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A BI-PROJECTION METHOD FOR BINGHAM TYPE FLOWS

LAURENT CHUPIN AND THIERRY DUBOIS

Abstract. We propose and study a new numerical scheme to compute the isothermal and
unsteady flow of an incompressible viscoplastic Bingham medium. The main difficulty, for both
theoretical and numerical approaches, is due to the non-differentiability of the plastic part of
stress tensor in regions where the rate-of-strain tensor vanishes. This is handled by reformulating
the definition of the plastic stress tensor in terms of a projection. A new time scheme, based
on the classical incremental projection method for the Newtonian Navier-Stokes equations, is
proposed. The plastic tensor is treated implicitly in the first sub-step of the projection scheme
and is computed by using a fixed point procedure. A pseudo-time relaxation is added into
the Bingham projection whose effect is to ensure a geometric convergence of the fixed point
algorithm. This is a key feature of the bi-projection scheme which provides a fast and accurate
computation of the plastic tensor. Stability and error analyses of the numerical scheme are
provided. The error induced by the pseudo-time relaxation term is controlled by a prescribed
numerical parameter so that a first-order estimate of the time error is derived for the velocity
field. A second-order cell-centred finite volume scheme on staggered grids is applied for the
spatial discretisation. The scheme is assessed against previously published benchmark results for
both Newtonian and Bingham flows in a two-dimensional lid-driven cavity for Reynolds number
equals 1 000. Moreover, the proposed numerical scheme is able to reproduce the fundamental
property of cessation in finite time of a viscoplastic medium in the absence of any energy
source term in the equations. For a fixed value (100) of the Bingham number, various numerical
simulations for a range of Reynolds numbers up to 200 000 were performed with the bi-projection
scheme on a grid with 10242 mesh points. The effect of this (physical) parameter on the flow
behaviour is discussed.

76D05 and 76A05 and 65M12 and 76M12 and 65Y05

1. Introduction

Many materials occurring in industrial or geophysical problems, such as pastes or polymer
suspensions, mud used in drilling technologies, lava, even blood in arterioles and capillaries,
behave as viscous fluid flows in regions of high shear stress and as rigid bodies where the stress
is below a critical value, called the yield stress. A typical situation found in engineering context
is the solidification of flows of a viscoplastic medium in pipes. An important property of these
non-Newtonian materials is that the flow returns to rest in a finite time in the absence of any
energy source terms. The model which takes into account such viscoplastic behaviour is known
as the Bingham model and corresponds to the momentum conservation law for which the stress
has a singularity. More precisely, when the shear strain rate magnitude vanishes, the shear stress
is not prescribed.

This singularity is a permanent source of challenging problems both from the theoretical point
of view and in the design of efficient numerical algorithms capable to produce reliable and ac-
curate numerical simulations. In order to handle this non-differentiability of the constitutive
rheological law, two approaches have been mainly used both in the fields of theoretical studies
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and numerical simulations. The first one consists in approximating the Bingham model by a
smooth (differentiable) functional, see for instance [3] or [20]. Such regularising methods are
appealing as they can be easily incorporated in classical numerical schemes and implemented in
many existing codes designed for the numerical simulation of flows of quasi-Newtonian viscous
fluids. They have been widely used to perform numerical simulations of flows of an incompress-
ible Bingham medium, see for instance [3], [15], [5] and [25]. However, a main drawback of
the regularisation approach is that, unlike in the original model, yield zones are not clearly de-
fined. Indeed, the regularised model considers the whole flow as a fluid with a spatially variable
viscosity so that there is not anymore a clear separation between regions where the material
behaves like a fluid or like a solid. Also, as it is mentioned in [5], regularisation methods do not
accurately reproduce the cessation of Bingham fluid flows in finite time. Let us finally mention
that Zhang in [28] performed a numerical analysis of a regularised Bingham model, used in [3],
and derived both time and spatial error bounds for a fully discrete system of equations.

The second approach, used to overcome the difficulty due to the non-differentiable form of
the constitutive law, relies on the theory of variational inequalities due to Duvaut and Lions [9].
In this context the Bingham equations can be interpreted with Lagrange multipliers so that the
problem reduces in solving several saddle-point problems. These minimisation problems are gen-
erally solved by using the Augmented Lagrangian method [10] or the Uzawa-like method [11].
A review of numerical schemes based on this approach can be found in [7]. The variational
inequality formulation is particularly well suited for finite element approximations. Therefore,
these methods have been mostly used in this context for the spatial discretisation of the equa-
tions [7, 27, 21]. Numerical schemes based on the finite difference method have been more
recently proposed and used. Two types of schemes have been employed whose main difference
rely in the choice of the locations of the discrete variables on the computational grid, namely
staggered in [17, 16] and semi-staggered in [19, 18].

Regarding the time discretisation of the (non-regularised) Bingham problem, operator split-
ting methods are commonly used (see [22, 6, 27]). Most contributions in this context use three
sub-steps for the computation of the velocity field per each time iteration. They decouple the
resolution of the Stokes operator, that is the viscous term including the incompressibility con-
straint, of the nonlinear transport terms and of the plastic Bingham contribution. Obviously,
the main advantage with such approach is to separate and isolate the difficulties so that efficient
and well-known numerical schemes can be applied for solving each sub-steps.

Projection methods are widely used for the time discretisation of the incompressible Navier-
stokes equations [12] especially for the numerical simulation of turbulent flows. Indeed, coupling
a projection scheme with a cell-centred finite difference or finite volume scheme for the nonlinear
terms on staggered grids allows to recover at the discrete level the fundamental orthogonality
property (with respect to the L2-inner product and its discrete counterpart) of the nonlinear
terms with the divergence-free velocity field. This ensures conservation of the kinetic energy
for inviscid flows. Surprisingly, projection schemes have not been used in numerical studies of
Bingham flows until recently. Indeed, Muravleva in [16] proposed a three-level splitting scheme
consisting of a second-order (BDF2) projection scheme for the first two steps followed by a
plasticity step, computing the plastic part of the stress tensor with an Uzawa-like method.
Sequences of velocity fields and tensors provided by this iterative fixed point procedure both
converge. However, from the best of our knowledge, no estimate of the convergence rate has
been derived so far.
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In this paper, we introduce a new time discretisation scheme to solve the Bingham prob-
lem. The main idea is to couple a first-order incremental projection scheme with a projection
formulation for the definition of the plastic tensor, which overcomes the difficulty due to the non-
differentiable form of the original definition. Unlike in [16], the plastic stress tensor is directly
incorporated into the prediction step of the projection scheme and is treated implicitly. As in
the Uzawa-like method, a fixed-point algorithm aims to solve the Bingham projection. In order
to improve the convergence of this iterative procedure, a pseudo-time relaxation term is added in
the computation of the plastic tensor through the Bingham projection. With this modification,
the fixed point algorithm now has a geometric convergence and its common ratio depends on
a (prescribed) numerical parameter. We therefore obtain a reasonably fast method to compute
the plastic part of the stress tensor. Note also that no specific programming skills are required
to implement this iterative Bingham projection in any Newtonian flow solver based on a time
projection scheme. The objective of this paper is first to perform numerical analyses (stability
study and error analysis) of the proposed time scheme and to show the capability of these new
methodologies to perform numerical simulations on classical and well-known computational flow
configurations at large Bingham and Reynolds numbers.

The outline of the rest of the paper is as follows. In section 2 we precisely provide the mathe-
matical formulation, and the notations, for a Bingham model. We also introduce a definition of
the plastic part of the stress tensor based on a projection formulation, which will be used in the
next parts. In section 3, the bi-projection time scheme, whose aim is to approximate the con-
tinuous model, is described. In this section, we also prove that this method is well posed, stable
and convergent. Moreover, the bi-projection scheme is shown to be first-order in time. Indeed,
the additional pseudo-time relaxation term induces a perturbation error which can be estimated
and controlled so that the bi-projection scheme is first-order accurate with respect to the time
discretisation. Finally, in section 4, we first describe in details the spatial discretisation used
for the numerical simulations. Then, using a regularised lid-driven cavity as computational con-
figuration, simulations are performed in order to validate the numerical solver: the theoretical
convergence rates are recovered. The bi-projection scheme is also shown to be able to reproduce
the characteristic property of Bingham flows to return to rest in finite time after forcing terms
are removed. Numerical simulations of flows in a two-dimensional lid-driven cavity for Reynolds
number equals 1 000 and for various Bingham numbers (up to 100) are compared to previously
published benchmark results. As it is built on the original model, the proposed scheme accu-
rately predicts unyielded zones. Finally, numerical simulations for Bingham number set to 100
and for a wide range of Reynolds numbers (up to 200 000) are presented. This demonstrates the
ability of the bi-projection scheme to handle large Bingham and Reynolds numbers.

2. The model of a Bingham viscous plastic flow

2.1. Mathematical modelling. Let T > 0 be a positive real number and Ω be a bounded do-
main of Rd. The isothermal flow of an incompressible Bingham viscoplastic medium is modelled
by the following system of equations on the velocity u and the pressure p:

(1)

{
ρ0
(
∂tu+ u · ∇u

)
+∇p = div τ in (0, T ) × Ω,

divu = 0 in (0, T ) × Ω,
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where the stress deviator tensor τ is given with respect to strain rate tensor Du = 1
2

(
∇u+ T(∇u)

)

by the relation

(2) τ = 2µ0 Du+ σ0
Du

|Du| .

