 + θ(σn − σ

n+1)),

ũn+1
∣∣∣
∂Ω

= 0.

Next, we deduce (un+1, pn+1) using the free-divergence constraint:

(10)





un+1 − ũn+1

δt
+ α∇(pn+1 − pn) = 0,

divun+1 = 0,

un+1 · n
∣∣∣
∂Ω

= 0.
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We will prove in the next section that the sequence (un)n converges to the solution u of the
system (8), see Theorem 3.
In practice, to solve the ystem (9) we use the following sub-fixed-point:

un, σ
n,0 = σ

n and pn given.

For k ≥ 0, assuming that σn,k is known, we first compute ũn,k as the solution of a Laplace type
problem and then we project the stress tensor to deduce σ

n,k+1:

(11)





ũn,k − un

δt
+∇pn − 1

Re
∆ũn,k =

Bi

Re
divσn,k,

ũn,k
∣∣∣
∂Ω

= 0,

σ
n,k+1 = P(σn,k + rDũn,k + θ(σn − σ

n,k)).

We will prove in the next section that the sequence (ũn,k,σn,k)k obtained converges to the
solution (ũn+1,σn+1) of the system (9), see Theorem 1.

3.2. Notations. The equations introduced before depend on parameters. Some physical pa-
rameters like Re and Bi, and some numerical parameters: r, θ, α and δt. All these parameters
are always supposed to be positive.

For two vectors u, v in R
d, we denote by u · v the inner product:

u · v =
d∑

i=1

ui vi.

For two tensors σ, τ in R
d×d, we denote by σ : τ the inner product:

σ : τ =
∑

1≤i,j≤d

σij τij.

In both cases, the associated norm will be denoted | · |.

For two functions f , g defined on the open set Ω ⊂ R
d with values in R, we will use the notation

〈f, g〉 for the inner product in L2(Ω):

〈f, g〉 =
∫

Ω
f g.

The associated L2(Ω)-norm will be denoted ‖ · ‖L2(Ω). For the sake of simplicity, the same nota-
tions for the inner product and the norm will be used throughout this paper for functions with
values in R

d and R
d×d.

In some cases, we use other functional spaces norms. These are always indicated in index, for
example ‖f‖H−1(Ω) for the norm associated to the Sobolev space H−1(Ω).

Let N be an integer and {tn}n∈{0,...,N} be a family of discretization of [0, T ]. For simplicity, we
use a uniform discretization so that:

tn = n δt with δt =
T

N
.
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3.3. Well-posedness. At first we indicate that each problem previously introduced is well-
posed.

X It is well known that the Stokes-Bingham system (8) has a solution (u, p,σ), see for in-
stance [9] where the variational inequality formulation is used. The uniqueness is clearly false
since there exists many stress tensors σ on the set where Du = 0. Nevertheless, it can be
proved that the velocity u is always well-defined, and the pressure p is well-defined too, up to
an additive constant.

X The existence and uniqueness for the solution (ũn+1,σn+1) to system (9) result from the
theory of variational inequations too. The precise result for this system is proved in [7, p. 47].

X The system (10) is more usual: ũn+1 and pn given, it admits a unique solution (un+1, pn+1),
up to an additive constant for the pressure field. Indeed, un+1 = PH ũn+1 where PH is the
orthogonal projector in L2(Ω)d onto the free-divergence vector space, and the pressure pn+1 is
a solution of the following Poisson equation

∆pn+1 = ∆pn +
1

α δt
div ũn+1 supplemented with

∂(pn+1 − pn)

∂n

∣∣∣
∂Ω

= 0.

X For each integer n ∈ N, we show by induction on the integrer k that each couple (ũn,k,σn,k)
is well defined as the solution of system (11). In particular the existence and uniqueness of ũn,k

are ensured by the Lax-Milgram theorem.

3.4. Convergence results with respect to k.

Theorem 1. We assume that

2θ + rBi ≤ 2.

For each integer n ∈ N, the sequence (ũn,k,σn,k)k solution of system (11) converges to (ũn+1,σn+1),
solution of system (9), as k tends to +∞.
Moreover the convergence is geometric with common ratio 1− θ.

Proof. Denoting uk = ũn,k− ũn+1 and σ
k = σ

n,k−σ
n+1 we obtain by subtracting (9) from (11)

that, for all k ≥ 0,

(12)





1

δt
uk − 1

Re
∆uk =

Bi

Re
divσk,

uk
∣∣∣
∂Ω

= 0,

σ
k+1 = P(σn,k + rDũn,k + θ(σn − σ

n,k))

− P(σn+1 + rDũn+1 + θ(σn − σ
n+1)).

We now take the inner product of the first equation in (12) by uk in L2(Ω) to deduce

(13)
1

δt
‖uk‖2L2(Ω) +

1

Re
‖∇uk‖2L2(Ω) = −Bi

Re
〈σk,Duk〉.

Since P is a projection operator, the last equation in (12) implies

|σk+1| ≤ |(1− θ)σk + rDuk|.
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Taking the L2(Ω)-norm, we deduce (using |Duk| ≤ |∇uk|) that

(14)
‖σk+1‖2L2(Ω) ≤ (1− θ)2‖σk‖2L2(Ω) + r2‖∇uk‖2L2(Ω)

+ 2r(1− θ)〈σk,Duk〉.

Combining the equality (13) and the inequality (14) we obtain

(15)

Bi

Re
‖σk+1‖2L2(Ω) +

2r(1− θ)

δt
‖uk‖2L2(Ω)

+
r(2− 2θ − rBi)

Re
‖∇uk‖2L2(Ω) ≤

Bi

Re
(1− θ)2‖σk‖2L2(Ω).

We then deduce that, if 2θ+rBi ≤ 2 all the coefficients in the left-hand side of the inequality (15)
are positive. Therefore, we have

‖σk‖L2(Ω) ≤ (1− θ)k‖σ0‖L2(Ω),

‖uk‖L2(Ω) ≤
√

Bi δt (1 − θ)

2rRe
(1− θ)k‖σ0‖L2(Ω),

‖∇uk‖2L2(Ω) ≤
√

Bi

r(2− 2θ − rBi)
(1− θ)k‖σ0‖L2(Ω),

which concludes the proof of Theorem 1. �

3.5. Stability result with respect to n.

Theorem 2 (Stability). We assume that

α ≥ 1, rBi ≤ 1 and θ ≤ 1/2.

