Ghassen Askri 
email: askri.ghassen@hotmail.fr
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Let X be a dendrite with set of endpoints E(X) closed and let f : X → X be a continuous map with zero topological entropy. Let P (f ) be the set of periodic points of f . We prove that if L is an infinite ω-limit set of f then L ∩ P (f ) ⊂ E(X) , where E(X) is the set of all accumulations points of E(X). Furthermore, if E(X) is countable and L is uncountable then L ∩ P (f ) = ∅. We also show that if E(X) is finite then any uncountable ω-limit set of f has a decomposition and as a consequence if f has a Li-Yorke pair (x, y) with ω f (x) or ω f (y) is uncountable then f is Li-Yorke chaotic.

Introduction

Let X be a compact metric space with metric d and f : X -→ X be a continuous map. Let Z + and N be the sets of non-negative integers and positive integers respectively. Denote by f n the n-th iterate of f ; that is, f 0 is the identity map, and f n = f • f n-1 if n ≥ 1. For any x ∈ X the subset O f (x) = {f n (x) : n ∈ Z + } is called the f -orbit of x. A point x ∈ X is called periodic of prime period n ∈ N if f n (x) = x and f i (x) = x for 1 ≤ i ≤ n -1. We denote by F ix(f ) (resp. P (f )) the set of fixed points (resp. periodic points) of f . Let A be a non empty subset of X. It is called periodic with period p ≥ 1 if A, f (A), . . . , f p-1 (A) are pairwise disjoint and f p (A) = A. For any x ∈ X, we denote by ω f (x) = ∩ n≥0 O f (f n (x)) the omega limit set of x. A pair (a, b) in X 2 is called proximal if lim inf

n→+∞ d(f n (a), f n (b)) = 0, it is called distal if lim inf n→+∞ d(f n (a), f n (b)) > 0 and it is called asymptotic if lim sup n→+∞ d(f n (a), f n (b)) = 0. A pair (a, b) in X 2 is called a Li-Yorke pair (of f ) if it
is proximal but not asymptotic. A subset S of X with at least two points is a scrambled set (of f ) if any proper pair (a, b) ∈ S 2 is a Li-Yorke pair. A continuous map f : X → X is called Li-Yorke chaotic if it has an uncountable scrambled set. Denote by h(f ) the topological entropy of f (See [START_REF] Adler | Topological entropy[END_REF], [START_REF] Bowen | Entropy for group endomorphisms and homogeneous spaces[END_REF], [START_REF] Dinaburg | The relation between topological entropy and metric entropy[END_REF]). For any non empty subset F of a compact metric space X, the set of accumulation points of F , denoted by F , is called the derived set of F . More generally, for any n ≥ 1, we define F (n) = (F (n-1) ) the n-th derivative of F , where F 0 = F . If F is closed then F is a closed subset of F . A continuum is a compact connected metric space. An arc is any space homeomorphic to the compact interval [0, 1]. A topological space is arcwise connected if any two of its points can be joined by an arc. We use the terminology from Nadler [START_REF] Nadler | Continuum Theory: An Introduction[END_REF]. By a dendrite X, we mean a locally connected continuum which contains no homeomorphic copy of a circle i.e simple closed curve. Every sub-continuum of a dendrite is a dendrite ( [START_REF] Nadler | Continuum Theory: An Introduction[END_REF], Theorem 10.10) and every connected subset of X is arcwise connected ( [START_REF] Nadler | Continuum Theory: An Introduction[END_REF], Proposition 10.9). Let x ∈ X. The number of connected components of X\{x}, denoted ord(x, X), is called the order of x in X. If ord(x, X) = 1 (resp. ord(x, X) = 2, resp. ord(x, X) ≥ 3) then x is called and endpoint (resp. cut point, resp. branch point) of X. If there is no confusion, we denote ord(x) instead of ord(x, X). We denote by E(X) (resp. B(X)) the set of endpoints (resp. branch points) of X. A tree, is a dendrite with finitely many endpoints. In addition, any two distinct points x, y of a dendrite X can be joined by a unique arc with endpoints x and y, denote this arc by [x, y] and let [x, y) = [x, y] \ {y} (resp. (x, y] = [x, y] \ {x} and (x, y) = [x, y] \ {x, y}). A free arc in a dendrite is an arc containing no branch point.

A continuous map from a dendrite into itself is called a dendrite map. For any closed subset F of X, we call the convex hull of F , noted [F ], the intersection of all subdendrites of X containing F .

The ω-limit sets play an important role in studying dynamical systems. Sarkovski [START_REF] Sarkovskii | The behavior of a map in a neighborhood of an attracting set[END_REF], proved that if f : [0, 1] → [0, 1] is a continuous map with zero topological entropy then any infinite ω-limit set contain no periodic point. This result remain true for graph maps (in particular for tree maps) ( [START_REF] Hric | Omega limit sets and distributional chaos on graphs[END_REF], Theorem 13). In this paper, we firstly study this question for dendrite maps with closed set of endpoints (See Theorem A). Secondly, Smital showed in ( [START_REF]Chaotic functions with zero topological entropy[END_REF], Theorem 3.5) that if L = ω f (x) is an infinite ω-limit set of an interval map with zero topological entropy (in fact L is uncountable) then there is a sequence (J k ) k≥1 of f -periodic intervals with the following properties: For any k,

(1) J k has period 2 k , (2) J k+1 ∪ f 2 k (J k+1 ) ⊂ J k , (3) L ⊂ ∪ 2 k -1 i=0 f i (J k ), (4) L ∩ f i (J k ) = ∅ for every i = 0, 1, . . . , 2 k -1.
We will extend this result to dendrite maps f : X → X with zero topological entropy, where E(X) is closed and E(X) finite. This holds in particular if X is a tree. (See Theorem B).

In the third part of the paper, we study the question: Does Li-Yorke pair implies chaos for dendrite maps? Kuchta and Smital [START_REF] Kuchta | Two-point scrambled set implies chaos[END_REF] proved that the existence of Li-Yorke pair implies chaos for interval maps. In [START_REF] Ruette | For graph maps, one scrambled pair implies Li-Yorke chaos[END_REF], Ruette and Snoha proved that the same conclusion holds for graph maps. An example of a triangular map in the square (resp. on the Cantor set and the Warsaw circle) answering negatively the question is found in [START_REF] Forti | Strange triangular maps of the square[END_REF] (resp. [START_REF] Guirao | Li and Yorke chaos with respect to the cardinality of the scrambled sets[END_REF]). Here we give some examples of dendrites maps with countable set of endpoints having a Li-Yorke pair but not Li-Yorke chaotic.