In the equations (1)–(2), the constant ρ0 represents the density of the medium, the constant µ0

corresponds to its viscosity and the constant σ0 is the plasticity yield1. The notation |Du|
represents the Froebenius norm of the rate-of-strain tensor:

|Du| =
( ∑

1≤i,j≤d

|(Du)ij |2
)1/2

.

Finally the system is supplemented with an initial condition (u = uinit for t = 0) and boundary
conditions (u = ub on ∂Ω). For the sake of simplicity and only for the theoretical analysis of the
numerical scheme, we shall consider only homogeneous Dirichlet boundary conditions, namely:
ub = 0. We point out that the results derived in the following sections remain true for the case
of non-homogeneous boundary conditions as long as ub is tangent to the boundary.

When σ0 > 0, the above model makes no sense on the rigid set, that is in the sub-domain of
Ω× (0, T ) where the strain rate tensor vanishes. In order to remedy this lack of definition, the
constitutive equation (2) can be written as (see [21] for instance)

τ = 2µ0 Du+ σ0 σ,

where the extra-stress tensor σ satisfies

(3)





σ =
Du

|Du| if |Du| 6= 0,

|σ| ≤ 1, T
σ = σ, trσ = 0 if |Du| = 0.

By definition, the deviatoric part of the stress tensor is trace free and so is the extra (plastic)
tensor σ. From (3), this property is obviously satisfied when |Du| 6= 0.

2.2. A projection formulation. As it is shown in the following proposition, the definition
of the tensor σ given by (3) can be reformulated in terms of a projection. Such formulation
is convenient and is often used in the derivation of iterative methods of Uzawa types for the
numerical approximation of σ (see [7] and [16] for instance).

Proposition 1. For all r > 0, the condition (3) is equivalent to the relation

(4) σ = P(σ + rDu),

where P is the projection operator on the closed convex set defined by

Λ :=
{
λ ∈ L2(Ω)d×d ; T

λ = λ, trλ = 0, |λ(x)| ≤ 1 for almost all x ∈ Ω
}
.

Proof. If |Du| = 0 the equivalence is obvious as we have in both cases σ ∈ Λ.

1Note that in some papers (for instance [7]), the plasticity yield is
√

2σ0.
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Let us now assume that |Du| 6= 0. Note that, for all λ ∈ L2(Ω)d×d, such that T
λ = λ and

trλ = 0, an explicit expression of its projection P(λ) onto Λ is given by (almost everywhere
on Ω):

(5) P(λ) =

{
λ if |λ| ≤ 1,

λ/|λ| if |λ| > 1.

Consequently, by taking σ =
Du

|Du| , which is trace-less and symmetric, we can write for any

r > 0, σ + rDu = (1 + r|Du|) Du

|Du| so that, according to (5), we have

P(σ + rDu) =
Du

|Du| ,

and hence P(σ + rDu) = σ.
Reciprocally, if σ = P(σ + rDu) then |σ + rDu| > 1 (otherwise, using (5) we would have
Du = 0). Consequently, we have

σ =
σ + rDu

|σ + rDu| .

The above equality, implying in particular that |σ| = 1, can be rewritten as

σ =
r

|σ + rDu| − 1
Du.

It follows easily that σ =
Du

|Du| . �

Remark 1.

X Instead of working with the Bingham model (1)–(2), a classical approach consists in intro-
ducing a small parameter ε and regularising the constitutive relation (2) by writing, see [3] for
instance,

τ = 2µ0 Du+ σ0
Du√

|Du|2 + ε2
.

Note that other regularised forms can be used (see [14] for a review). This approach has many
advantages from a theoretical point of view. One can relatively easily show the existence of a
solution (uε, pε) for each value of ε > 0. Passing to the limit ε → 0, the existence of a solution
(u, p) to the original problem (1)–(2) can be obtained. Nevertheless, from a numerical point of
view the behaviour of (uε, pε), even for small values of ε, can be quite different from the desired
behaviour. For instance, without source term (that is without external volume force as in (1)
and with ub = 0) the well-known property that u(t) → 0 in finite time is lost.

2.3. A non-dimensional form of the Bingham model. In order to write the system in
dimensionless form we introduce a characteristic length L and a characteristic velocity V . Con-
sequently, a natural characteristic time is given by L/V and a characteristic pressure by ρ0V

2.
By scaling all variables with respect to these characteristic quantities, the model of a Bingham
viscous plastic flow reads in dimensionless form

(6) ∂tu+ u · ∇u+∇p− 1

Re
∆u =

Bi

Re
divσ,
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under the conditions (r being any positive parameter)

(7) divu = 0 and σ = P(σ + rDu),

where the dimensionless Reynolds and Bingham numbers are respectively defined as

Re =
ρ0V L

µ0
and Bi =

σ0L

µ0V
.

3. Analysis of a first-order bi-projection scheme

3.1. Time discretisation. In this section, we propose a new scheme to discretise with respect
to the time variable the Stokes-Bingham equations, namely the equations (6)–(7) where the
convective term u · ∇u is omitted:

(8)





∂tu+∇p− 1

Re
∆u =

Bi

Re
divσ,

divu = 0,

σ = P(σ + rDu).

Remark 2. In practice, the nonlinear term u · ∇u will be taken into account when performing
numerical simulations (see the section 4). However, in order to avoid unnecessary technical
difficulties (see [23, 24]), we present hereafter a convergence and error analysis only in the
linear (Stokes) case. Indeed, the essential difficulty here relies on the coupling of a projection
scheme for the Stokes operator and the projection (4) of the yield stress tensor.

In order to solve (8) we advocate the fixed point algorithm below in which we introduce four
numerical parameters (δt, r, α and θ):
We start with u0 = uinit and with arbitrary σ

0 and p0.
For n ≥ 0, assuming that un, σn and pn are known, (ũn+1,σn+1) are computed by solving

(9)





ũn+1 − un

δt
+∇pn − 1

Re
∆ũn+1 =

Bi

Re
divσn+1,

σ
n+1 = P

(
σ
n+1 + rDũn+1 + θ(σn − σ

n+1)
)
,

ũn+1
∣∣∣
∂Ω

= 0.

Note that, the predicted velocity field ũn+1 being non-solenoidal, the symmetric tensor σn+1 +
rDũn+1 + θ(σn − σ

n+1) is not trace-less. Nevertheless, the explicit formulae (5) can still be
used in practice to compute σ

n+1, as we have P
(
λ
)
= P

(
λ − 1

d trλ
)
for any symmetric tensor

λ.
Next, (un+1, pn+1) are computed by imposing the free-divergence constraint:

(10)





un+1 − ũn+1

δt
+ α∇(pn+1 − pn) = 0,

divun+1 = 0,

un+1 · n
∣∣∣
∂Ω

= 0.

We will prove in the next section that the sequence (un)n converges to the solution u of the
system (8) (see Theorem 3).
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In practice, in order to solve the system (9) we use a sub-fixed-point procedure. We set σn,0 =
σ
n. For k ≥ 0, by assuming that σn,k is known, we define ũn,k as the solution of the following

Laplace type problem

(11)





ũn,k − un

δt
+∇pn − 1

Re
∆ũn,k =

Bi

Re
divσn,k,

ũn,k
∣∣∣
∂Ω

= 0.

Then, a projection is used to deduce the extra-stress tensor σn,k+1, namely:

(12) σ
n,k+1 = P

(
σ
n,k + rDũn,k + θ(σn − σ

n,k)
)
.

We will prove in the next section that the sequence (ũn,k,σn,k)k defined by (11)–(12) converges to
the solution (ũn+1,σn+1) of the system (9) (see Theorem 1). The pseudo-time relaxation θ(σn−
σ
n,k) added in (12) is essential as it improves the convergence of the fixed-point algorithm (11)-

(12). Indeed, in Theorem 1 below, an estimate of the convergence rate, which depends on the
parameter θ, of the sequence (ũn,k,σn,k) is derived. In the particular case θ = 0, the numerical
procedure (11)-(12) can be viewed as an Uzawa-like method applied to solve a viscoplastic
problem, for which only convergence can be proved meaning that no estimate of the convergence
rate is known.

3.2. Notations. The equations introduced before depend on parameters. Some parameters
like Re and Bi are physical ones, while others are numerical ones: r, θ, α and δt. All these
parameters are always supposed to be positive.
For two vectors u and v in R

d, we denote by u ·v their inner product: u ·v =
∑

1≤i≤d ui vi. For

two tensors σ and τ in R
d×d, we denote by σ : τ their inner product:

σ : τ =
∑

1≤i,j≤d

σij τij.

In both cases, the associated norm will be denoted | · |.

For two real-valued functions f and g defined on the open set Ω ⊂ R
d, we will denote by 〈f, g〉

the L2(Ω)-inner product, namely

〈f, g〉 =
∫

Ω
f g.

The associated L2(Ω)-norm will be denoted ‖ · ‖L2(Ω). For the sake of simplicity, the same no-

tations for the inner product and the norm will be used throughout this paper for vectors in R
d

and tensors in R
d×d.

Also, other functional spaces may be considered in the sequel. In such cases, they are always
indicated as subscripts: for instance ‖f‖H−1(Ω) denotes the norm associated to the Sobolev

space H−1(Ω).