The sequence (un, ũn, pn,σn)n solution of the system (9)–(10) is bounded.

We note that the assumptions of Theorem 2 implies that the assumption also holds for The-
orem 1.

Proof. By definition of the sequence (σn)n and the projection P, it is obvious that σn is bounded
by unity. The method consists in deriving an estimate on the velocity sequence, and on the
pressure sequence. We first take the inner product of the first equation of (9) with 2δt ũn+1

in L2(Ω)d; using the identity

(16) 2a(a− b) = a2 − b2 + (a− b)2,

we derive

(17)
‖ũn+1‖2L2(Ω) − ‖un‖2L2(Ω) + ‖ũn+1 − un‖2L2(Ω) +

2δt

Re
‖∇ũn+1‖2L2(Ω)

= −2δt〈∇pn, ũn+1〉 − 2δtBi

Re
〈σn+1,Dũn+1〉.

The goal is to control the terms in the right-hand side (RHS) of the equality (17).

• step 1 – control of 〈σn+1,Dũn+1〉
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Since P is a projection operator, the stress tensor σ
n+1 given by the second equation of the

system (9) satisfies:

(18)

|σn+1|2 ≤ |σn+1 + rDũn+1 + θ(σn − σ
n+1)|2

≤ |σn+1|2 + r2|Dũn+1|2 + θ2|σn − σ
n+1|2 + 2rσn+1 : Dũn+1

+ 2rθDũn+1 : (σn − σ
n+1) + 2θσn+1 : (σn − σ

n+1).

By invoking the Young inequality 2ab ≤ a2 + b2, we have

2rθDũn+1 : (σn − σ
n+1) ≤ r2|Dũn+1|2 + θ2|σn − σ

n+1|2,

and recalling the relation (16), we obtain

2θσn+1 : (σn − σ
n+1) = θ|σn|2 − θ|σn+1|2 − θ|σn − σ

n+1|2,

so that the inequality (18) rewrites

(19)
θ|σn+1|2 + (1− 2θ)θ|σn+1 − σ

n|2

≤ 2r2|Dũn+1|2 + 2rσn+1 : Dũn+1 + θ|σn|2.

After performing an integration with respect to the space variable, we obtain

(20)
θ‖σn+1‖2L2(Ω) + (1− 2θ) θ‖σn+1 − σ

n‖2L2(Ω)

≤ 2 r2‖∇ũn+1‖2L2(Ω) + 2r〈σn+1,Dũn+1〉+ θ‖σn‖2L2(Ω).

• step 2 – control of 〈∇pn, ũn+1〉
In order to estimate the pressure contribution in the RHS of (17), we proceed as follows. We

take the inner product in L2(Ω)d of the first equation of (10) with the vector field 2(α−1)δt
α un+1

(which is divergence free) and use the identity (16) to derive

(21)
α− 1

α

(
‖un+1‖2L2(Ω) − ‖ũn+1‖2L2(Ω) + ‖un+1 − ũn+1‖2L2(Ω)

)
= 0.

We next take the inner product in L2(Ω)d of the same equation with the vector field δt
α (u

n+1 +

ũn+1):

(22)
1

α

(
‖un+1‖2L2(Ω) − ‖ũn+1‖2L2(Ω)

)
+ δt〈∇(pn+1 − pn), ũn+1〉 = 0.

Finally, we take the inner product in L2(Ω)d of the first equation of (10), with δt2∇(pn+1+ pn):

(23) α δt2
(
‖∇pn+1‖2L2(Ω) − ‖∇pn‖2L2(Ω)

)
− δt〈∇(pn+1 + pn), ũn+1〉 = 0.

Adding (21), (22) and (23), we obtain:

(24)
‖un+1‖2L2(Ω) +

α− 1

α
‖un+1 − ũn+1‖2L2(Ω) + α δt2‖∇pn+1‖2L2(Ω)

= 2δt〈∇pn, ũn+1〉+ ‖ũn+1‖2L2(Ω) + α δt2‖∇pn‖2L2(Ω).

• step 3 – final estimate and conclusion of the proof
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Combining the three results (17) + δtBi
rRe (20) + (24), we obtain

(25)

‖un+1‖2L2(Ω) +
δt θBi

rRe
‖σn+1‖2L2(Ω) + α δt2‖∇pn+1‖2L2(Ω)

+
2δt

Re

(
1− rBi

)
‖∇ũn+1‖2L2(Ω)

+ ‖ũn+1 − un‖2L2(Ω) +
α− 1

α
‖un+1 − ũn+1‖2L2(Ω)

+
δt(1 − 2θ) θBi

rRe
‖σn+1 − σ

n‖2L2(Ω)

≤ ‖un‖2L2(Ω) +
δt θBi

rRe
‖σn‖2L2(Ω) + α δt2‖∇pn‖2L2(Ω).

If we denote by yn = ‖un‖2L2(Ω) +
δt θBi
rRe ‖σn‖2L2(Ω)+α δt2‖∇pn‖2L2(Ω) then the previous estimate

indicates in particular that yn+1 ≤ yn as soon as the following conditions

α ≥ 1, 1− rBi ≥ 0 and 1− 2θ ≥ 0

hold. The sequence (yn)n is then bounded, which implies a bound on the sequences (un)n, (p
n)n

and (σn)n. Recalling (25), a bound follows on (ũn+1 − un)n. As a consequence, with the help
of (22), the sequence (ũn)n is also bounded. This completes the proof of Theorem 2 �

3.6. Convergence results with respect to n.

Theorem 3 (Velocity convergence). We assume that

α ≥ 1, 3rBi ≤ 1, θ ≤ 1/3 and δt ≤ 1/2.