Our main results are the following:

Theorem A. Let X be a dendrite with E(X) closed and let f : X → X be a dendrite map with zero topological entropy. Let x ∈ X. Then we have [START_REF] Adler | Topological entropy[END_REF] If

ω f (x) is infinite then ω f (x) ∩ P (f ) ⊂ E(X) , (2) If E(X) is countable and ω f (x) is uncountable then ω f (x)∩P (f ) = ∅.
Remark.

(1) The condition ω f (x) ∩ P (f ) = ∅ can occur, we built a dendrite map f : X → X with zero topological entropy having an infinite ωlimit set ω f (x) containing a periodic point, where E(X) is a closed countable set and ω f (x) is infinite countable. (See Example 1). ( 2) There is a dendrite map f : X → X with zero topological entropy having an ω-limit set ω f (x) containing a periodic point with E(X) non closed and countable and ω f (x) uncountable. (See Example 2). (3) There is a dendrite map f : X → X with zero topological entropy having an uncountable ω-limit set ω f (x) containing a periodic point with E(X) closed and uncountable. (See Example 3).

Theorem B. Let X be a dendrite such that E(X) is closed set having finitely many accumulation points and let f : X → X be a dendrite map with zero topological entropy. Let L be an uncountable ω-limit set. Then there is a sequence of f -periodic subdendrites (D k ) k≥1 of X and a sequence of integers n k ≥ 2 for every k ≥ 1 with the followings properties: ∀k ≥ 1,

(1) D k has period

α k := n 1 n 2 . . . n k , (2) 
∪ n j -1 k=0 f kα j-1 (D j ) ⊂ D j-1 ; j ≥ 2, (3) L ⊂ ∪ α k -1 i=0 f i (D k ), (4) f (L ∩ f i (D k )) = L ∩ f i+1 (D k ); 0 ≤ i ≤ α k -1. In particular L ∩ f i (D k ) = ∅, ∀0 ≤ i ≤ α k -1, (5) ∀0 ≤ i = j < α k , f i (D k ) ∩ f j (D k ) has empty interior.
Corollary 1. Let X be a tree and f : X → X a continuous map with zero topological entropy. Let L = ω f (x) an infinite ω-limit set. Then there is a sequence (J k ) k≥1 of f -periodic arcs and a sequence of integers n k ≥ 2 for every k ≥ 1 with the following properties: For any k,

(1)

J k has period α k := n 1 n 2 . . . n k , (2) 
∪ n j -1 k=0 f kα j-1 (J j ) ⊂ J j-1 ; j ≥ 2, (3) L ⊂ ∪ α k -1 i=0 f i (J k ), (4) f (L ∩ f i (J k )) = L ∩ f i+1 (J k ); 0 ≤ i ≤ α k -1. In particular L ∩ f i (J k ) = ∅, ∀0 ≤ i ≤ α k -1, (5) ∀0 ≤ i = j < α k , f i (J k ) ∩ f j (J k ) are either disjoint or they intersect
in their common endpoints.

Theorem C. Let X be a dendrite with E(X) closed and E(X) finite. Let f : X → X be a dendrite map. If f has a Li-Yorke pair (x, y) such that

ω f (x) or ω f (y) is uncountable then f is Li-Yorke chaotic.
Remark. Theorem C is not always true if X is a dendrite with E(X) closed countable with E(X) infinite. (See Example 4).

Preliminaries

Lemma 2.1. ( [START_REF] Mai | R = P for maps of dendrites X with CardE(X) < c[END_REF], Lemma 2.1) Let (X, d) be a dendrite. Then, for every ε > 0, there exists δ = δ(ε) > 0 such that, for any x, y ∈ X with d(x, y) ≤ δ, the diameter diam([x, y]) < ε.

Here diam(A) := sup x,y∈A d(x, y) where A is a non empty subset of (X, d).

Corollary 2.2. Let (X, d) be a dendrite. Then, for every x, y ∈ X; x = y, there is ε > 0 and an arc J ⊂ [x, y] such that for any u ∈ B(x, ε) and

v ∈ B(y, ε) we have J ⊂ [u, v].
Proof. Fix x, y ∈ X; x = y. Let U and V two disjoint subdendrites of X such that x ∈ int(U ) and y ∈ int(V ) (where int(A) denote the interior of the subset A). Since U, V and [x, y] are connected then by Theorem 10.10 of [START_REF] Nadler | Continuum Theory: An Introduction[END_REF]

, U ∩ [x, y] and V ∩ [x, y] are also connected. Let c 1 , c 2 ∈ X satisfying U ∩[x, y] = [x, c 1 ] and V ∩[x, y] = [c 2 , y]. We have [x, c 1 ]∩[y, c 2 ] ⊂ U ∩V = ∅ so [x, c 1 ] ∩ [y, c 2 ] = ∅.
Let u ∈ U and v ∈ V arbitrarily and denote by u = r [x,y] (u), v = r [x,y] (v) where r [x,y] is the first point map for [x, y] (See [START_REF] Nadler | Continuum Theory: An Introduction[END_REF], page 176). We have

u ∈ [x, u] ∩ [x, y] ⊂ U ∩ [x, y] = [x, c 1 ]. Similarly, v ∈ [y, c 2 ]. Since [u, u ) ∩ [x, y] = [v, v ) ∩ [x, y] = ∅ (If a = b then [a, b) = ∅) then [u, u ), [v, v ) and [u , v ] are pairwise disjoint so [u, v] = [u, u ] ∪ [u , v ] ∪ [v , v]. Finely, since u ∈ [x, c 1 ], v ∈ [c 2 , y] then [u , v ] contains J := [c 1 , c 2 ] (which is independent from u, v) so J ⊂ [u, v]
. By taking ε > 0 with B(x, ε) ⊂ U and B(y, ε) ⊂ V , we finish the proof of the corollary. Lemma 2.3. Let X be a dendrite and C 1 , C 2 two disjoint connected subsets in X. Then C 1 ∩ C 2 is at most one point.