Let N be an integer and {tn}n∈{0,...,N} be a sequence of discrete time levels in [0, T ]. For
simplicity, we consider a uniform discretisation, that is:

tn = n δt with δt =
T

N
.
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3.3. Well-posedness. At first we indicate that each problem previously introduced is well-
posed.

X It is well known that the Stokes-Bingham system (8) has a solution (u, p,σ), see for in-
stance [9] where the variational inequality formulation is used.

X The existence and uniqueness for the solution (ũn+1,σn+1) to system (9) result from the
theory of variational inequalities too. The precise result for this system is proved in [7, p. 47].

X The system (10) is a classical correction step in projection methods: ũn+1 and pn given, it
admits a unique solution (un+1, pn+1), up to an additive constant for the pressure field. Indeed,
un+1 = PH ũn+1 where PH is the orthogonal projector in L2(Ω)d onto the free-divergence vector
space, and the pressure pn+1 is a solution of the following Poisson equation

∆pn+1 = ∆pn +
1

α δt
div ũn+1 supplemented with

∂(pn+1 − pn)

∂n

∣∣∣
∂Ω

= 0.

X For each integer n ∈ N, we show by induction on the integer k that each couple (ũn,k,σn,k)
is well defined as the solution of the system (11)–(12). In particular the existence and uniqueness
of ũn,k are ensured by the Lax-Milgram theorem.

3.4. Convergence results with respect to k.

Theorem 1. We assume that

2θ + rBi ≤ 2.

For each integer n ∈ N, the sequence (ũn,k,σn,k)k solutions of system (11)–(12) converges to
(ũn+1,σn+1), solution of system (9), as k tends to +∞.
Moreover the convergence is geometric with common ratio 1− θ.

Proof. By denoting uk = ũn,k − ũn+1 and σ
k = σ

n,k − σ
n+1 we obtain by subtracting (9)

from (11)–(12) that, for all k ≥ 0,

(13)





1

δt
uk − 1

Re
∆uk =

Bi

Re
divσk,

uk
∣∣∣
∂Ω

= 0,

σ
k+1 = P(σn,k + rDũn,k + θ(σn − σ

n,k))

− P(σn+1 + rDũn+1 + θ(σn − σ
n+1)).

We now take the inner product of the first equation in (13) by uk in L2(Ω) to deduce

(14)
1

δt
‖uk‖2L2(Ω) +

1

Re
‖∇uk‖2L2(Ω) = −Bi

Re
〈σk,Duk〉.

Since P is a projection operator, the last equation in (13) implies

|σk+1| ≤ |(1 − θ)σk + rDuk|.
Taking the L2(Ω)-norm, we deduce (using |Duk| ≤ |∇uk|) that
(15) ‖σk+1‖2L2(Ω) ≤ (1− θ)2‖σk‖2L2(Ω) + r2‖∇uk‖2L2(Ω) + 2r(1− θ)〈σk,Duk〉.
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Combining the equality (14) and the inequality (15) we obtain

(16)

Bi

Re
‖σk+1‖2L2(Ω) +

2r(1− θ)

δt
‖uk‖2L2(Ω)

+
r(2− 2θ − rBi)

Re
‖∇uk‖2L2(Ω) ≤

Bi

Re
(1− θ)2‖σk‖2L2(Ω).

We then deduce that, if 2θ+rBi ≤ 2 all the coefficients in the left-hand side of the inequality (16)
are non-negative. Therefore, we have

‖σk‖L2(Ω) ≤ (1− θ)k‖σ0‖L2(Ω),

‖uk‖L2(Ω) ≤
√

Bi δt (1 − θ)

2rRe
(1− θ)k‖σ0‖L2(Ω),

which concludes the proof of Theorem 1. �

Note that, if 2θ + rBi < 2, we also have convergence in H1-norm for the velocity:

‖∇uk‖2L2(Ω) ≤
√

Bi

r(2− 2θ − rBi)
(1− θ)k‖σ0‖L2(Ω).

3.5. Stability result with respect to n.

Theorem 2 (Stability). We assume that

α ≥ 1, rBi ≤ 1 and θ ≤ 1/2.

The sequence (un, ũn, pn,σn)n solutions of the system (9)–(10) is bounded.

We note that the assumptions of Theorem 2 implies that the assumption 2θ + rBi ≤ 2 also
holds for Theorem 1.

Proof. By definition of the sequence (σn)n and the projection P, it is obvious that σn is bounded
by unity. The method consists in deriving an estimate on the velocity sequences, and on the
pressure sequence. We first take the inner product of the first equation of (9) with 2δt ũn+1

in L2(Ω)d; using the identity

(17) 2a(a− b) = a2 − b2 + (a− b)2,

we derive

(18)
‖ũn+1‖2L2(Ω) − ‖un‖2L2(Ω) + ‖ũn+1 − un‖2L2(Ω) +

2δt

Re
‖∇ũn+1‖2L2(Ω)

= −2δt〈∇pn, ũn+1〉 − 2δtBi

Re
〈σn+1,Dũn+1〉.

The goal is to control the terms in the right-hand side (RHS) of the equality (18).

• step 1 – control of 〈σn+1,Dũn+1〉
Since P is a projection operator, the stress tensor σ

n+1 given by the second equation of the
system (9) satisfies:

(19)

|σn+1|2 ≤ |σn+1 + rDũn+1 + θ(σn − σ
n+1)|2

≤ |σn+1|2 + r2|Dũn+1|2 + θ2|σn − σ
n+1|2 + 2rσn+1 : Dũn+1

+ 2rθDũn+1 : (σn − σ
n+1) + 2θσn+1 : (σn − σ

n+1).
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By invoking the Young inequality 2ab ≤ a2 + b2, we have

2rθDũn+1 : (σn − σ
n+1) ≤ r2|Dũn+1|2 + θ2|σn − σ

n+1|2,
and recalling the relation (17), we obtain

2θσn+1 : (σn − σ
n+1) = θ|σn|2 − θ|σn+1|2 − θ|σn − σ

n+1|2,
so that the inequality (19) rewrites

(20)
θ|σn+1|2 + (1− 2θ)θ|σn+1 − σ

n|2

≤ 2r2|Dũn+1|2 + 2rσn+1 : Dũn+1 + θ|σn|2.
After performing an integration with respect to the space variable, we obtain

(21)
θ‖σn+1‖2L2(Ω) + (1− 2θ) θ‖σn+1 − σ

n‖2L2(Ω)

≤ 2 r2‖∇ũn+1‖2L2(Ω) + 2r〈σn+1,Dũn+1〉+ θ‖σn‖2L2(Ω).

• step 2 – control of 〈∇pn, ũn+1〉
In order to estimate the pressure contribution in the RHS of (18), we proceed as follows. We

take the inner product in L2(Ω)d of the first equation of (10) with the vector field 2(α−1)δt
α un+1

(which is divergence free) and use the identity (17) to derive

(22)
α− 1

α

(
‖un+1‖2L2(Ω) − ‖ũn+1‖2L2(Ω) + ‖un+1 − ũn+1‖2L2(Ω)

)
= 0.

We next take the inner product in L2(Ω)d of the same equation with δt
α (u

n+1 + ũn+1):

(23)
1

α

(
‖un+1‖2L2(Ω) − ‖ũn+1‖2L2(Ω)

)
+ δt〈∇(pn+1 − pn), ũn+1〉 = 0.

Finally, we take the inner product in L2(Ω)d of the first equation of (10) with the gradient term
δt2∇(pn+1 + pn):

(24) α δt2
(
‖∇pn+1‖2L2(Ω) − ‖∇pn‖2L2(Ω)

)
− δt〈∇(pn+1 + pn), ũn+1〉 = 0.

Adding (22), (23) and (24), we obtain:

(25)
‖un+1‖2L2(Ω) +

α− 1

α
‖un+1 − ũn+1‖2L2(Ω) + α δt2‖∇pn+1‖2L2(Ω)

= 2δt〈∇pn, ũn+1〉+ ‖ũn+1‖2L2(Ω) + α δt2‖∇pn‖2L2(Ω).

• step 3 – final estimate and conclusion of the proof
Combining the three results: (18) + δtBi

rRe (21) + (25), we obtain

(26)

‖un+1‖2L2(Ω) +
δt θBi

rRe
‖σn+1‖2L2(Ω) + α δt2‖∇pn+1‖2L2(Ω)

+
2δt

Re

(
1− rBi

)
‖∇ũn+1‖2L2(Ω)

+ ‖ũn+1 − un‖2L2(Ω) +
α− 1

α
‖un+1 − ũn+1‖2L2(Ω)

+
δt(1 − 2θ) θBi

rRe
‖σn+1 − σ

n‖2L2(Ω)

≤ ‖un‖2L2(Ω) +
δt θBi

rRe
‖σn‖2L2(Ω) + α δt2‖∇pn‖2L2(Ω).
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If we denote by yn = ‖un‖2L2(Ω)+
δt θBi
rRe ‖σn‖2L2(Ω) +α δt2‖∇pn‖2L2(Ω) then the previous estimate

indicates in particular that yn+1 ≤ yn as soon as the following conditions

α ≥ 1, 1− rBi ≥ 0 and 1− 2θ ≥ 0

hold. The sequence (yn)n is then bounded, which implies a bound on the sequences (un)n, (p
n)n

and (σn)n. Recalling (26), a bound follows on (ũn+1 − un)n. As a consequence, with the help
of (23), the sequence (ũn)n is also bounded. This completes the proof of Theorem 2. �

3.6. Convergence results with respect to n.

Theorem 3 (Velocity convergence). We assume that

α ≥ 1, 3rBi ≤ 1, θ ≤ 1/3 and δt ≤ 1/2.