If there exists a regular solution (u, p,σ) of (8) then the sequence (un)n issued from the sys-
tem (9)–(10) converges to u as n tends to +∞. More precisely, there exists a constant C
depending on Re, Bi, r, α and T (but neither on θ nor on δt), such that for all 0 ≤ n ≤ N , we
have

‖u(tn)− un‖2L2(Ω) + δt
n∑

k=0

‖u(tk)− uk‖2H1(Ω) ≤ C (θ δt+ δt2).

Remark 3.

(1) We say that a solution (u, p,σ) of (8) is regular if we have

∂2
t u ∈ L2(0, T ;H−1(Ω)d),

∂t∇p ∈ L2(0, T ;L2(Ω)d),

∂tσ ∈ L2(0, T ;L2(Ω)d×d).

The above assumptions for velocity and pressure are classicaly made when conducting
the error analysis of the projection schemes applied to the temporal discretization of the
Navier-Stokes equations (see for istance [23, 24]).

(2) The error estimate derived in Theorem 3 possesses two contributions. The first one,
bounded by θ δt, corresponds to the error due to the “approximation” of the Bingham
projection, while the second one, of the order of δt2, is the usual error estimate obtained
when time projection scheme are aplpied to the Navier-Stokes equations (see [23, 24]).
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(3) The hypotheses rBi ≤ 1 and θ ≤ 1/3 are not optimal. We will see during the sketch of
the proof that these constraints on the parameters are due to use of the Young inequality
2ab ≤ a2+b2. This can be improved if finer estimates are used, namely 2ab ≤ ε a2+b2/ε
for any ε > 0. Nevertheless, the price to pay will be a larger numerical value of the
constant C.

Proof. Let (u, p,σ) be a regular solution of system (8) and let (un, ũn, pn,σn)n be the solution
of the discrete system (9)–(10). We introduce the following quantities

en = u(tn)− un, ẽn = u(tn)− ũn,

qn = p(tn)− pn, sn = σ(tn)− σ
n.

Subtracting the system (9)–(10) from the system (8) taken at time tn+1 leads to

(26)





ẽn+1 − en

δt
+∇(p(tn+1)− pn)− 1

Re
∆ẽn+1 =

Bi

Re
div sn+1 +Rn,

en+1 − ẽn+1

δt
− α∇(pn+1 − pn) = 0,

div en+1 = 0,

sn+1 = P(σ(tn+1) + rDu(tn+1))

− P(σn+1 + rDũn+1 + θ(sn+1 − sn)− θΣn),

ẽn+1
∣∣∣
∂Ω

= 0, en+1 · n
∣∣∣
∂Ω

= 0,

where the trunctation error terms Rn and Σn are given by:

(27)

Rn =
u(tn+1)− u(tn)

δt
− ∂tu(tn+1) =

1

δt

∫ tn+1

tn

(tn − t)∂2
t u(t) dt,

Σn = σ(tn+1)− σ(tn) =

∫ tn+1

tn

∂tσ(t) dt.

Taking the inner product in L2(Ω)d between the first equation of (26) and 2δt ẽn+1 and recall-
ing (16) leads to

(28)
‖ẽn+1‖2L2(Ω) − ‖en‖2L2(Ω) + ‖ẽn+1 − en‖2L2(Ω) +

2δt

Re
‖∇ẽn+1‖2L2(Ω)

+ 2δt〈∇(p(tn+1)− pn), ẽn+1〉 = −2δtBi

Re
〈sn+1,Dẽn+1〉+ 2δt〈Rn, ẽn+1〉.

We now take the inner product in L2(Ω)d of the second equation of (26) with 2(α−1)δt
α en+1, and

with δt
α (e

n+1 + ẽn+1). We add the resulting relations and deduce

(29) ‖en+1‖2L2(Ω) − ‖ẽn+1‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω) − δt〈∇(pn+1 − pn), ẽn+1〉 = 0
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Adding equations (28) and (29), we arrive at

(30)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) + ‖ẽn+1 − en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+
2δt

Re
‖∇ẽn+1‖2L2(Ω) + δt〈∇

(
2p(tn+1)− (pn+1 + pn)

)
, ẽn+1〉

= −2δtBi

Re
〈sn+1,Dẽn+1〉+ 2δt〈Rn, ẽn+1〉.

By introducing

(31) Qn = p(tn+1)− p(tn),

we have

pn+1 − pn = Qn − (qn+1 − qn),

2p(tn+1)− (pn+1 + pn) = Qn + (qn+1 + qn).

Taking the inner product of the second equation of (26) with δt2∇
(
2p(tn+1)− (pn+1 − pn)

)
and

using the above relations, we derive

δt〈∇
(
2p(tn+1)− (pn+1 + pn)

)
, ẽn+1〉 = α δt2

(
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

)

− α δt2‖∇Qn‖2L2(Ω) − 2α δt2〈∇Qn,∇qn〉.
Now, by reporting this equality in (30), we obtain

(32)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) + ‖ẽn+1 − en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+
2δt

Re
‖∇ẽn+1‖2L2(Ω) + α δt2

(
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

)

= −2δtBi

Re
〈sn+1,Dẽn+1〉+ 2δt〈Rn, ẽn+1〉+ α δt2‖∇Qn‖2L2(Ω) + 2α δt2〈∇Qn,∇qn〉.

• step 1 – control of 〈sn+1,Dẽn+1〉
The term 〈sn+1,Dẽn+1〉 in the RHS of (32) is due to the plastic stess tensor and is a new con-

tribution compared to the classical estimates for the projection scheme for the Stokes equations.
This term is bounded as it follows. Since P is a projection, we have

|sn+1| ≤ |sn+1 + rDẽn+1 + θ(sn − sn+1) + θΣn|.
by taking the square of this inequality and by expanding the resulting right-hand side, we deduce

(33)

|sn+1|2 ≤ |sn+1|2 + r2|Dẽn+1|2

+ θ2|sn − sn+1|2 + θ2|Σn|2

+ 2r sn+1 : Dẽn+1
︸ ︷︷ ︸

=a1

+2θ sn+1 : (sn − sn+1)︸ ︷︷ ︸
=a2

+ 2θ sn+1 : Σn
︸ ︷︷ ︸

=a3

+2rθDẽn+1 : (sn − sn+1)︸ ︷︷ ︸
=a4

+ 2rθDẽn+1 : Σn
︸ ︷︷ ︸

=a5

+2θ2 (sn − sn+1) : Σn

︸ ︷︷ ︸
=a6

.
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Note that the integral of the term a1 with respect to the space variable x ∈ Ω is exactly the
term we aim to control. We therefore keep it unchanged. Using the identity (16), we rewrite
the term a2 as

a2 = −θ|sn+1|2 + θ|sn|2 − θ|sn+1 − sn|2.
With the help of the Young inequality, the term a3 is is majorized as follows

a3 ≤ θ δt|sn+1|2 + θ

δt
|Σn|2.