Proof. Suppose that C 1 ∩ C 2 contains at least two distinct points a, b. Then by Theorem 10.10 of [START_REF] Nadler | Continuum Theory: An Introduction[END_REF] this intersection is connected, so it is arcwise connected. Hence we obtain

[a, b] ⊂ C 1 ∩ C 2 . There is four sequences (a n ) n≥1 , (b n ) n≥1 in C 1 and (a n ) n≥1 , (b n ) n≥1 in C 2 such that (a n ) n≥1 , (a n ) n≥1 converges to a and (b n ) n≥1 , (b n ) n≥1 converges to b. By Corollary 2.2, there is ε > 0 and an arc J ⊂ [a, b] such that J ⊂ [u, v] for any u ∈ B(a, ε) and v ∈ B(b, ε). There is n > 0 such that a n , a n ∈ B(a, ε) and b n , b n ∈ B(b, ε). So we have J ⊂ [a n , b n ] ∩ [a n , b n ]. Since C 1 and C 2 are arcwise connected then [a n , b n ] ⊂ C 1 and [a n , b n ] ⊂ C 2 then J ⊂ C 1 ∩ C 2 , absurd.
Lemma 2.4. Let X be a dendrite and F a non empty closed subset of X. Let a ∈ F , then

(1) [F ] = ∪ z∈F [a, z], (2) E([F ]) ⊂ F and we have E([F ]) = F when F ⊂ E(X).
Proof. (1) For any z ∈ F , [a, z] is connected then the subset G := ∪ z∈F [a, z] is connected and contains F . We will prove that G is closed. Let (w n ) n≥1 be a sequence in G converging to w ∈ X. For any n ≥ 1, there is

z n ∈ F such that w n ∈ [a, z n ]. Since F is compact, by considering a sub sequence of (z n ) n≥1 , we may assume that (z n ) n≥1 converges to z ∈ F . It suffices to prove that w ∈ [a, z]. Suppose contrarily that δ := d(w, [a, z]) > 0 then B(w, δ 2 ) ∩ B([a, z], δ 2 ) = ∅. By Lemma 2.1, since (z n ) n≥1 converges to z then there is N > 0 such that diam([z, z n ]) < δ 2 when n > N , hence [z, z n ] ⊂ B(z, δ 2 ) so [a, z n ] ⊂ [a, z]∪[z, z n ] ⊂ B([a, z], δ 2 ). Let n > N such that d(w, w n ) < δ 2 . Then w n ∈ B([a, z], δ 2 )∩B(w, δ 2 ) hence B([a, z], δ 2 )∩B(w, δ 2 ) = ∅, absurd. So w ∈ G then we conclude that G is a subdendrite of X satisfying F ⊂ G ⊂ [F ], hence [F ] = G. (2) Let e ∈ E([F ]), by (1) there is z ∈ F such that e ∈ [a, z]. Since 1 ≤ ord(e, [a, z]) ≤ ord(e, [F ]) = 1 hence e = z or a then e ∈ F , so E([F ]) ⊂ F . Now, suppose that F ⊂ E(X). It suffices to prove that F ⊂ E([F ]). Since F ⊂ [F ] then F ⊂ [F ] ∩ E(X) ⊂ E([F ]
). This finish the proof of this Lemma. 

.5) If X is a dendrite with E(X) closed set then B(X) ⊂ B(X) ∪ E(X). In particular, B(X) ∪ E(X) is closed. Proposition 2.9. ([3], Corollary 3.6) If X is a dendrite with E(X) closed then B(X) is a discrete set. Lemma 2.10. ([8], Proposition 4.14) If Y and X dendrites with Y ⊂ X, then E(Y ) ⊂ E(X) . Lemma 2.11. ([20], Lemma 4) If Y and X are dendrites with Y ⊂ X, then card(E(Y )) ≤ card(E(X)).
For a subset A of X, we denote by card(A) the number of elements of A. If A = ∅, we take card(A) = 0. Definition 2.12. Let f : X → X be a dendrite map and I, J two arcs in X. We say that I, J form an arc horseshoe for f if f n (I) ∩ f m (J) ⊃ I ∪ J for some n, m ∈ N, where I, J have exactly a common one endpoint. Theorem 2.13. [START_REF] Blanchard | Topological size of scrambled sets[END_REF] Let X be a compact metric space and f : X

→ X a continuous map. If h(f ) > 0 then f is Li-Yorke chaotic.
When X is a compact interval, it is well known that if f n has an arc hoseshoe for some n ∈ N, then h(f ) > 0. Actually, for dendrite map, we have Theorem 2.14. ( [START_REF] Kocan | Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites[END_REF], Theorem 2) Let f : X → X be a dendrite map. If f has an arc horseshoe then h(f ) > 0.

Lemma 2.15. ( [START_REF] Block | Dynamics in One Dimension[END_REF], page 71) Let (X, d) be a compact metric space and f : X → X a continuous map. Let F be a proper closed subset of an

ω-limit set L = ω f (x), then f (L\F ) ∩ F = ∅.
Lemma 2.15 is equivalent to the following Lemma:

Lemma 2.16. If G is a non empty open subset of L (relatively to L) and such that f (G) ⊂ G then G = L. Proof. Suppose contrarily that there is a non empty open subset G of L such that f (G) ⊂ G and G = L. Then F := L\G is a non empty closed subset of L and f (L\F ) ∩ F = f (G) ∩ F = f (G) ∩ F ⊂ G ∩ F = ∅, absurd.
3. On ω-limit set containing a periodic point.

To prove Theorem A, we need the following Lemmas Lemma 3.2. Let X be a dendrite with countable closed set of endpoints and let Y be a subdendrite of X. Denote by

Y 1 := Y \[B(X) ∪ E(Y )] = ∪ i∈I J i ,
where (J i ) i∈I is the sequence of the connected components of Y 1 . Then I is at most countable and each J i is an open free arc in X.

Proof. Set F = (B(X)∩Y )∪E(Y ). We will show that Y 1 = Y \F is closed in Y : Indeed, by theorem 2.7, since E(X) is closed, so E(Y ) is also closed. Let (b n ) n≥1 be an infinite sequence in B(X)∩Y converging to b. Then b ∈ Y and by Proposition 2.8, b ∈ B(X) ∪ E(X), hence b ∈ (Y ∩ B(X)) ∪ (Y ∩ E(X)) ⊂ (Y ∩ B(X)) ∪ E(Y ) so F is closed in Y , hence Y 1 is open in Y . So by ([19], p. 120), each component J i is open in Y . For any i ∈ I, J i is open in X, since J i ∩ B(X) = ∅.
Let us prove that I is at most countable. For any i ∈ I, write

J i = [a i , b i ] and define the map h : I → (B(X)∪E(Y )) 2 as follow: ∀i ∈ I, h(i) = {a i , b i }.
The map h is well defined (since X is uniquely arcwise connected) and it is one-to-one then I is at most countable since B(X) ∪ E(Y ) is at most countable.