If there exists a regular solution (u, p,σ) of (8) then the sequence (un)n issued from the sys-
tem (9)–(10) converges to u as n tends to +∞. More precisely, there exists a constant C
depending on Re, Bi, r, α and T (but neither on θ nor on δt), such that for all 0 ≤ n ≤ N , we
have

‖u(tn)− un‖2L2(Ω) + δt

n∑

k=0

‖u(tk)− uk‖2H1(Ω) ≤ C (θ δt+ δt2).

Remark 3.

(1) We say that a solution (u, p,σ) of (8) is regular if we have

∂2
t u ∈ L2(0, T ;H−1(Ω)d),

∂t∇p ∈ L2(0, T ;L2(Ω)d),

∂tσ ∈ L2(0, T ;L2(Ω)d×d).

The above assumptions for velocity and pressure are classically made when conducting
the error analysis of the projection schemes applied to the temporal discretisation of the
Navier-Stokes equations (see for instance [23, 24]).

(2) The error estimate derived in Theorem 3 possesses two contributions. The first one,
bounded by θ δt, corresponds to the error due to the “approximation” of the Bingham
projection, while the second one, of the order of δt2, is the usual error estimate obtained
when time projection scheme are applied to the Navier-Stokes equations (see [23, 24]).

(3) The hypotheses 3rBi ≤ 1 and θ ≤ 1/3 are not optimal. We will see during the sketch of
the proof that these constraints on the parameters are due to use of the Young inequality
2ab ≤ a2+b2. This can be improved if finer estimates are used, namely 2ab ≤ ε a2+b2/ε
for any ε > 0. Nevertheless, the price to pay will be a larger numerical value of the
constant C.

Proof. Let (u, p,σ) be a regular solution of system (8) and let (un, ũn, pn,σn)n be the solution
of the discrete system (9)–(10). We introduce the following quantities

en = u(tn)− un, ẽn = u(tn)− ũn,

qn = p(tn)− pn, sn = σ(tn)− σ
n.
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Subtracting the system (9)–(10) from the system (8) taken at time tn+1 leads to

(27)





ẽn+1 − en

δt
+∇(p(tn+1)− pn)− 1

Re
∆ẽn+1 =

Bi

Re
div sn+1 +Rn,

en+1 − ẽn+1

δt
− α∇(pn+1 − pn) = 0,

div en+1 = 0,

sn+1 = P(σ(tn+1) + rDu(tn+1))

− P(σn+1 + rDũn+1 + θ(sn+1 − sn)− θΣn),

ẽn+1
∣∣∣
∂Ω

= 0, en+1 · n
∣∣∣
∂Ω

= 0,

where the truncation error terms Rn and Σn are given by:

(28)

Rn =
u(tn+1)− u(tn)

δt
− ∂tu(tn+1) =

1

δt

∫ tn+1

tn

(tn − t)∂2
t u(t) dt,

Σn = σ(tn+1)− σ(tn) =

∫ tn+1

tn

∂tσ(t) dt.

Taking the inner product in L2(Ω)d between the first equation of (27) and 2δt ẽn+1 and recall-
ing (17), we deduce

(29)
‖ẽn+1‖2L2(Ω) − ‖en‖2L2(Ω) + ‖ẽn+1 − en‖2L2(Ω) +

2δt

Re
‖∇ẽn+1‖2L2(Ω)

+ 2δt〈∇(p(tn+1)− pn), ẽn+1〉 = −2δtBi

Re
〈sn+1,Dẽn+1〉+ 2δt〈Rn, ẽn+1〉.

We now take the inner product in L2(Ω)d of the second equation of (27) with 2(α−1)δt
α en+1, and

with δt
α (e

n+1 + ẽn+1). We add the resulting relations and deduce

(30)
‖en+1‖2L2(Ω) − ‖ẽn+1‖2L2(Ω) +

α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

− δt 〈∇(pn+1 − pn), ẽn+1〉 = 0.

Adding equations (29) and (30), we arrive at

(31)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) + ‖ẽn+1 − en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+
2δt

Re
‖∇ẽn+1‖2L2(Ω) + δt〈∇

(
2p(tn+1)− (pn+1 + pn)

)
, ẽn+1〉

= −2δtBi

Re
〈sn+1,Dẽn+1〉+ 2δt〈Rn, ẽn+1〉.

By introducing

(32) Qn = p(tn+1)− p(tn),

we have

pn+1 − pn = Qn − (qn+1 − qn),

2p(tn+1)− (pn+1 + pn) = Qn + (qn+1 + qn).



A BI-PROJECTION METHOD FOR BINGHAM TYPE FLOWS 13

Taking the inner product of the second equation of (27) with the pressure gradient term
δt2∇

(
2p(tn+1)− (pn+1 − pn)

)
and using the above relations, we derive

δt〈∇
(
2p(tn+1)− (pn+1 + pn)

)
, ẽn+1〉 = α δt2

(
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

)

− α δt2‖∇Qn‖2L2(Ω) − 2α δt2〈∇Qn,∇qn〉.

Now, by reporting this equality in (31), we obtain

(33)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) + ‖ẽn+1 − en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+
2δt

Re
‖∇ẽn+1‖2L2(Ω) + α δt2

(
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

)

= −2δtBi

Re
〈sn+1,Dẽn+1〉+ 2δt〈Rn, ẽn+1〉+ α δt2‖∇Qn‖2L2(Ω)

+ 2α δt2〈∇Qn,∇qn〉.

• step 1 – control of 〈sn+1,Dẽn+1〉
The term 〈sn+1,Dẽn+1〉 in the RHS of (33) is due to the plastic stress tensor and is a new con-

tribution compared to the classical estimates for the projection scheme for the Stokes equations.
This term is bounded as it follows. Since P is a projection, we have

|sn+1| ≤ |sn+1 + rDẽn+1 + θ(sn − sn+1) + θΣn|.
By taking the square of this inequality and by expanding the resulting right-hand side, we deduce

(34)

|sn+1|2 ≤|sn+1|2 + r2|Dẽn+1|2

+ θ2|sn − sn+1|2 + θ2|Σn|2

+ 2r sn+1 : Dẽn+1
︸ ︷︷ ︸

=a1

+2θ sn+1 : (sn − sn+1)︸ ︷︷ ︸
=a2

+ 2θ sn+1 : Σn
︸ ︷︷ ︸

=a3

+2rθDẽn+1 : (sn − sn+1)︸ ︷︷ ︸
=a4

+ 2rθDẽn+1 : Σn
︸ ︷︷ ︸

=a5

+2θ2 (sn − sn+1) : Σn

︸ ︷︷ ︸
=a6

.

Note that the integral of the term a1 with respect to the space variable x ∈ Ω is exactly the
term we aim to control. We therefore keep it unchanged. Using the identity (17), we rewrite
the term a2 as

a2 = −θ|sn+1|2 + θ|sn|2 − θ|sn+1 − sn|2.
With the help of the Young inequality, the term a3 is bounded from above as it follows

a3 ≤ θ δt|sn+1|2 + θ

δt
|Σn|2.

By bounding similarly the other terms in the right-hand side of (34), namely a4, a5 and a6, we
deduce the estimate

θ(1− δt)|sn+1|2 + θ(1− 3θ)|sn+1 − sn|2 ≤ 2r sn+1 : Dẽn+1

+ θ|sn|2 + 3r2|Dẽn+1|2 + θ (
1

δt
+ 3θ)|Σn|2.
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Integrating the above inequality with respect to the spatial variable x ∈ Ω leads to

(35)
θ
[
(1− δt)‖sn+1‖2L2(Ω) − ‖sn‖2L2(Ω)

]
+ θ(1− 3θ)‖sn+1 − sn‖2L2(Ω)

≤ 2r 〈sn+1,Dẽn+1〉+ 3r2‖Dẽn+1‖2L2(Ω) + θ (
1

δt
+ 3θ)‖Σn‖2L2(Ω).

• step 2 – final estimate
By adding the two results (33) and δtBi

rRe (35) and recalling that |Dẽn+1| ≤ |∇ẽn+1|, we obtain

(36)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+ ‖ẽn+1 − en‖2L2(Ω) +
δt

Re
(2− 3rBi)‖∇ẽn+1‖2L2(Ω)

+
θ δtBi

rRe

[
(1− δt)‖sn+1‖2L2(Ω) − ‖sn‖2L2(Ω)

]

+
θ(1− 3θ) δtBi

rRe
‖sn+1 − sn‖2L2(Ω)

+ α δt2
[
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

]

≤ 2δt〈Rn, ẽn+1〉︸ ︷︷ ︸
b1

+θ (1 + 3θ δt)
Bi

rRe
‖Σn‖2L2(Ω)

+ α δt2‖∇Qn‖2L2(Ω) + 2α δt2〈∇Qn,∇qn)〉︸ ︷︷ ︸
b2

.