By bounding similarly the other terms in the right-hand side of (33), namely a4, a5 and a6, we
deduce the estimate

θ(1− δt)|sn+1|2 + θ(1− 3θ)|sn+1 − sn|2 ≤ 2r sn+1 : Dẽn+1

+ θ|sn|2 + 3r2|Dẽn+1|2 + θ (
1

δt
+ 3θ)|Σn|2.

Integrating the above inequality with respect to the spatial variable x ∈ Ω leads to

(34)
θ
[
(1− δt)‖sn+1‖2L2(Ω) − ‖sn‖2L2(Ω)

]
+ θ(1− 3θ)‖sn+1 − sn‖2L2(Ω)

≤ 2r 〈sn+1,Dẽn+1〉+ 3r2‖Dẽn+1‖2L2(Ω) + θ (
1

δt
+ 3θ)‖Σn‖2L2(Ω).

• step 2 – final estimate
By combining the three results (32) + δtBi

rRe (34) and recalling that ‖Dẽn+1‖L2(Ω) ≤ ‖∇ẽn+1‖L2(Ω),
we obtain

(35)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+ ‖ẽn+1 − en‖2L2(Ω) +
δt

Re
(2− 3rBi)‖∇ẽn+1‖2L2(Ω)

+
θ δtBi

rRe

[
(1− δt)‖sn+1‖2L2(Ω) − ‖sn‖2L2(Ω)

]

+
θ(1− 3θ) δtBi

rRe
‖sn+1 − sn‖2L2(Ω)

+ α δt2
[
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

]

≤ 2δt〈Rn, ẽn+1〉︸ ︷︷ ︸
b1

+θ (1 + 3θ δt)
Bi

rRe
‖Σn‖2L2(Ω)

+ α δt2‖∇Qn‖2L2(Ω) + 2α δt2〈∇Qn,∇qn)〉︸ ︷︷ ︸
b2

.

The term b1 is treated by invoking the duality between H−1 and H1
0 , and the Young inequality,

so that
b1 ≤ 2δt‖Rn‖H−1(Ω)‖ẽn+1‖H1

0
(Ω)

≤ δt

Re
‖∇ẽn+1‖2L2(Ω) + δtRe ‖Rn‖2H−1(Ω).

The term b2 is majorized using the Young inequality as follows

b2 ≤ 2α δt2 ‖∇Qn‖L2(Ω)‖∇qn‖L2(Ω)

≤ α δt‖∇Qn‖2L2(Ω) + α δt3‖∇qn‖2L2(Ω)
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Reporting these bounds on b1 and b2 in (35), we obtain

(36)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+ ‖ẽn+1 − en‖2L2(Ω) +
δt

Re
(1− 3rBi)‖∇ẽn+1‖2L2(Ω)

+
θ δtBi

rRe

[
(1− δt)‖sn+1‖2L2(Ω) − ‖sn‖2L2(Ω)

]

+
θ(1− 3θ) δtBi

rRe
‖sn+1 − sn‖2L2(Ω)

+ α δt2
[
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

]

≤ δtRe ‖Rn‖2H−1(Ω) + θ (1 + 3θ δt)
Bi

rRe
‖Σn‖2L2(Ω)

+ α δt (1 + δt) ‖∇Qn‖2L2(Ω) + α δt3‖∇qn‖2L2(Ω).

• step 3 – The Gronwall lemma
If the following conditions

α ≥ 1, 3rBi ≤ 1, θ ≤ 1/3,

hold, we deduce from the above inequality

(37) yn+1 + zn+1 ≤
(1 + δt)

(1− δt)
yn + εn,

where

yn = (1− δt)
(
‖en‖2L2(Ω) +

Bi

rRe
θ δt ‖sn‖2L2(Ω) + αδt2 ‖∇qn‖2L2(Ω)

)

zn =
(1− 3rBi)

Re
δt ‖∇ẽn+1‖2L2(Ω)

and

εn = δtRe ‖Rn‖2H−1(Ω) + θ(1 + 3θ δt)
Bi

rRe
‖Σn‖2L2(Ω) + α δt (1 + δt) ‖∇Qn‖2L2(Ω).

By applying the discrete Gronwall lemma to (37), we derive, for any 1 ≤ m ≤ N ,

ym +

m∑

j=1

zj ≤
(
1 + δt

1− δt

)m
(
y0 +

m−1∑

n=0

εn

)
.

Noting that, for δt ≤ 1
2 , we have 1+δt

1−δt ≤ (1 + δt)3 ≤ exp(3δt), then for all 1 ≤ m ≤ N , the
following inequality holds

(38) ym +

m∑

n=1

zn ≤ e3T

(
y0 +

m−1∑

n=0

εn

)
.

Recalling that, by definition, e0 = 0 the proof of the theorem relies on deriving a proper bound
for the term

∑n−1
j=0 εj in the above inequality.

• step 4 – control of the error εn
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We now derive estimates of the term εn with respect to the parameters θ and δt. From the
definition of Σn (in (27)), we have

‖Σn‖2L2(Ω) =
∥∥∥
∫ tn+1

tn

∂tσ(t) dt
∥∥∥
2

L2(Ω)
≤ δt

∫ tn+1

tn

‖∂tσ(t)‖2L2(Ω) dt,

similarly for Qn (in (31)), we obtain

‖∇Qn‖2L2(Ω) ≤ δt

∫ tn+1

tn

‖∂t∇p‖2L2(Ω) dt,

and finally for Rn (in (27)),, we have

‖Rn‖2H−1(Ω) =
1

δt2

∥∥∥
∫ tn+1

tn

(tn − t)∂2
t u(t) dt

∥∥∥
2

H−1(Ω)

≤ 1

δt2

(∫ tn+1

tn

(t− tn)
2 dt
)( ∫ tn+1

tn

‖∂2
t u(t)‖2H−1(Ω) dt

)

≤ δt

3

∫ tn+1

tn

‖∂2
t u(t)‖2H−1(Ω) dt.