Lemma 3.3. Let f : X → X be a dendrite map such that E(X) is closed and countable. Let a ∈ F ix(f ) and L := ω f (x) an uncountable ω-limit set such that L ∩ P (f ) = ∅ then for any y ∈ L, there is

p, k ≥ 0 such that [a, f k (x)] ⊂ [a, f p (y)].
Proof. Let y ∈ L. We have ω f (y) is a closed invariant subset by f then there is a minimal subset, denoted by K, in ω f (y). Since L ∩ P (f ) = ∅ then K has no periodic point. So K is infinite and has no isolated point, hence K is uncountable so it is for ω f (y). Now, denote by

(C i ) i∈N the sequence of connected components of X\(B(X) ∪ E(X)). By Lemma 3.2, each C i is an open free arc in X. There is j ∈ N such that ω f (y) ∩ C j is uncountable. Let u, v ∈ ω f (y) ∩ C j such that u ∈ (a, v).
There is two open disjoint arcs

I u , I v in C j such that u ∈ I u , v ∈ I v . Let p, k ≥ 0 such that f p (y) ∈ I v and f k (y) ∈ I u , since f k (y) ∈ L, there is k > 0 such that f k (x) ∈ I u , so we obtain the inclusion [a, f k (x)] ⊂ [a, f p (y)]. Proof of Theorem A. (1) Denote by L = ω f (x). Suppose that L ∩ P (f ) E(X) , there is a ∈ L\E(X) such that f N (a) = a for some N > 0. Since L is infinite and ∀0 ≤ i ≤ N -1, f (ω f N (f i (x))) = ω f N (f i+1 (x)) then ω f N (f i (x)) is infinite for any 0 ≤ i ≤ N -1. Let 0 ≤ j ≤ N -1 such that a ∈ ω f N (f j (x)
), so we may assume that a ∈ F ix(f ). By Corollary 2.6, since E(X) is closed then 1 ≤ n := ord(a) < +∞. By Corollary 2.9 and Lemma 3.1, a has a neighborhood, V , which is a tree such that V ∩ B(X) ⊂ {a}. We can write

V = ∪ n i=1 [a, b i ] such that the subsets (a, b i ]; 1 ≤ i ≤ n are pairwise disjoint. Claim 1.
There is 1 ≤ i 0 ≤ n and an infinite sequence of periodic points in (a, b i 0 ) converging to a.

By ( [START_REF] Block | Dynamics in One Dimension[END_REF], Lemma 4) a is not isolated relatively to L, then there is an infinite sequence in L, say (y n ) n≥1 , converging to a. Since V is a neighborhood of a then we may assume that (y

n ) n≥1 ⊂ V . Let 1 ≤ i 0 ≤ n such that a ∈ (a, b i 0 ] ∩ (y n ) n≥1
. By considering a sub sequence we may assume that

(y n ) n≥1 ⊂ (a, b i 0 ]. Let c ∈ (a, b i 0 ) arbitrarily. There is 1 ≤ n 1 < n 2 < n 3 such that y n 2 ∈ (y n 1 , y n 3 ) ⊂ (a, c). Let I 1 , I 2 and I 3 a disjoint open arc in (a, c) such that y n i ∈ I i ; i = 1, 2, 3. There is n, m ≥ 0 and p, q > 0 such that f n (x) ∈ I 1 , f m (x) ∈ I 3 and f p (f n (x)), f q (f m (x)) ∈ I 2 . So we have {f p (f n (x)), f q (f m (x))} ⊂ (f n (x), f m (x)
), then by [START_REF] Alseda | Entropy and periodic points for transitive maps[END_REF] (one can use also Theorem 2.13 of [START_REF] Mai | R = P for maps of dendrites X with CardE(X) < c[END_REF]),

P (f ) ∩ (f n (x), f m (x)) = ∅ hence P (f ) ∩ (a, c) = ∅.
This finish the proof of Claim 1. Now, denote by (C k ) 1≤k≤n the sequence of connected components of X\{a}

such that b k ∈ C k , ∀1 ≤ k ≤ n and let c ∈ F ix(f r ) ∩ (a, b i 0 ); r ≥ 1 such that L ∩ (C i 0 \[a, c]) = ∅. Denote by g = f r . There is n ≥ 0 such that f n (x) ∈ (a, c), since L = ω f (f n (x))
, we may assume that n = 0. We distinguish two cases both of them lead us to a contradiction:

Case 1. If O g (x) C i 0 . Let 1 ≤ j ≤ n; j = i 0 and p, k > 0 such that g p (x) ∈ C j and f k (x) ∈ C i 0 \[a, c]. Let I = [a, x] and J = [x, c]. Then we have f k (I) ⊃ [a, f k (x)] ⊃ [a, c] = I ∪ J and f rp (J) = g p (J) ⊃ [c, g p (x)] ⊃ [a, c] = I ∪ J,
so I, J form an arc horseshoe then by [START_REF] Kocan | Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites[END_REF] and [START_REF] Blanchard | On Li-Yorke pairs[END_REF] we have h(f ) > 0, absurd. ] the convex hull of ω g (x). We remark that d ∈ ω g (x) since ω g (x) is closed.