The term b1 is treated by invoking the duality between H−1 and H1
0 , and the Young inequality,

so that

b1 ≤ 2δt‖Rn‖H−1(Ω)‖ẽn+1‖H1
0
(Ω)

≤ δt

Re
‖∇ẽn+1‖2L2(Ω) + δtRe ‖Rn‖2H−1(Ω).

With the help of the Young inequality, an upper bound for the term b2 is obtained as it follows

b2 ≤ 2α δt2 ‖∇Qn‖L2(Ω)‖∇qn‖L2(Ω)

≤ α δt‖∇Qn‖2L2(Ω) + α δt3‖∇qn‖2L2(Ω).
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Reporting these bounds on b1 and b2 in (36), we obtain

(37)

‖en+1‖2L2(Ω) − ‖en‖2L2(Ω) +
α− 1

α
‖en+1 − ẽn+1‖2L2(Ω)

+ ‖ẽn+1 − en‖2L2(Ω) +
δt

Re
(1− 3rBi)‖∇ẽn+1‖2L2(Ω)

+
θ δtBi

rRe

[
(1− δt)‖sn+1‖2L2(Ω) − ‖sn‖2L2(Ω)

]

+
θ(1− 3θ) δtBi

rRe
‖sn+1 − sn‖2L2(Ω)

+ α δt2
[
‖∇qn+1‖2L2(Ω) − ‖∇qn‖2L2(Ω)

]

≤ δtRe ‖Rn‖2H−1(Ω) + θ (1 + 3θ δt)
Bi

rRe
‖Σn‖2L2(Ω)

+ α δt (1 + δt) ‖∇Qn‖2L2(Ω) + α δt3‖∇qn‖2L2(Ω).

• step 3 – the Gronwall lemma
If the following conditions

α ≥ 1, 3rBi ≤ 1, θ ≤ 1/3,

hold, we deduce from the above inequality

(38) yn+1 + zn+1 ≤
(1 + δt)

(1− δt)
yn + εn,

where

yn = (1− δt)
(
‖en‖2L2(Ω) +

Bi

rRe
θ δt ‖sn‖2L2(Ω) + αδt2 ‖∇qn‖2L2(Ω)

)
,

zn =
(1− 3rBi)

Re
δt ‖∇ẽn+1‖2L2(Ω),

and

εn = δtRe ‖Rn‖2H−1(Ω) + θ(1 + 3θ δt)
Bi

rRe
‖Σn‖2L2(Ω) + α δt (1 + δt) ‖∇Qn‖2L2(Ω).

By applying the discrete Gronwall lemma to (38), we derive, for any 1 ≤ m ≤ N ,

ym +

m∑

n=1

zn ≤
(
1 + δt

1− δt

)m
(
y0 +

m−1∑

n=0

εn

)
.

Noting that, for δt ≤ 1
2 , we have 1+δt

1−δt ≤ (1 + δt)3 ≤ exp(3δt), then for all 1 ≤ m ≤ N , the
following inequality holds

(39) ym +

m∑

n=1

zn ≤ exp(3T )

(
y0 +

m−1∑

n=0

εn

)
.

Recalling that, by definition, e0 = 0 the proof of the theorem relies on deriving a proper bound
for the term

∑n−1
j=0 εj in the above inequality.

• step 4 – control of the error εn
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We now derive estimates of the term εn with respect to the parameters θ and δt. From the
definition of Σn (in (28)), we have

‖Σn‖2L2(Ω) =
∥∥∥
∫ tn+1

tn

∂tσ(t) dt
∥∥∥
2

L2(Ω)
≤ δt

∫ tn+1

tn

‖∂tσ(t)‖2L2(Ω) dt.

Similarly for Qn (in (32)), we obtain

‖∇Qn‖2L2(Ω) ≤ δt

∫ tn+1

tn

‖∂t∇p‖2L2(Ω) dt,

and finally for Rn (in (28)), we have

‖Rn‖2H−1(Ω) =
1

δt2

∥∥∥
∫ tn+1

tn

(tn − t)∂2
t u(t) dt

∥∥∥
2

H−1(Ω)

≤ 1

δt2

(∫ tn+1

tn

(t− tn)
2 dt
)( ∫ tn+1

tn

‖∂2
t u(t)‖2H−1(Ω) dt

)

≤ δt

3

∫ tn+1

tn

‖∂2
t u(t)‖2H−1(Ω) dt.

Reporting these estimates in the above definition of εn, assuming the regularity of the solution
(u, p, σ) and summing up from n = 0 to m− 1, leads to

(40)

m−1∑

n=0

εn ≤ δt2
(
Re

3
‖∂2

t u‖2L2(0,T ;H−1(Ω)d) + α (1 + δt)‖∂t∇p‖2L2(0,T ;L2(Ω)d)

)

+ θ δt (1 + 3θ δt)
Bi

rRe
‖∂tσ‖2L2(0,T ;L2(Ω)d×d).

• step 6 – conclusion of the proof
Thanks to (40), the inequality (39) now reads, for all 1 ≤ m ≤ N ,

ym +

m∑

n=1

zn ≤ exp(3T)
(
c1 θ δt+ c2 δt

2
)

with 



c1 =
Bi

rRe

(
‖s0‖2L2(Ω) +

3

2
‖∂tσ‖2L2(0,T ;L2(Ω)d×d)

)
,

c2 =
Re

3
‖∂2

t u‖2L2(0,T ;H−1(Ω)d) +
3α

2
‖∂t∇p‖2L2(0,T ;L2(Ω)d) + α‖∇q0‖2L2(Ω).

Recalling the definition of yn and zn, and that 1− δt ≥ 1
2 , we deduce that

‖en‖2L2(Ω) ≤ 2 exp(3T )
(
c1 θ δt+ c2 δt

2
)
,

and

δt

n∑

j=1

‖∇ẽj‖2L2(Ω) ≤
Re

(1− 3rBi)
exp(3T )

(
c1 θ δt+ c2 δt

2
)
.

Thanks to the inequality (see [26, Remark 1.6])

‖en‖H1(Ω) ≤ C(Ω)‖ẽn‖H1(Ω)

we conclude the proof of Theorem 3. �
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3.7. Some remarks.

X Convergence of the velocity
Theorem 3 can be interpreted in several ways. The first one shows that, selecting θ of order δt,
the discrete velocity field is a first-order approximation of the solution u of the Stokes-Bingham
equation (8). The second one proves that, for a fixed value of the parameter θ (satisfying the
assumption θ ≤ 1/3), the scheme converges to the solution of the Stokes-Bingham problem (8).
This important property shows that our bi-projection scheme (9)–(10)–(11)–(12) is very different
than the common regularisation method, studied for instance in [28], which rewrites the plastic
tensor as

σε =
Du√

|Du|2 + ε2
instead of σ =

Du

|Du| .

Indeed, the error derived for the regularised problem is cumulative, that is bounded by δt+
√
ε

(see Theorem 4.7 [28]), while the error obtained in Theorem 3 is bounded by δt +
√
δt θ. The

discrete velocity field solution of our projection scheme converges to the solution of the Stokes-
Bingham equations whatever the value of θ ≤ 1/3 is. In the following section, we will also see
that the projection scheme proposed in the present article captures the flow cessation property
in finite time characterising viscoplastic Bingham flows.

X Convergence of the stress tensor
Theorem 3 does not provide a convergence result for the stress tensor sequence. Nevertheless, the
sequence (σn)n is well defined and bounded so that we have a convergence up to a subsequence.
However, for a fixed value of θ > 0, we can prove that there exists a constant Cθ > 0 such that
we have the following result:
The sequence (σn)n satisfies

(41) ‖σ(tn)− σ
n‖2L2(Ω) ≤ Cθδt,

where (u, p,σ) is the solution of

(42)





∂tu+ u · ∇u+∇p− 1

Re
∆u =

Bi

Re
divσ,

divu = 0,

σ = P(σ + rDu− δt θ ∂tσ).

Indeed the proof is very similar to the one of Theorem 3. The only change is in the value of the
residual tensor which becomes

Σ
n
= σ(tn+1)− σ(tn)− δt ∂tσ(tn+1) =

∫ tn+1

tn

(tn − t)∂2
t σ(t) dt.

Under some regularity assumptions on σ, we deduce that

N∑

n=0

‖Σn‖2L2(Ω) =

N∑

n=0

∥∥∥
∫ tn+1

tn

(tn − t)∂tσ(t) dt
∥∥∥
2

L2(Ω)

≤
N∑

n=0

(∫ tn+1

tn

(t− tn) dt
)(∫ tn+1

tn

(t− tn)‖∂tσ(t)‖2L2(Ω) dt
)

≤ δt2

2

∫ T

0
t ‖∂tσ(t)‖2L2(Ω)) dt = O(δt2).



18 LAURENT CHUPIN AND THIERRY DUBOIS

In this case, the cumulative error
∑N−1

n=0 εn satisfies

N−1∑

n=0

εn ≤ Cδt2,

where C is an appropriate constant depending on the data and on the solution (u, p) of the
Stokes-Bingham problem. This result implies the result (41).
Note also that with this error estimate on the stress tensor, we may expect to obtain an estimate
of convergence on the pressure like (see theorem 2 on page 72 in [23] and [24] for the proof):

(43) δt

n∑

k=0

‖p(tn)− pn‖2L2(Ω) ≤ Cθ δt
2.