Reporting these estimates in the above definition of εn, assuming the regularity of the solution
(u, p, σ) and summing up from n = 0 to m− 1, leads to

(39)

m−1∑

n=0

εn ≤ δt2
(
Re

3
‖∂2

t u‖2L2(0,T ;H−1(Ω)d) + α (1 + δt)‖∂t∇p‖2L2(0,T ;L2(Ω)d)

)

+ θ δt (1 + 3θ δt)
Bi

rRe
‖∂tσ‖2L2(0,T ;L2(Ω)d×d).

• step 6 – Conclusion of the proof
Thanks to (39), the inequality (38) now reads, for all 1 ≤ m ≤ N ,

(40) ym +

m∑

n=1

zn ≤ exp(3T)
(
c1 θ δt+ c2 δt

2
)

with 



c1 =
Bi

rRe

(
‖s0‖2L2(Ω) +

3

2
‖∂tσ‖2L2(0,T ;L2(Ω)d×d)

)
,

c2 =
Re

3
‖∂2

t u‖2L2(0,T ;H−1(Ω)d) +
3α

2
‖∂t∇p‖2L2(0,T ;L2(Ω)d) + α‖∇q0‖2L2(Ω),

Recalling the definition of yn and zn, and that 1− δt ≥ 1
2 , we deduce that

‖en‖2L2(Ω) ≤ 2 exp(3T )
(
c1 θ δt+ c2 δt

2
)
,

and

δt

n∑

j=1

‖∇ẽj‖2L2(Ω) ≤
Re

(1− 3rBi)
exp(3T )

(
c1 θ δt+ c2 δt

2
)
.

Thanks to the inequality (see [25, Remark 1.6])

‖en‖H1(Ω) ≤ C(Ω)‖ẽn‖H1(Ω)

we conclude the proof of Theorem 3. �
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3.7. Some remarks.

X Convergence of the velocity
Theorem 3 can be interpreted in several ways. The first one shows that, selecting θ of order δt,

the discrete velocity field is a first-order approximation of the solution u of the Stokes-Bingham
equation (8). The second one proves that, for a fixed value of the parameter θ (satisfying the
assumption θ ≤ 1/3), the scheme converges to the solution of the Stokes-Bingham problem (8).
This important property shows that our projection scheme (9)–(10)–(11) is very different than
the common regularization method, studied for instance in [27], which rewrites the plastic tensor
as

σε =
Du√

|Du|2 + ε2
instead of σ =

Du

|Du| .

Indeed, the error derived for the regularized problem is cumulative, that is bounded by δt+
√
ε

(see Theorem 4.7 [27]), while the error obtained in Theorem 3 is bounded by δt (θ + δt). The
discrete velocity field solution of our projection scheme converges to the solution of the Stokes-
Bingham equations wathever the value of θ is. In the following section, we will also see that the
projection scheme proposed in the present article captures the flow cessation property in finite
time characterizing viscoplastic Bingham flows.

X Convergence of the stress tensor
Obviously, Theorem 3 does not provide a convergence result for the stress tensor sequence.

Nevertheless, the sequence (σn)n is well defined and bounded so that we have a convergence up
to a subsequence. However, we can prove the following result:
The sequence (σn)n satisfies

(41) ‖σδt(tn)− σ
n‖2L2(Ω) ≤ Cδt,

where (uδt, pδt,σδt) is the solution of

(42)





∂tuδt + uδt · ∇uδt +∇pδt −
1

Re
∆uδt =

Bi

Re
divσδt,

divuδt = 0,

σδt = P(σδt + rDuδt − δt θ ∂tσδt).

Indeed the proof is very similar to the one of Theorem 3. The only change is in the value of the
residual tensor which becomes

Σ̂n = σ(tn+1)− σ(tn)− δt ∂tσδt(tn+1) =

∫ tn+1

tn

(tn − t)∂2
t σδt(t) dt.

Under some regularity assumptions on σδt, we deduce that

N∑

n=0

‖Σ̂n‖2L2(Ω) =

N∑

n=0

∥∥∥
∫ tn+1

tn

(tn − t)∂tσ(t) dt
∥∥∥
2

L2(Ω)

≤
N∑

n=0

( ∫ tn+1

tn

(t− tn) dt
)( ∫ tn+1

tn

(t− tn)‖∂tσ(t)‖2L2(Ω) dt
)

≤ δt2

2

∫ T

0
t ‖∂tσ(t)‖2L2(Ω)) dt . δt2.
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In this case, the cumulative error
∑N−1

n=0 εn satisfies

N−1∑

n=0

εn ≤ Cδt2,

where C is an appropriate constant depending on the datas and on the solution (u, p) of the
Stokes-Bingham problem. This result implies the result (41).
Note also that with this error estimate on the stress tensor, we may expect to obtain an estimate
of convergence on the pressure like (see theorem 2 on page 72 in [23] and [24] for the proof):

(43) δt
n∑

k=0

‖pδt(tn)− pn‖2L2(Ω) ≤ C δt2.

4. Numerical results on a more complex scheme

In this section we present numerical simulations of solutions of the following equations mod-
elling the motion of an incompressible Bingham viscoplastic medium:

(44)





∂tu− 1

Re
∆u+ div (u⊗ u) +∇p =

Bi

Re
divσ,

divu = 0,

σ = P(σ + rDu),

u|∂Ω = ub,

where ub is prescribed and defined on the domain boundary ∂Ω. We denote by (u, v) the
components of the velocity field u. Note that the conservative form of the nonlinearity is used.
We also introduce e1 = (1, 0) and e2 = (0, 1).