Case 2. If O g (x) ⊆ C i 0 . Denote by F c = ∪ +∞ n=0 g -n (c) ∩ [a, c]. (a) If there is z ∈ F c \{c} such that (c, z] ∩ O g (x) = ∅. Let n ≥ 0, k > 0 such that g n (x) ∈ (c, z) and g k (z) = c. Let I = [c, g n (x)] and J = [z, g n (x)]. Since a ∈ ω g (x) then there is p > k such that I ∪ J ⊂ [c, g n+p (x)]. So we have g p (I) ⊃ [c, g n+p (x)] ⊃ I ∪ J and g k (J) ⊃ [c, g n+k (x)] ⊃ I ∪ J, hence g p (J) = g p-k (g k (J)) ⊃ [c, g n+p (x)] ⊃ I ∪ J so I, J form an arc horseshoe for g, hence h(f ) = 1 r h(g) > 0, absurd. (b) If for any z ∈ F c ; [c, z] ∩ O g (x) = ∅. Claim 2. We have O g (x) ⊂ [a, c]. Since otherwise, there is n > 0 such that g n (x) / ∈ [a, c]. (i) If g n (x) ∈ C i 0 \[a, c] then g n ([a, x]) ⊃ [a, g n (x)] c, so there is c -1 ∈ (a, x); g n (c -1 ) = c, hence x ∈ [c, c -1 ]∩O g (x), a contradiction. (ii) If g n (x) ∈ C j for some j = i 0 . Then g n ([c, x]) ⊃ [c, g n (x)] a. Let a -1 ∈ (c, x); g n (a -1 ) = a and k > 0 such that f k (x) ∈ C i 0 \[a, c]. Then f rn ([c, a -1 ]) = g n ([c, a -1 ]) ⊃ [a, c] and f k ([a, a -1 ]) ⊃ f k ([a, x]) ⊃ [a, f k (x)] ⊃ [a, c],
Claim 3. For any n ≥ 0, g n ([a, d)) ⊂ [a, c). Suppose contrarily that there is n > 0 such that g n ([a, d)) [a, c). Let z ∈ (a, d), g n (z) / ∈ [a, c). (i) If g n (z) ∈ C i 0 \[a, c) then c has an antecedent c -1 by g n in (a, z], since d ∈ [c, c -1 ) ∩ ω g (x) then O g (x) ∩ (c, c -1 ) = ∅, a contradiction. (ii) If g n (z) ∈ C j for some j = i 0 . Then g n ([c, z]) ⊃ [c, g n (z)] a then there is a -1 ∈ (c, z] such that g n (a -1 ) = a. Let k, p > 0 such that f k (x) ∈ (a, a -1 ), f k+p (x) ∈ C i 0 \[a, c]. We have f p ([a, f k (x)]) ⊃ [a, f k+p (x)] ⊃ [a, f k (x)] ∪ [f k (x), c] and f nr ([c, f k (x)]) ⊃ f nr ([c, a -1 ]) = g n ([c, a -1 ]) ⊃ [c, a] = [c, f k (x)] ∪ [f k (x), a], hence [c, f k (x)], [a, f k (x)
] form an arc horseshoe for f , absurd. This finish the proof of the Claim 3. Now, we have

g n ([a, d]) = g n ([a, d)) ∪ g n (d) ⊂ [a, c) ∪ ω g (x) ⊂ [a, c]. In the other hand, since [a, d] ⊃ ω g (x) so g([a, d]) ⊃ [a, d]. The subset I = ∪ +∞ n=0 g n ([a, d]) is connected included in [a, c
] and strongly invariant by g so it is for J = I ⊂ [a, c]. Now g |J : J → J is a continuous interval map with ω g |J (x) = ω g (x); x ∈ J is infinite containing a fixed point a, so by [START_REF] Sarkovskii | The behavior of a map in a neighborhood of an attracting set[END_REF], h(g) ≥ h(g |J ) > 0 hence h(f ) > 0, absurd. We conclude that L ∩ P (f ) ⊂ E(X) .

(2) Now, suppose that L = ω f (x) uncountable and E(X) countable. By (1) of this Theorem, we have L ∩ P (f ) ⊂ E(X) . Suppose that there is a ∈ L∩P (f ), we may assume that a ∈ F ix(f ). By Lemma 3.2, write X\[B(X)∪ E(X)] = ∪ +∞ i=1 J i where each J i is an open free arc in X. There is

i 0 > 0 such that L ∩ J i 0 is uncountable. Write J i 0 = (u, v) such that v ∈ (a, u). There exists c ∈ F ix(f r ); r ≥ 1 such that L ∩ (u, c) is uncountable. Denote by g = f r . There is 0 ≤ i ≤ r -1 such that ω g (x i ) ∩ (u, c) is uncountable; x i = f i (x). There is k ≥ 0, p > 0 such that g k (x i ), g k+p (x i ) ∈ (w, c) ∩ (u, c)
for some w ∈ ω g (x i ). Denote by X 0 , X 1 the connected components of X\{c} such that a ∈ X 1 and let l j = X j ∩ω g (x i ); j = 0, 1. By (1), c / ∈ ω g (x i ) then l 0 and l 1 are two non empty clopen sets relatively to ω g (x i ), hence by Lemma 2.16 we have ∀n ≥ 1, g n (l 0 ) l 0 . Let y ∈ l 0 such that g p (y) ∈ l 1 .

We will build an arc horseshoe. We distinguish two cases:

Case 1. There is an infinite sequence (n l ) l>0 such that (g n l (x i )) l>0 converges to y and g n l (x i ) ∈ (c, y); ∀l > 0. By continuity of g p , there is

n > 0 such that g n (x i ) ∈ X 0 , g n+p (x i ) ∈ X 1 . Denote by I = [c, g k (x i )], J = [g k (x i ), g n (x i )] if g k (x i ) ∈ (c, g n (x i )), (resp. I = [c, g n (x i )], J = [g n (x i ), g k (x i )] if g n (x i ) ∈ (c, g k (x i ))
). We have g p (I) ∩ g p (J) ⊃ [c, g k+p (x i )] (respectively, g p (I)∩g p (J) ⊃ [c, g n+p (x i )]). There is s > 0 such that [c, g k+p+s (x i )] ⊃ I ∪J hence g p+s (I) ∩ g p+s (J) ⊃ I ∪ J (resp. since g k (x i ) ∈ (c, w); w ∈ ω g (x i ) then there is r > 0 such that [c, g n+p+r (x i )] ⊃ I ∪ J hence g p+r (I) ∩ g p+r (J) ⊃ I ∪ J). So I, J form an arc horseshoe for f , absurd.

Case 2. There is an infinite sequence (n l ) l>0 such that (g n l (x i )) l>0 converges to y and y ∈ (c, g n l (x i )); ∀l > 0. Similarly as in Case 1, we build an arc horseshoe by theses three points c, g k (x i ), y (resp. by c, g n (x i ),

g k (x i ) for a convenient integer n) if g k (x i ) ∈ (c, y)) (resp. if y ∈ (c, g k (x i ))).
This finish the proof of Theorem A.

4.

Examples of dendrite maps with zero topological entropy.

4.1. Example 1. We build a dendrite X with E(X) countable closed set and a map f : X → X with zero topological entropy having an infinite ω-limit set containing a periodic point.

Construction of the dendrite X. For any n ≥ 0, let

a n = (1 -1 n+1 , 0), b n = (1 -1 n+1 , (-1) n n+1 (1) 
) and e = (1, 0), [START_REF] Alseda | Entropy and periodic points for transitive maps[END_REF] 

w n ∈ (a n , b n ), (3) (b k n ) k≥0 be a monotone sequence in [b n , w n ) converging to w n where b 0 n = b n , (4) X = ∪ +∞ i=0 [a i , b i ] ∪ [a 0 , e].
We can see that X is a dendrite with E(X) = {b n ; n ≥ 0} ∪ {e} closed and E(X) = {e}.