4. Numerical results

In this section we present numerical simulations of solutions of the following equations mod-
elling the motion of an incompressible Bingham viscoplastic medium:

(44)





∂tu− 1

Re
∆u+ div (u⊗ u) +∇p =

Bi

Re
divσ,

divu = 0,

σ = P(σ + rDu),

u|∂Ω = ub,

where ub is prescribed and defined on the domain boundary ∂Ω where Ω ⊂ R
2. Note that the

conservative form of the nonlinear terms is used.
Before providing some details on the spatial discretisation, we recall hereafter the time discreti-
sation which is applied to (44) (see Section 3). For n ≥ 0, assuming that un, σn and pn are
known, the computation of (un+1,σn+1, pn+1) consists in:

X Finding a tensor σ
n+1 and an intermediate (non solenoidal) velocity ũn+1 as solutions

of:

(45)





ũn+1 − un

δt
− 1

Re
∆ũn+1 − Bi

Re
divσn+1 = −∇pn − div (un ⊗ un),

ũn+1
∣∣∣
∂Ω

= ub,

σ
n+1 = P

(
σ
n+1 + rDũn+1 + θ(σn − σ

n+1)
)
.

X Projecting ũn+1 to obtain a divergence-free velocity field un+1 and the pressure pn+1:

(46)





(un+1 − ũn+1)

δt
+∇(pn+1 − pn) = 0,

divun+1 = 0,

(un+1 − ũn+1) · n
∣∣∣
∂Ω

= 0.

Remark 4. In practice, (46) is solved in two steps. First, un+1 is eliminated from the first
equation by using the incompressibility constraint. This leads to a linear system relating pn+1 to
the predicted velocity field ũn+1 and to pn. Once the new pressure has been computed, un+1 is
updated with the help of the first equation. Note that in order to recover an almost, i.e up to the
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computer accuracy, solenoidal velocity field this procedure has to be applied at the fully discrete
level, i.e. after a spatial discretisation has been applied to (46).

4.1. The spatial discretisation. We denote hereafter by (u, v) the components of the velocity
field u. The computational domain Ω = (0, Lx) × (0, Ly) is discretised by using a Cartesian
uniform mesh. Let Nx and Ny be the number of mesh cells in the x and y directions, we define
the grid points by

xi = (i− 1)hx for i = 1, . . . , Nx + 1,

yj = (j − 1)hy for j = 1, . . . , Ny + 1,

where hx = Lx/Nx and hy = Ly/Ny. With the mesh points xi and yj, we associate the midpoints

xi+1/2 =
1

2
(xi+1 + xi) for i = 1, . . . , Nx,

yj+1/2 =
1

2
(yj+1 + yj) for j = 1, . . . , Ny.

Let a computational cell Kij = (xi, xi+1) × (yj , yj+1). As in the classical MAC scheme for the
incompressible Navier-Stokes equations (see [13]) the discrete velocity unknowns uij and vij are
located at the midpoint of the cell edges, that is uij ≈ u(xi, yj+1/2) and vij ≈ v(xi+1/2, yj). The
discrete pressure pij is placed at the centre of the mesh cell Kij, namely pij ≈ p(xi+1/2, yj+1/2).
Also, the discrete components of the tensor σ are put all together at the centre of the mesh cell.
This choice, which is an arbitrary one, allows to update all tensor components, through the local
relation (12), at the same mesh locations. Note that another choice has been made in [16, 17].
None of these grid placements are fully satisfactory as they both induce grid interpolations at
some steps in the numerical algorithm.

Figure 1 summarises this staggered arrangement of the unknowns.
The spatial discretisation of the first equations in (45) and (46) is achieved by performing an
integration over the control volume Ki,j+1/2 = (xi−1/2, xi+1/2) × (yj, yj+1) for the horizontal
velocity component and over Ki+1/2,j = (xi, xi+1) × (yj−1/2, yj+1/2) for the vertical one. The
discrete incompressibility constraint is derived from the continuous one after integration over
the computational meshes Kij. Classical cell-centred second-order finite volume schemes are ap-
plied to discretise first and second-order partial derivatives with respect to the spatial directions.

Boundary conditions. Additional mesh points are added outside of the computational domain,
namely:

x1/2 = x1 −
hx
2
, xNx+3/2 = xNx+1 +

hx
2
,

and similarly for y. Ghost values are associated with these extra mesh points in order to enforce
the boundary conditions. For instance, a Dirichlet boundary condition at y = 0 is approximated
by introducing the additional discrete velocity values ui,0 and by writing

ui,0 + ui,1
2

= ub(xi, 0).

A second-order approximation of the boundary condition is therefore employed. Note that
Neumann boundary conditions can be handled similarly.

As the spatial discretisation of the Navier-Stokes equations on a staggered grid is well known,
details are omitted in the sequel. However, we provide the discrete formulae applied to the terms
in (45)-(46) depending on the tensor σ.
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Figure 1. Location of the discrete unknowns in the mesh cell Kij = (xi, xi+1)× (yj , yj+1).

The momentum equation. For j = 1, . . . , Ny and i = 2, . . . , Nx, the discrete contribution of the
extra-stress tensor in the horizontal momentum equation writes

∫

Ki,j+1/2

divσ ·
(
1
0

)
dx =

∫ yj+1

yj

(
σ11(xi+1/2, y)− σ11(xi−1/2, y)

)
dy

+

∫ xi+1/2

xi−1/2

(
σ12(x, yj+1)− σ12(x, yj)

)
dx

≈ hy
(
σ11(xi+1/2, yj+1/2)− σ11(xi−1/2, yj+1/2)

)

+ hx
(
σ12(xi, yj+1)− σ12(xi, yj)

)

≈ hy
(
σ11|ij − σ11|i−1,j

)
+ hx

(
σ12|i,j+1 − σ12|ij

)
,

where σ12|ij denotes a second-order approximation of σ12 at the mesh point (xi, yj), that is

σ12|ij =





3

2

(
σ12|i−1,1 + σ12|i,1

)
− 1

2

(
σ12|i−1,2 + σ12|i,2

)
for j = 1,

1

4

(
σ12|i−1,j−1 + σ12|i−1,j + σ12|ij + σ12|i,j−1

)
for j = 2, . . . , Ny,

3

2

(
σ12|i−1,Ny + σ12|i,Ny

)
− 1

2

(
σ12|i,Ny−1 + σ12|i−1,Ny−1

)
for j = Ny + 1.

The Bingham-projection. As the discrete velocity and the extra-stress tensor are staggered, the
computation of the diagonal components of the rate-of-strain tensor Dũn+1 in (45) is straight-
forward: second-order centred formulae are used. The discretisation of the off-diagonal term,
involving cross partial derivatives, requires specific formulae for mesh points in the vicinity of
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the domain boundary, namely for i = 1, . . . , Nx, we use

∂u

∂y
(xi+1/2, yj+1/2) ≈





(
3ui+1/2,1/2 − 4ub(xi+1/2, 0) + ui+1/2,3/2

)
/(3hy) for j = 1,

(
ui+1/2,j+3/2 − ui+1/2,j−1/2

)
/(2hy) for j = 2, . . . , Ny − 1,

(
−ui+1/2,Ny−1/2 + 4ub(xi+1/2, Ly)− 3ui+1/2,Ny+1/2

)
/(3hy)

for j = Ny,

where ui+1/2,j+1/2 is the following second-order interpolation

ui+1/2,j+1/2 =
uij + ui,j+1

2
.

Similar formulae are employed to approximate ∂v
∂x(xi+1/2, yj+1/2) which completes the discreti-

sation of
(
Dũn+1

)
12
.

This numerical scheme has been implemented in a F90/MPI code initially written for the
simulation of Newtonian flows. The PETSc library [1, 2] is used to solve linear systems and to
manage data on structured grids. The communications between the MPI processes are written
explicitly by using routines of the MPI library. All the numerical simulations presented in the
following sections have been performed by using p MPI processes with 4 ≤ p ≤ 16.

In all numerical simulations presented below, the computational domain is Ω = (0, 1)2 and is
discretised with a uniform mesh with hx = hy. We therefore denote by h the mesh size.

4.2. Code validation : numerical estimates of the convergence rates. In order to esti-
mate the convergence rate of the numerical scheme with respect to both the spatial and temporal
discretisations, we have performed simulations of a viscoplastic medium flow for Re = 1000 and
for Bi = 1 in a regularised lid-driven cavity. The boundary condition is:

(47) ub(x, y) =

{
16
(
x2(1− x)2, 0

)
on the top boundary y = 1,

(0, 0) elsewhere.

Values for r and θ are set such that r ≤ 1
3Bi and θ = δt. With these parameters and starting

at rest, a numerical simulation has been performed up to the non-dimensional time t = 1 on a
grid with 20482 mesh points and a time step δt = h, so that the CFL number is equal to unity.
Let us denote by uref the corresponding (discrete) velocity field. At time t = 1, the flow is not
stationary. Indeed, the time derivatives of the velocity components are of the order of 10−1 in
L∞-norm.
In order to estimate the numerical error due to the time discretisation, we have plotted on
Figure 2 the L2-norm of the difference between uref and solutions u1024

δt computed on a grid with
10242 mesh points and with various increasing time steps. In order to highlight the convergence
rate, logarithmic scales are used. For this particular flow configuration, we recover the expected
first-order time accuracy proved in Theorem 3. On Figure 3, the L2-norm of the difference
between uref and discrete solutions uh computed on grids with mesh size h and a time step
δt = h, so that the CFL number is equal to unity, is plotted for h = 1/32, 1/64, 1/128, . . . , 1/1024.
A second-order convergence rate is found which is in agreement with the choice of the spatial
discretisations used.
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Figure 2. Errors ‖u1024
δt −uref‖2 at time t = 1 plotted as a function of the time

step δt. The discrete velocity fields u1024
δt are computed on a grid with a fixed

mesh size h = 1/1024 and time steps δt. The slope of the solid line is equal to
unity.