4.1. Description of the time and space discretization.

Temporal discretization. Instead of the first-order time scheme (9)–(10) studied in the previous
section, we have implemented a second-order projection method based on the combination of
the BDF2 (second-order Backward Differentiation Formulae) and the AB2 (Adams–Bashforth)
schemes (see [12] for instance). For n ≥ 0, assuming that un, σ

n and pn are known, the
computation of (un+1,σn+1, pn+1) consists in:

X Computing σ
n+1 and a velocity predictor ũn+1 by solving:

(45)





3ũn+1 − 4un + un−1

2δt
− 1

Re
∆ũn+1 − Bi

Re
divσn+1 = −∇pn − 2 div (un ⊗ un)

+ div (un−1 ⊗ un−1),

ũn+1
∣∣∣
∂Ω

= ub,

σ
n+1 = P

(
σ
n+1 + rDũn+1 + θ(σn − σ

n+1)
)
.

X Projecting ũn+1 to obtain a divergence-free velocity field un+1 and the pressure pn+1:

(46)





3(un+1 − ũn+1)

2δt
+∇(pn+1 − pn) = 0,

divun+1 = 0,

(un+1 − ũn+1) · n
∣∣∣
∂Ω

= 0.
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Remark 4. In practice, (46) is solved in two steps. First, un+1 is eliminated from the first
equation using the incompressibility constraint. This results in a system relating pn+1 to the
predicted velocity field ũn+1 and to pn. Once the new pressure has been computed, un+1 is
updated wih the help of the first equation. Note that in order to recover an almost, i.e up to the
computer accuracy, solenoidal velocity field this process should be applied at the fully discrete
level, meaning after the space discretization has been performed on (46).

Space discretization. The computational domain Ω = (0, Lx) × (0, Ly) is discretized by using a
cartesian uniform mesh. Let Nx and Ny be the number of mesh cells in the x and y directions,
we define the grid points by

xi = (i− 1)hx for i = 1, . . . , Nx + 1,

yj = (j − 1)hy for j = 1, . . . , Ny + 1,

where hx = Lx/Nx and hy = Ly/Ny. With the mesh points xi and yj, we associate the midpoints

xi+1/2 =
1

2
(xi+1 + xi) for i = 1, . . . , Nx,

yj+1/2 =
1

2
(yj+1 + yj) for j = 1, . . . , Ny.

Let a computational cell Kij = (xi, xi+1) × (yj , yj+1). As in the classical MAC scheme for
the incompressible Navier-Stokes equations (see [13]) the discrete velocity unknowns uij and vij
are located at the midpoint of the cell edges, that is uij ≈ u(xi, yj+1/2) and vij ≈ v(xi+1/2, yj).
The discrete pressure pij as well as the discrete extra-stress tensor σij are placed at the center
(xi+1/2, yj+1/2) of the mesh cell Kij . Figure 1 summarizes this staggered arrangement of the
unknowns.

The spatial discretization of (45) and (46) is achieved by integrating the equation of the hor-
izontal (resp. vertical) velocity component over the control volume Ki,j+1/2 = (xi−1/2, xi+1/2)×
(yj, yj+1) (resp. Ki+1/2,j = (xi, xi+1) × (yj−1/2, yj+1/2)). Classical cell-centered second-order
finite volume schemes are applied to discretize all first and second-order partial derivatives with
respect to the spatial directions.

s

pij σij

--
ui+1,jui,j

6

vi,j+1

6

vij

(xi+1, yj+1)

(xi+1, yj)

(xi, yj+1)

(xi, yj)

Figure 1. Location of the discrete unknowns in the mesh cell Kij = (xi, xi+1)× (yj , yj+1).
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Boundary conditions. Additional mesh points are added outside of the computational domain,
namely:

x1/2 = x1 −
hx
2
, xNx+3/2 = xNx+1 +

hx
2

and similarly for y. Ghost values are associated with these extra mesh points in order to enforce
the boundary conditions, for instance we introduce the additional velocity value ui,0 and enforce
a Dirichlet boundary condition by setting

ui,0 + ui,1
2

= ub(xi, 0).

A second-order approximation of the boundary condition is therefore employed. Note that
Neumann boundary conditions can be handled similarly.

As the spatial discretization of the Navier-Stokes equations on a staggered grid is well known,
details are ommited in the sequel. However, we provide the discrete formulae applied to the
terms in (45)-(46) depending on the stress tensor σ.
The momentum equation. For j = 1, . . . , Ny and i = 2, . . . , Nx, the discrete contribution of the
extra-stress tensor in the horizontal momentum equation writes

∫

Ki,j+1/2

divσ · e1 dx =

∫ yj+1

yj

(
σ11(xi+1/2, y)− σ11(xi−1/2, y)

)
dy

+

∫ xi+1/2

xi−1/2

(
σ12(x, yj+1)− σ12(x, yj)

)
dx,

≈ hy
(
σ11(xi+1/2, yj+1/2)− σ11(xi−1/2, yj+1/2)

)

+ hx
(
σ12(xi, yj+1)− σ12(xi, yj)

)
,

≈ hy
(
σ11|i,j − σ11|i−1,j

)
+ hx

(
σ12|i,j+1 − σ12|i,j

)
,

where σ12|i,j denotes a second-order approximation of σ12 at the mesh point (xi, yj) namely we
use

σ12|i,j =





3

2

(
σ12|i−1,1 + σ12|i,1

)
− 1

2

(
σ12|i−1,2 + σ12|i,2

)
for j = 1,

1

4

(
σ12|i−1,j−1 + σ12|i−1,j + σ12|i,j + σ12|i,j−1

)
for j = 2, . . . , Ny,

3

2

(
σ12|i−1,Ny + σ12|i,Ny

)
− 1

2

(
σ12|i,Ny−1 + σ12|i−1,Ny−1

)
for j = Ny + 1.