Construction of the map f : X → X. (See Figure 1) We define f as follows: For any n, k ∈ Z + , ( 1) (2) for any y ∈ X, we have either ω f (y) = {e} or ω f (y) = ω f (b 0 ), (3) f has zero topological entropy, (4) (X, f ) is proximal i.e any pair (x, y) ∈ X 2 is proximal.

f (e) = e, f maps linearly (2) [a n , a n+1 ] to [a n+1 , a n+2 ] such that f (a n ) = a n+1 , (3) [a 2n+2 , w 2n+2 ] to [a 2n+3 , w 2n ], (4) [a 2n+1 , w 2n+1 ] to [a 2n+2 , w 2n+3 ], (5) [a 0 , w 0 ] to [a 1 , w 1 ], (6) [w 2n+2 , b 2n+2 ] to [w 2n , b 2n ] such that f (b k 2n+2 ) = b k+1 2n , (7) [w 0 , b 0 ] to [w 1 , b 1 ] such that f (b k 0 ) = b k 1 , (8) [w 2n+1 , b 1 2n+1 ] to [w 2n+3 , b 2n+3 ] such that f (b k+1 2n+1 ) = b k 2n+3 , (9) [b 2n+1 , b 1 2n+1 ] to [b 2n+3 , b 2n+2 ].
Proof. It is easy to prove (1) and ( 2). Let prove [START_REF] Arévalo | Dendrites with a closed set of endpoints[END_REF]. Denote by R(f ) the set of recurrent points of f i.e R(f

) := {x ∈ X, x ∈ ω f (x)}. Since E(X)
is countable then by [START_REF] Mai | R = P for maps of dendrites X with CardE(X) < c[END_REF] we have R(f ) = P (f ). Since P (f ) = {e} then R(f ) = {e}. Now by [START_REF] Block | Dynamics in One Dimension[END_REF], page 196 we have h(f

) = h(f |R(f ) ) = h(f |{e} ) = 0. (4) Let prove that (X, f ) is proximal. Let (x, y) ∈ X 2 . Fix ε > 0. There is L > 0 such that for any i ≥ 0, {f i (y), f i+1 (y), . . . , f i+L (y)} ∩ B(e, ε 2 ) = ∅. Since e = f (e) ∈ ω f (x) there is p > 0 such that {f p (x), f p+1 (x), . . . , f p+L (x)} ⊂ B(e, ε 2 ). Let 0 ≤ k ≤ L such that f p+k (y) ∈ B(e, ε 2 
), we obtain d(f p+k (x), f p+k (y)) < ε.

4.2.

Example 2. We will prove that there is a non chaotic dendrite map f : X → X with E(X) countable but non closed set having an uncountable ω-limit set containing a periodic point.

Construction of the dendrite X.

For any n ≥ 1, denote by:

• A = (0, 0) and B = (1, 0), • S n = { i 2 n where 1 ≤ i ≤ 2 n is odd } • S 2n+1 = {a 2 2n > a 2 2n +1 > • • • > a 2 2n+1 -1 }; n ≥ 0 and S 2n = {a 2 2n-1 < a 2 2n-1 +1 < • • • < a 2 2n -1 }, • I k = [A k , B k ] where A k = (a k , 0) and B k = (a k , 1 n+1 ) for any n ≥ 0 and k ∈ {2 n , 2 n + 1, . . . , 2 n+1 -1}. So the set X := [A, B] ∪ (∪ k≥1 I k ) is a dendrite with E(X) = {B k ; k ≥ 1} and E(X) = E(X) ∪ [A, B].
Construction of the map f : X → X.( See Figure 2). The map f is defined as follow: f fix any point in [A, B] and for any k ≥ 1, f maps linearly I k to I k+1 such that the center of I k is sent to A k+1 .

The map f : X → X satisfies the following properties: for any k ≥ 0, ω f (B k ) = [A, B] and for any y ∈ X\E(X), there is p ≥ 0 such that 

f p (y) ∈ [A, B]. It follows that (u, v) ∈ X 2 is a Li-Yorke pair if and only if either (u, v) or (v, u) lies to E(X) × X\E(X). Then f is not chaotic so h(f ) = 0 but ω f (B 0 ) = [A, B] = F ix(f ).

Lemma 4.2. [12]

There is s ∈ Σ 2 := {0, 1} Z + a recurrent point such that ω σ (s) is an uncountable ω-limit set containing a fixed point and σ |ωσ(s) has zero topological entropy, where σ = Σ 2 → Σ 2 is the shift map defined as follow:

∀x = (x n ) n≥0 ∈ Σ 2 , σ(x) = (x n+1 ) n≥0 .
Lemma 4.3. ([3], Proposition 6.8, p. 16) Each dendrite with an uncountable set of its endpoints contains a homeomorphic copy of the Gehman dendrite. Proposition 4.4. Let X be a dendrite with E(X) uncountable. Then there is a continuous map f : X → X with zero topological entropy having an uncountable ω-limit set containing a periodic point.

Proof. Let X be a dendrite with E(X) uncountable. If X is a Gehman dendrite. The set E := E(X) is homeomorphic to ω σ (s) where s is defined in the Lemma 4.2. Let f be the map defined in [START_REF] Kocan | Chaos on one-dimensional compact metric spaces[END_REF] with the same notations such that f act in E as the subshift σ 1 := σ |ωσ(s) . We may assume that

E = ω σ (s). Any point y ∈ X\E is eventually mapped to c so R(f ) ⊂ E∪{c}. Since h(f ) = h(f |R(f ) ) then h(f ) ≤ max(h(f |E ), h(f |c )) = h(f |E ) = h(σ 1 ) = 0 hence h(f ) = 0. Also we have ω f (s) = ω σ (s)
is uncountable containing a periodic point. Generally, by Lemma 4.3, X contains a homeomorphic copy of the Gehman dendrite, G. Denote by r G : X → G the retraction map. Let f : G → G defined above and we set g = f • r G : X → X. Then we have g is a dendrite map on X, h(g) = h(f ) and there is x ∈ G such that ω g (x) = ω f (x) is uncountable containing a periodic point. This finish the proof of the Proposition.

5.

Decomposition of an uncountable ω-limit set. Assumption 5.1. We assume that X is a dendrite with E(X) closed and E(X) finite. Let f : X → X be a dendrite map with zero topological entropy having an uncountable omega limit set L := ω f (x) (such map exists by ([23],Theorem 2.7)). Denote by M = [L] the convex hull of L.