4.3. Finite stopping times. The net effect of an external volume force and/or a nonzero
Dirichlet boundary condition in the incompressible Navier-Stokes equations is to sustain the
flow motion by bringing kinetic energy into the system. As it is well known, the lack of an
energy source term in the case of Newtonian fluids (Bi = 0) results in an exponential decay,
with respect to time, of the L2-norm of the velocity field. The decay rate depends on the
Reynolds number. The dynamical behaviour of viscoplastic media is completely different: when
Bi 6= 0, it can be proved that the flow motion stops in finite time (see [8] and the references
therein).
In order to check if the bi-projection scheme preserves this important property of Bingham flows,
we first aim to reproduce the test case used in [7] (Figure 11), namely a Bingham flow for Re = 1

and for Bi =
√
2 fills a square cavity and is forced by a regularised boundary condition (47).

Starting at rest, namely uinit = 0, the numerical simulation is performed for times 0 < t < 0.05
with the boundary condition (47). For t ≥ 0.05, the time integration is pursued but the motion
of the upper boundary is frozen, i.e. ub is set to zero. As a consequence, the flow returns to
rest in finite time. On Figure 4, the time evolution of the kinetic energy, defined by

K(t) =
1

2

∫

Ω
|u(x, t)|2 dx,
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Figure 3. Errors ‖uh − uref‖2 at time t = 1 plotted as a function of the mesh
size h. The discrete velocity fields uh are computed on a grid with mesh size h.
The time step δt is equal to h. Values of h are 1/1024, 1/512, 1/128, . . . , 1/32.
The slope of the solid line is equal to 2.

obtained with θ = 0, which corresponds to the Uzawa-like method (see [17]), and with θ = δt
are plotted. For both simulations, flows stop at t ≈ 0.06, which agrees with the results shown
in [7] (Figure 11) and [17].
We investigate further the cessation of Bingham flows in a lid-driven cavity for a larger Reynolds
number, that is Re = 1000, so that the nonlinear effects are stronger which provides a more
stringent numerical test cases. The boundary condition is

(48) ub(x, y) =

{
(1, 0) on the top boundary y = 1,
(0, 0) elsewhere.

In this study, the Bingham number is successively set to Bi = 1, 2.5, 5 and 7.5. The values
h = 1/256 and δt = 10−3 are respectively used for the spatial mesh and the time step. As in
the previous section, the parameters r and θ are such that r ≤ 1

3Bi and θ = δt. Starting at
rest, the numerical simulations are advanced in time until steady state is reached. At a stopping
time tstop, the energy brought into the system from the upper boundary is stopped, namely :
ub(x, y = 1, t) = 0 for t ≥ tstop. As steady states are reached faster for larger Bingham numbers,
different values for tstop are used, namely tstop = 40, 35, 30 and 25 for the respective Bingham
number Bi = 1, 2.5, 5 and 7.5. On Figure 5, the time evolution of the kinetic energy for these
simulations is plotted. For all Bingham numbers considered, flows stop in finite time. The decay
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Figure 4. Time evolution of the kinetic energy for Bi =
√
2 and Re = 1

obtained with the Uzawa-like method θ = 0 ( ) and with θ = δt (�). The
upper boundary condition has been stopped at t = 0.05. The mesh size is h =
1/64.

of the kinetic energy during the transient period depends on Bi. As it is expected, the flow
returns to rest faster in time for larger Bingham numbers.
These numerical results show that, despite the presence of a relaxation term in the projection
step used to solve the plasticity problem, the proposed bi-projection scheme is able to reproduce
the cessation of Bingham flows.

4.4. Stationary flows in the lid-driven cavity for Re = 1000. We now focus on numerical
simulations of steady flows in a lid-driven cavity: the computational domain is Ω = (0, 1)2 and
the boundary conditions (48) are applied. The Reynolds number is set to Re = 1000. We
consider that steady state is reached when the following criterion on the discrete time derivative
is fulfilled

‖un+1 − un‖∞
δt

≤ 10−6.

The time step is chosen so that the CFL number, defined as δt‖un+1‖∞/h, takes values in the
interval [0.5, 1). In order to further validate our numerical code, we confront the reference results
provided by Botella and Peyret in [4] for Newtonian fluid flows (Bi = 0) with simulations we have
performed. In Table 1, extreme values and locations of the horizontal (resp. vertical) velocity
component along the vertical (resp. horizontal) centre-line are reported for mesh resolutions
from 2562 up to 10242 grid points. We note a very good agreement between our values and the
ones listed in [4], and reported for convenience in Table 1. Moreover, by comparing the results
obtained on the different meshes, the expected second-order accuracy is recovered. A perfect
match is also found for the velocity profiles drawn on Figures 7 and 8.
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Figure 5. Time evolution of the kinetic energy for Re = 1000 and for Bi = 1
( ), Bi = 2.5 ( ), Bi = 5 ( ) and Bi = 7.5 ( ). The stopping time
tstop ∈ [25, 40] depends on Bi. The spatial resolution corresponds to 2562 mesh
points.

We now reproduce some of the benchmark results proposed by Vola et al. in [27] of stationary
viscoplastic flows for Reynolds number Re = 1000 and for Bingham numbers in the range
Bi ∈ [1, 100]. The fixed-point procedure (11)-(12) used to compute the plastic part σ of the
stress tensor depends on two numerical parameters : r and θ. The former one has to fulfil the
necessary condition exhibited in Theorem 3, r ≤ 1

3Bi , and is chosen accordingly. The convergence
of the fixed-point algorithm is so ensured. Its convergence rate is governed by the value of θ.
Indeed, recalling the result proved in Theorem 1, the convergence of the sequence

(
σ
n,k
)
k
, for a

fixed time iteration n, is geometric with common ratio (1−θ). This is illustrated on Figure 6. For
comparison, we have drawn the convergence rate obtained with θ = 0. In this particular case,
the bi-projection scheme falls in the family of Uzawa-like methods (see [17]) which are known to
have a slow convergence (see [7]). From Figure 6, we infer that the fixed-point algorithm can be
iterated up to the desired accuracy. In practice, the Bingham projection procedure (11)–(12) is
considered to be reached when the following criterion is satisfied:

max
i,j

|σn,k+1
ij − σ

n,k
ij | ≤ Tol,

where Tol is a prescribed (numerical) parameter. Values in the range [10−8; 10−6] are used
for the simulations presented in the sequel. The computational accuracy of the plastic tensor
σ
n+1
ij clearly depends on the value of Tol. In practice, it has to be small enough so that the

convergence error at this step does not affect the overall accuracy of the bi-projection scheme.
By definition, a flow is considered steady when all the time derivatives of its variables vanish.

In such state, the only remaining numerical error is due to the spatial discretisation. Due to
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Figure 6. Convergence of ‖σn,k+1 − σ
n,k‖∞ with respect to the iteration

number k for the Uzawa-like method θ = 0 ( ) and for the bi-projection
scheme with θ = δt ( ), θ = 10δt ( ) and θ = 100δt ( ). The numerical
parameters are: Re = 1000, Bi = 100, h = 1/1024, δt = 5 × 10−3 and n = 200
(t = 0.1). In Table 1, stationary solutions for Bi = 100 were obtained with
θ = 100δt.

round-off errors and floating point arithmetic, a steady state is never reached in numerical sim-
ulations. Nevertheless, if the discrete time derivatives are small enough, the time discretisation
error of the numerical scheme becomes negligible compared to the spatial one. In this peculiar
situation, the time relaxation parameter θ can be set to a value much larger than the time step
δt without affecting the numerical results. This ensures a faster convergence (see Figure 6) of
the fixed point algorithm used to compute the plastic part of the stress tensor at each time iter-
ation. For the numerical simulations reported in Table 1, the value θ = 100δt was used for the
numerical simulations performed on the finest grid, namely with h = 1/1024 and δt = 5× 10−4.

An overall good agreement is found for the values reported in Table 1: the differences between
our results and the ones in [27] are smaller than the accuracy of the numerical scheme, that is
O(h2), for Bi ≤ 10. For Bi = 10, Vola et al. found that the vertical velocity along the line
y = 0.5 has a local maximum at x ≈ 0.34; this results was obtained on a coarse mesh with
802 mesh points. When refining the computational mesh, we note that the location of the local
maximum moves closer to the centre of the cavity (x ≈ 0.46). A discrepancy is also found
for the values of minx v(x, 0.5) and maxx v(x, 0.5) for the largest Bingham number Bi = 100.
Results in Table 1 show that, in this case, the mesh has to be fine enough: 5122 grid points
are necessary to compute the correct order of magnitude for the flow characteristics. It may
seem counter-intuitive, as the net effect of the plastic tensor is to slow down the flow motion so
that we may expect that coarser mesh resolutions could be used when the Bingham number is
increased. Note that in [27], the numerical simulations were performed on much coarser meshes.
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Finally, on Figure 9 the streamlines and the rigid zones (in practice, we use |Du| ≤ 10−5),
that are areas where the rate-of-strain tensor vanishes, are drawn for the different values of
the Bingham number. By comparing with Figure 4 in [27], we note as previously that a good
qualitative agreement is obtained. Note that Muravleva in [16] reports numerical simulations
performed on a uniform Cartesian mesh with h = 1/256. However, a direct comparison of the
rigid zones is not possible as different values of the plasticity threshold are considered.
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Figure 7. Horizontal velocity profiles along the centre-line x = 0.5 for station-
ary solutions for Re = 1000 and for Bi = 0 ( ), Bi = 1 ( ), Bi = 10 ( )
and Bi = 100 ( ).