The Bingham-projection. As discrete velocity and extra-stress tensor are staggered, the compu-
tation of the diagonal components of the deformation tensor Dũn+1 in (45) is straightforward :
second-order centered formulae are used. The off-diagonal term, involving cross partial deviva-
tives, requires specific formulae for mesh points in the vicinity of the domain boundary, namely
for i = 1, . . . , Nx, we use

∂u

∂y
(xi+1/2, yj+1/2) ≈





(
3ui+1/2,1/2 − 4ui+1/2,0 + ui+1/2,3/2

)
/(3hy) for j = 1,

(
ui+1/2,j+3/2 − ui+1/2,j−1/2

)
/(2hy) for j = 2, . . . , Ny − 1,

(
−ui+1/2,Ny−1/2 + 4ui+1/2,Ny+1 − 3ui+1/2,Ny+1/2

)
/(3hy) for j = Ny,
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where ui+1/2,j+1/2 is the following second-order interpolation

ui+1/2,j+1/2 =
ui,j + ui,j+1

2
completed with the boundary conditions

ui+1/2,0 = u(xi+1/2, 0) and ui+1/2,Ny+1 = u(xi+1/2, Ly).

Similar formulae are employed to approximate ∂v
∂x(xi+1/2, yj+1/2) which completes the discretiza-

tion scheme for
(
Dũn+1

)
12
.

This numerical scheme has been implemented in a F90/MPI code simulating Newtonian flows.
The PETSc library [1, 2] is used to solve the linear systems and to manage datas on structured
grids. The communications beween the MPI processes are written explicitely by using routines
of the MPI library. All the numerical simulations presented in the following sections have been
conducted by using from 4 up to 16 MPI processes.

4.2. Stationary flows in the lid-driven cavity at Re = 103. In order to validate our
numerical scheme, we attempt to reproduce some of the benchmark results provided in [26] for
stationary viscoplastic flows in a lid-driven cavity at Reynolds number Re = 103 and Bingham
numbers in the range Bi ∈ [0, 100]. The lid-driven cavity consists in the computational domain
Ω = (0, 1)2 and in the boundary conditions

ub =

{
(1, 0) on the top boundary y = 1,
(0, 0) elsewhere.

We assume that a stationary state is reached when the following criterion is satisfied

‖un+1 − un‖∞
δt

≤ 10−6,

where the time step is chosen so that the CFL number, namely δt‖un+1‖∞/h, is equal to unity.
In this computational set up the mesh sizes satisfy hx = hy = h. We first validate our numerical
code against the results provided by Botella and Peyret in [4] for Newtonian fluid flows (Bi = 0).
In Table 1, extrema values and locations of the horizontal (resp. vertical) velocity component
along the vertical (resp. horizontal) centerline are reported for mesh resolutions from 2562 up to
10242. We note a very good agreement between our values and the values listed in [4]. Moreover,
by comparing the results obtained on the different meshes we find that the expected second-order
accuracy is recovered. Also a perfect match of the velocity profiles drawn on Figures 2 and 3 is
found with the values provided by Botella and Peyret in [4]. We now turn to the validation of
our numerical method for viscoplastic fluid flows against the results obtained by Vola et al. and
reported in [26]. The Bingham projection procedure depends on two parameters : r and θ. The
former one is set to fulfill the necessary condition exhibited in Theorem 3, that is: r ≤ 1

3Bi . The
time relaxation parameter θ is set equal to the time step δt. The convergence of the sequence{
σ
n,k, k ≥ 0

}
in the Bingham projection procedure (11) is considered to be reached when the

following criterium is satisfied:

|σn,k+1 − σ
n,k| ≤ 10−10.

An overall good agreement is found for the values reported in Table 1: the differences between
our results and the ones in [26] are smaller than the accuracy of the numerical scheme, that is
O(h2), forBi ≤ 10. A discripency is found for the values of minx v(x, y = 0.5) and maxx v(x, y =
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0.5) at the largest Bingham number Bi = 100. The net effect of the extra yield-stress tensor
is to slow down the flow motion so that we may expect that coarser mesh resolutions could be
used when the Bingham number is increased. However, at the interface between the motion and
rigid zones, which appear in viscoplastic medium, very large velocity gradients are encountered.
In order to compute accurately these sharp gradients, the mesh resolution has to be fine enough.
This is clearly observed by seeking at the values of minx v(x, y = 0.5) and maxx v(x, y = 0.5)
at Bi = 100 for increasing mesh resolutions. We infer from these results that 5122 grid points
are necessary to compute the correct order of magnitude for these characteristic and that the
observed differences with [26] are due to the use of a much finer resolution in the present
numerical simulations.

Finally, on Figure 4 the streamlines and the rigid zones, that are aeras where the deformation
tensor vanishes, are drawn for the different values of the Bingham number. By comparing with
Figure 4 in [26], we note as previously that a good qualitative agreement is obtained.

u
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=
0
.5
,y
)

0 0.2 0.4 0.6 0.8 1
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0.8
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Figure 2. Horizontal velocity profiles along the centerline x = 0.5 for station-
nary solutions at Re = 103 and for Bi = 0 ( ), Bi = 1 ( ), Bi = 10 ( )
and Bi = 100 ( ).

4.3. Numerical estimates of the covergence rate. In order to estimate the convergence
rate of our numerical scheme with respect to both the spatial and temporal discretizations,
we have performed simulations of a viscoplastic medium flow at Re = 103 and Bi = 1 in a
regularized lid-driven cavity. The computational domain is Ω = (0, 1)2 and the top boundary
condition is:

ub(x, 1) =
((

1− (2x− 1)2
)2
, 0
)
.