The aim of this paragraph is to prove the following proposition. Proposition 5.2. Let Assumption 5.1 be satisfied. Then there is an integer n ≥ 2 an a connected subset S of X such that:

(i) S, f (S), . . . , f n-1 (S) are pairwise disjoint, (ii) f n (S) = S, (iii) L ⊂ ∪ n-1 i=0 f i (S), (iv) ∀0 ≤ i ≤ n -1, f (L ∩ f i (S)) = L ∩ f i+1 (S).
Remark 5.3. In fact, (iv) is an immediate consequence of (i), (ii) and (iii).

Remark 5.4. If f : X → X is a tree map with zero topological entropy, then any infinite ω-limit set is uncountable. Lemma 5.5. Let assumption 5.1 be satisfied. Let Y be a (non degenerate) subdendrite of X such that E(Y ) ∩ E(X) = ∅, then Y is a tree and X\Y has finitely many connected components. Furthermore, there is a pairwise disjoint subdendrites D 1 , D 2 , . . . , D n in X such that X\Y ⊂ ∪ n i=1 D i ; n > 0 and for any 1 ≤ i ≤ n, D i ∩ Y is reduced to one point.

Proof. Suppose contrarily that X\Y has infinitely many connected components denoted by (C n ) n≥1 . For any n ≥ 1, let e n ∈ E(C n ) ∩ Y and a n ∈ E(C n )\{e n } ⊂ E(X). For any n ≥ 1, (e n , a n ] ⊂ C n so ((e n , a n ]) n≥1 is a pairwise disjoint connected subsets in X. By Lemma 2.5, lim n→+∞ diam((e n , a n ]) = 0 hence lim n→+∞ d(a n , e n ) = 0. Since E(X) is closed, we may assume that the sequence (a n ) n≥1 converges to a point a ∈ E(X) hence (e n ) n≥1 converges to a ∈ E(Y ). Since E(Y ) is closed then a ∈ E(Y ) ∩ E(X) , absurd. Let prove that Y is a tree. By Lemma 2.10, we have 

E(Y ) ⊂ E(X) ∩ E(Y ) then E(Y ) = ∅, since E(Y ) is closed then E(Y ) is
f p+i ([a, y]) so z ∈ f p+i ([a, y]) hence there is z -1 ∈ [a, y] such that f p+i (z -1 ) = z ∈ F a with z -1 = a. So z -1 ∈ (a, y] ∩ F a .
(2) If F a = {a}. We have F a ⊂ Y so a connected subset of M \Y is also a connected subset of M \F a , since L ⊂ M \Y and by Lemma 5.5, M \Y has finitely many connected components so the connected subsets of M \F a intersecting L are finite. If F a = {a}, since ord(a, M ) < +∞ then M \{a} has finitely many connected components, (exactly n := ord(a, M ) components), and L ⊂ M \{a}.

(3) Let 1 ≤ k ≤ n, since f (l k ) ⊂ f (C k ) and f (l k ) ⊂ f (L) = ∪ n i=1 l i so there is 1 ≤ j ≤ n such that f (l k ) ∩ l j = ∅ hence f (C k ) ∩ C j = ∅. Suppose that there is 1 ≤ i = j ≤ n such that f (C k ) ∩ C i = ∅ = f (C k ) ∩ C j . Let u ∈ f (C k ) ∩ C i , v ∈ f (C k ) ∩ C j , then the subset H := C i ∪ [u, v] ∪ C j is connected included in M since [u, v] ⊂ M . Since f (C k ) ∩ F a = ∅ for any 1 ≤ k ≤ n then H ∩ F a = ∅. By maximality of C i and C j we have H ⊂ C i and H ⊂ C j hence H = C i = C j , absurd. (4) Let 1 ≤ k ≤ n, for any i = σ(k), f (C k )∩C i = ∅ then f (l k )∩l i = ∅, since f (l k ) ⊂ L = ∪ n r=1 l r hence f (l k ) ⊂ l σ(k) . Suppose contrarily that f (l k ) l σ(k) , since f (L) = L then there is i = k such that f (l i ) ∩ l σ(k) = ∅ hence so σ(i) = σ(k). We obtain f (L) = ∪ n r=1 f (l r ) ⊂ ∪ n r=1 l σ(r) = ∪ n r=1;r =i l σ(r) L, absurd. Then f (l k ) = l σ(k) .
(5) Suppose that for some 1 ≤ i ≤ n, l i l i . Then there is j ∈ {1, 2, . . . , n}; j = i such that l i ∩ l j = ∅ hence C i ∩ C j = ∅. Since C i and C j are disjoint then by Lemma 2.3 there is z ∈ M such that C i ∩C j = {z}. Since C i ⊂ (C i ∪{z}) ⊂ C i then C i ∪{z} is connected, hence C i ∪{z}∪C j = C i ∪C j is connected disjoint with F a , this contradict the maximality of C i and C j . Then l i = l i i. e. any l i is closed in X hence in L. In the other hand, since l 1 , l 2 , . . . , l n are pairwise disjoint then l i = L\ ∪ n j=1;j =i l j is open relatively to L. We conclude that any l i is a clopen set relatively to L.

(6) Let prove that σ is n-cycle. Suppose contrarily that for some 1 ≤ s ≤ n, σ p (s) = s with 0 < p < n. The subset F := ∪ p-1 k=0 l σ k (s) is proper and clopen relatively to L. We have Proof. First, S is connected. Indeed, since s 1 is a subdendrite of X then it is so for f kn (s 1 ), ∀k ≥ 0. We have f n (s 1 ) ⊃ f n (l 1 ) = l σ n (1) = l 1 hence f n (s 1 ) ⊃ s 1 , so (f kn (s 1 )) k≥0 is an increasing sequence of connected subsets then S is connected.

f (F ) = ∪ p-1 k=0 f (l σ k (s) ) = ∪ p-1 k=0 l σ k+1 (s) = F . Let G = L\F a non empty closed subset in L, f (L\G) ∩ G = f (F ) ∩ G = F ∩ G = ∅.
(i) S, f (S), . . . , f n-1 (S) are pairwise disjoint. Indeed, since f