4.5. Effect of the Reynolds number on Bingham flows for Bi = 100. In this last section,
we investigate the effect of the Reynolds number on the flow motion for a fixed Bingham number
Bi = 100. The Reynolds number is increased from Re = 1000 up to Re = 200 000. For
larger values steady states could not be reached and a non-stationary solution was obtained for
Re = 500 000. The study of unsteady Bingham flows in a lid-driven cavity is challenging and
of interest but is beyond the scope of this paper. All numerical simulations reported in this
section were performed on a grid with 10242 mesh points. The time step δt is equal to 5× 10−4

for Re ≤ 50 000 and 2.5 × 10−4 otherwise. As in the previous section, the time-relaxation
parameter θ, used in the plastic projection step, was chosen of the order of 100δt. On Figure 10,
streamlines and unyielded zones (|Du| ≤ 10−4) are shown for various Reynolds numbers up to
200 000. In agreement with the results reported in [16, 25] (for the most recent ones on the
subject), two rigid zones are found for Reynolds numbers Re ≤ 5 000. A large unyielded zone
fills the bottom of the cavity so that the motion of the viscoplastic material only occurs in a
small region just under the top boundary. This motionless part of the flow is pushed towards
the bottom of the cavity when the Reynolds number is increased, leaving more and more space
for the material to move. For Re ≥ 100 000, it splits into two zones stuck to the wall in the lower
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Figure 8. Vertical velocity profiles along the centre-line y = 0.5 for stationary
solutions for Re = 1000 and for Bi = 0 ( ), Bi = 1 ( ), Bi = 10 ( )
and Bi = 100 ( ).

Table 1. Extreme values of the velocity along the centre-lines x = 0.5 and
y = 0.5 for stationary solutions for Re = 1000 and for Bi in the range [0, 100].

Bi Mesh ymin miny u(0.5, y) xmin minx v(x, 0.5) xmax maxx v(x, 0.5)

0 2562 0.17383 −0.38700 0.90820 −0.52514 0.16211 0.37533
5122 0.17188 −0.38817 0.90918 −0.52661 0.15723 0.37658
10242 0.17139 −0.38847 0.90967 −0.52694 0.15771 0.37685
Ref. [4] 0.1717 −0.3886 0.9092 −0.5271 0.1578 0.3769

1 2562 0.17773 −0.34533 0.90820 −0.48717 0.16602 0.32871
5122 0.17578 −0.34651 0.90723 −0.48856 0.16601 0.32981
10242 0.17578 −0.34680 0.90771 −0.48892 0.16602 0.33009
Ref. [27] 0.175 −0.3438 0.9 −0.482 0.1625 0.3286

10 2562 0.50586 −0.11533 0.83008 −0.12577 0.46094 0.05689
5122 0.50488 −0.11628 0.83008 −0.12764 0.46094 0.05791
10242 0.50439 −0.11652 0.83057 −0.12811 0.46045 0.05817
Ref. [27] 0.5 −0.1156 0.825 −0.1258 0.3375 0.0572

100 2562 0.58789 −0.0775 0.60742 −0.000438 0.47070 0.000432
5122 0.59082 −0.0777 0.60254 −0.000325 0.47754 0.000321
10242 0.59131 −0.0777 0.60156 −0.000301 0.47852 0.000297
Ref. [27] 0.6 −0.0762 0.6125 −0.0002 0.4625 0.00017
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Bi = 0 (Newtonian fluid) Bi = 1

Bi = 10 Bi = 100

Figure 9. Streamlines and rigid zones (|Du| ≤ 10−5) for Re = 1000 and for
various Bingham numbers Bi. The spatial resolution is 10242, the time step is
δt = 5× 10−4 and θ = 0.05.

corners. A small unyielded zone, located inside the vortex which is centred just below the lid for
Re = 1000, appears for Reynolds numbers Re ≥ 10 000. This zone expands for Re ≤ 10 000 and
starts to shrink when the Reynolds number is increased up to the largest value (Re = 200 000)
considered here. An unyielded zone of small size and located near the vortex centre appears
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Re = 20000 Re = 50000

Re = 100 000 Re = 200 000

Figure 10. Streamlines and rigid zones (|Du ≤ 10−4) for Bi = 100 and for in-
creasing Reynolds numbersRe. The numerical parameters are: h = 1/1024, δt =
5× 10−4 and θ = 5× 10−2.
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for Re = 10000, then expands for Re up to 50 000, before to break down in several parts for
Re ≥ 100 000 remaining in the neighbourhood of the vortex centre.

As it has been observed in [16, 25], for Re ∈ [1 000, 10 000] the vortex is shifted towards the
right corner at the top of the cavity. For larger values of the Reynolds number, Re ≤ 20 000,
the vortex moves towards the centre of the cavity and away from the lid. For Re ≥ 20 000,
the vortex centre moves towards the bottom of the cavity, remaining in a narrow vertical region
defined by [0.75, 0.85] × [0.3, 0.83]. As the vortex moves away from the lid, acting as an energy
sink, its strength decreases.

In summary, the effect on the flow of increasing the Reynolds number is to multiply the number
of unyielded zones while diminishing their sizes. As a consequence, more and more space is left
for the material to move so that we may expect to finally find non-stationary solutions with
non-trivial dynamics. Such study will be addressed in future works.

5. Concluding remarks

A new numerical scheme has been proposed for the time discretisation of a system of equations
modelling the isothermal and unsteady flow of an incompressible viscoplastic Bingham medium.
The non-differentiable definition of the plastic part of the stress tensor is rewritten by introducing
a projection operator. The flow is therefore subject to two constraints: the classical one due to
the incompressibility assumption and the second one related to the plastic (yield) stress tensor.
The time discretisation is based on a first-order projection scheme in its incremental version.
Schematically, projection schemes consist in two steps. The former predicts a non-solenoidal
velocity field by solving an advection-diffusion equation. The latter is a projection onto the
space of divergence-free velocity fields. It provides a pressure, solution of a Poisson-like equation,
which is then used to correct the predicted velocity. In terms of arithmetic operations, this step
is the most consuming one.
The yield stress tensor is treated implicitly and is added into the prediction step. It is computed
with the help of a fixed-point algorithm. Such numerical procedure, similar to the Uzawa-
like method for solving Bingham flows, is known to converge slowly. In order to increase the
convergence rate of the plasticity step of the numerical scheme, a pseudo-time relaxation term
is added into the projection operator used to compute the yield stress tensor. As a result, the
fixed-point algorithm convergences geometrically with a common ratio depending on a prescribed
numerical parameter. This is a key feature of the proposed bi-projection scheme providing a
reasonably fast computation of the plastic stress tensor. Like numerical schemes based on
a variational inequality formulation of the Bingham model, namely Uzawa-like and augmented
Lagrangian methods, the bi-projection scheme has the intrinsic capability of accurately capturing
the unyielded zones. Also, to implement the bi-projection scheme in an existing solver, using a
projection scheme, is straightforward: the Bingham projection only requires local computations
(on the computational mesh) of the plastic stress tensor.

The first part of the paper is devoted to stability and error analyses of the numerical scheme
which is shown to be first-order in time. In a second part, several numerical simulations are
performed. The scheme is assessed against previous published benchmark results for both New-
tonian and Bingham flows in a lid-driven cavity for Reynolds number 1 000 and for various
Bingham numbers from 1 up to 100. The dependency of the computed solutions on the mesh
resolution is investigated. For large values of the Bingham number, we observe that the compu-
tational grid has to be fine enough in order to properly compute both the fluid and rigid zones
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characterising Bingham viscoplastic flows. Also, the proposed numerical scheme is shown to be
able to reproduce the cessation in finite time of a viscoplastic medium in the absence of energy
source terms in the equations. Finally, in order to show the capability of the proposed scheme
to compute viscoplastic flows at large Bingham and Reynolds numbers, we provide results of
simulations performed with the value Bi = 100 and for various Re from 1 000 up to 200 000.
The effect of the Reynolds number on the flow behaviour is discussed.

While the proposed numerical scheme applies to a time dependent problem, only convergence
to steady state solutions are presented in this paper. As a preliminary result, not shown in
the present work, a non-stationary flow has been obtained for Re = 500 000. A detailed study
of unsteady solutions is feasible but is out of the scope of this paper. This will be addressed
elsewhere. In order to further demonstrate the efficiency of the bi-projection method proposed
and analysed in this paper, another challenging future work would be to apply the numerical
scheme to the numerical simulation of three-dimensional flows. Again, this is postponed to
future publications.
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