Simulations on computational grids ranging from 322 up to 20482 mesh points have been done.
The time integration has been conducted up to t = 1 with a time step being equal to the mesh
size, so that the CFL number approximatively equals unity. The flow motion is far from being
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Figure 3. Vertical velocity profiles along the centerline y = 0.5 for stationnary
solutions at Re = 103 and for Bi = 0 ( ), Bi = 1 ( ), Bi = 10 ( ) and
Bi = 100 ( ).

xmin minx u xmin minx v xmax maxx v

Bi = 0 256× 256 0.17383 −0.38700 0.90820 −0.52514 0.16211 0.37533
512× 512 0.17188 −0.38817 0.90918 −0.52661 0.15723 0.37658

1024 × 1024 0.17139 −0.38847 0.90967 −0.52694 0.15771 0.37685
Botella and Peyret [4] 0.1717 −0.3886 0.9092 −0.5271 0.1578 0.3769

Bi = 1 256× 256 0.17773 −0.34533 0.90820 −0.48717 0.16211 0.32857
Vola et al. [26] 0.175 −0.3438 0.9 −0.482 0.1625 0.3286

Bi = 10 256× 256 0.50586 −0.11533 0.83008 −0.12577 0.33008 0.05662
512× 512 0.50488 −0.11628 0.83105 −0.12764 0.32715 0.05714

Vola et al. [26] 0.5 −0.1156 0.825 −0.1258 0.3375 0.0572

Bi = 100 256× 256 0.58789 −0.0775 0.60742 −0.000438 0.47070 0.000432
512× 512 0.59082 −0.0777 0.60254 −0.000325 0.47754 0.000321

1024 × 1024 0.59131 −0.0777 0.60107 −0.000301 0.4790 0.000297
Vola et al. [26] 0.6 −0.0762 0.6125 −0.0002 0.4625 0.00017

Table 1. Values of the velocity extrema along centerlines x = 0.5 and y = 0.5
for stationary solutions at Re = 103 and for Bi in the range [0, 100].

stationary : the discrete time derivatives of the velocity components at t = 1 are of the order
of 10−1 in the L∞-norm. Let us denote by uref the solution computed on the grid with 20482

mesh points and by uh the solutions corresponding to coarser grids with mesh size h. We have
estimated the numerical error of our scheme by computing the L2-norm of the difference of uh
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Bi = 0 (Newtonian fluid) Bi = 1

Bi = 10 Bi = 100

Figure 4. Streamlines and rigid zones for flows at Re = 103 and for various
Bingham numbers Bi. The spatial resolution is 2562 for Bi = 0 and Bi = 1,
5122 for Bi = 10 and 10242 for Bi = 100.

with uref at time t = 1. The values are plotted on Figure 5 and logarithmic scales are used in
order to highlight the convergence rate which is found to be 2 (the slope of the solid line is 2).
For this configuration, we therefore obtain a global second-order convergence rate.

4.4. Finite stopping times. As it is well known, in the absence of an energy source term,
due for instance to the presence of an external volume force and/or nonzero Dirichlet boundary
conditions, the solutions of the incompressible Navier-Stokes equations for Newtonian fluids
decay exponentially in time. The decay rate depends on the Reynolds number. Dealing with
viscoplastic media the flow motion stops in finite time. In order to demonstrate the ability
of our numerical procedure to reproduce this important behavior of Bingham flows, we have
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Figure 5. Error ‖uh − uref‖2 at time t = 1 plotted as a function
of the time step δt which is equal to the mesh size h. Values of h are
1/1024, 1/512, 1/128, . . . , 1/32. The slope of the solid line is equal to 2.

performed several numerical simulations at Re = 103 in a lid-driven cavity and for various
Bingham numbers, namely Bi = 1, 2.5, 5 and 7.5. The spatial resolution was set to 1/256 and
the time step to 10−3. Starting from rest, the numerical simulations are advanced in time until
a steady state is reached. Then, at a stopping time tstop, the energy brought into the system
from the upper boundary is stopped, namely : ub(x, 1, t) is set to zero for all t ≥ tstop. As steady
states are reached faster for larger Bingham numbers, we have chosen different values for tstop,
namely tstop = 40, 35, 30, 25 for the respective Bingham number Bi = 1, 2.5, 5, 7.5. On Figure
6, the time evolution of the kinetic energy, defined as

K(t) =
1

2

∫

Ω
‖u(x, t)‖2 dx,

for these simulations is plotted. For all Bingham numbers used the medium stops in a finite time.
The decay of the kinetic energy during the transient period depends on Bi. As it is expected, the
motion stops faster when the Bingham number is larger. These results are qualitatively similar
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to those reported in [7] and [17] for viscoplastic flows at a much smaller Reynolds number, that
is Re = 1.
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Figure 6. Time evolution of the kinetic energy for Bi = 1 ( ), Bi = 2.5
( ), Bi = 5 ( ) and Bi = 7.5 ( ). The stopping time tstop ∈ [25, 40]
depends on Bi. The spatial resolution is 2562.

5. Concluding remarks

A new numerical scheme has been proposed for the time discretization of a system of equa-
tions modelling the isothermal and unsteady flow of an incompressible viscoplastic Bingham
medium. The non-differentiable definition of the stress tensor is rewritten by introducing a
projection operator. The flow is therefore subject to two constraints: the classical one due to
the incompressiblity assumption and the second one related to the yield stress tensor. The time
discretization is based on a first-order projection scheme, in its incremental version. The plastic
(yield) stress tensor is treated implicitely in the prediction step of the projection scheme and
is computed with the help of a fixed point algorithm, which is shown to converge geometri-
cally. This is a key feature of the proposed scheme ensuring its numerical efficiency, in terms of
consumed computational time.

The first part of the paper is devoted to stability and error analyses of the numerical scheme
which is shown to be first-order in time. In a second part, several numerical simulations are
performed. The scheme is assessed against previous plubished benchmark results for both New-
tonian and Bingham flows in a lid-driven cavity at Reynolds number 103 and for various Bingham
numbers in the range 1 up to 100. The effect of the mesh resolution on the computed solutions
is investigated. For large values of the Bingham number, we observe that the computational
grid has to be fine enough in order to properly compute both the fluid and rigid zones charac-
terizing Bingham viscoplastic flows. Also, the proposed numerical scheme is shown to be able to
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reproduce the cessation in finite time of a viscoplastic medium in the absence of energy source
terms in the equations.

While the proposed numerical scheme applies to a time dependent problem, only convergence
to steady state solutions are presented in this paper. Non-stationnary flows in lid-driven cavity
exist at much larger values of the Reynolds number, of the order of 100 000 for a Newtonian
fluid, and consequently the number of grid points has to be enlarged accordingly. Such numerical
simulations are feasible but are out of the scope of this paper and will be presented elsewhere.
In order to further demonstrate the efficiency of the bi-projection method proposed and analyzed
in this paper, another challenging future work would be to apply the numerical scheme to the
numerical simulation of three-dimensional flows. Again, this is postponed to future publications.
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