-1 (F a ) = F a and s 1 ∩ F a = ∅ then f i (s 1 ) ∩ F a = ∅, ∀i ≥ 0 hence f k (S) ∩ F a = ∅; ∀0 ≤ k ≤ n -1. Suppose that f i (S) ∩ f j (S) = ∅ for some 0 ≤ i = j ≤ n -1 then f i (S) ∪ f j (S) is connected. Let u ∈ l σ i (1) , v ∈ l σ j (1) , since f k (S) ⊃ l σ k (1) for any k ≥ 0 then [u, v] ⊂ (f i (S) ∪ f j (S)) ∩ M . The subset K := C σ i (1) ∪ [u, v] ∪ C σ j (1) is connected in M disjoint with F a , by maximality of C σ i (1) and C σ j (1) we obtain K ⊂ C σ i (1) and K ⊂ C σ j (1) hence C σ i (1) = C σ j (1) , absurd. (ii) f n (S) = ∪ +∞ k=0 f (k+1)n (s 1 ) = ∪ +∞ k=0 f nk (s 1 ) = S. (iii) Since l 1 ⊂ S then L = ∪ n-1 k=0 l σ k (1) ⊂ ∪ n-1 k=0 f k (S). (iv) L ∩ f k (S) = l σ k (1) for any 0 ≤ k ≤ n -1. Indeed, we have f k (S) ⊃ f k (l k ) = l σ k (1) ; ∀k ≥ 0 and since S, f (S), . . . , f n-1 (S) are pairwise disjoint then L ∩ f k (S) = l σ k (1) , so f (L ∩ f k (S)) = f (l σ k (1) ) = l σ k+1 (1) = L ∩ f k+1 (S).
This finish the proof of Case 1.

Case 2: M ∩ F ix(f ) = ∅.
In the following Lemma we will use the notations from [START_REF] Mai | R = P for maps of dendrites X with CardE(X) < c[END_REF]. Lemma 5.9. If M does not contains a fixed point then there is a fixed point

z ∈ X\M such that M ⊂ ψ -1 f (z). Proof. Let y ∈ M such that ψ f (y) = z ∈ F ix(f ). Suppose contrarily that M ψ -1 f (z) then M ∩ (X\ψ -1 f (z)) = ∅ since M ∩ ψ -1 f (z) = ∅ and M is connected then M ∩ ∂(ψ -1 f (z)) = ∅ but ∂(ψ -1 f (z)) ⊂ F ix(f ) hence M ∩F ix(f ) = ∅, absurd. Then M ⊂ ψ -1 f (z). It follow that ∀y ∈ M, ψ f (y) = z.
This finish the proof of the Lemma. Now, let z 0 := r M (z) where r M is the retraction map (See [START_REF] Nadler | Continuum Theory: An Introduction[END_REF]) and denote by F z 0 := ∪ +∞ n=0 f -n (z 0 ) ∩ M and Y 0 := [F z 0 ]. We remark that F z 0 ∩ L = ∅ (so ord(z 0 , M ) ≥ 2), F z 0 is non empty and any arc joining a point in M and f (z 0 ) contains z 0 .

We have an analogous results compared to Case 1.

Lemma 5.10. Let Assumption 5.1 be satisfied. Then we have the following properties: 

1) L ⊂ M \Y 0 , ( 
= L ∩ C k , (3) for any 1 ≤ k ≤ n, there is a unique j := σ(k) ∈ {1, 2, . . . , n} such that f (C k ) ∩ C j = ∅, (4) for any 1 ≤ k ≤ n, f (l k ) = l σ(k) , ( 
⊂ ∪ α 1 -1 i=0 f i (D 1 ). Set f 1 := f α 1 |D 1 : D 1 → D 1 , it is a dendrite map such that E(D 1 ) is countable closed and E(D 1 ) finite. Let t 1 = f p 1 (x) ∈ D 1 . Since ω f 1 (t 1
) is uncountable then by Proposition 5.2 there is a pairwise disjoint connected subsets S 2 , f 1 (S 2 ), . . . , f n 2 -1 1 (S 2 ); n 2 ≥ 2, f n 2 1 (S 2 ) = S 2 in D 1 such that ω f 1 (t 1 ) ⊂ ∪ n 2 -1 i=0 f i 1 (S 2 ). So for any 0 ≤ j ≤ n 1 -1, ω f n 1 (f j (t 1 )) ⊂ ∪ n 2 -1 i=0 f in 1 +j (S 2 ) ⊂ ∪ n 2 -1 i=0 f in 1 +j (D 2 ) where

D 2 = S 2 . Hence L = ω f (t 1 ) ⊂ ∪ n 1 -1 j=0 ∪ n 2 -1 i=0 f in 1 +j (D 2 ) = ∪ α 2 -1 i=0 f i (D 2
). The subdendrite D 2 has period α 2 := n 1 n 2 and ∪ n 2 -1 k=0 f iα 1 (D 2 ) ⊂ D 1 . Since card(f i (D 1 ) ∩ f j (D 1 )) ≤ 1 for any 0 ≤ i = j ≤ α 1 -1 then card(f i (D 2 ) ∩ f j (D 2 )) ≤ 1 for any 0 ≤ i = j ≤ α 2 -1. By induction we build a sequence of subdendrites (D k ) k≥1 satisfying the conditions of Theorem B.

6. On Li-Yorke pair implies chaos.

To prove Theorem C we need the following Lemma. Lemma 6.1. We use the notations from Theorem B. There is k > 0 and 0 ≤ i < α k such that f i (D k ) is a free arc.

Proof. Case 1. If X is a tree. The number N := b∈B(X) ord(b, X) is finite, let k > 0 such that α k > N . Then there is 0 ≤ i < α k such that f i (D k ) ∩ B(X) = ∅ then f i (D k ) is a free arc in X.

Case 2. If X is not a tree. Let d := card(E(X) ) ≥ 1. For any k ≥ 1 we have n k ≥ 2 so α k ≥ 2 k . Let k > 0 such that d < 2 k . Since card(f i (D k ) ∩ f j (D k )) ≤ 1 then there is 0 ≤ i < α k such that f i (D k ) ∩ E(X) = ∅. By Lemma 5.5, f i (D k ) is a tree. By Case 1, there is p ≥ k and 0 ≤ j < α p such that f j (D p ) is an arc included in f i (D k ). Since f j (D p ) ∩ E(X) = ∅ then the set f i (D p ) ∩ B(X) is finite. So there is q > p and 0 ≤ s < α q such that f s (D q ) is a free arc in X.

Proof of Theorem C. Let (x, y) be a Li Yorke pair for f such that L := ω f (x) is uncountable. Denote by I = f i (D k ) = [u, v] a free arc in X. There is n ≥ 0 such that x n ∈ I. Denote by d = α k , then g = f d |I : I → I is an interval map. Since (x, y) is a Li Yorke pair for f then (x n , y n ) is proximal for f d . So ω f d (x n ) ∩ ω f d (y n ) = ∅. We distinguish two cases: Case 1: O f d (y n ) ∩ I = ∅. Let k ≥ 0 such that f dk (y n ) ∈ I. So (f dk (x n ), f dk (y n )) ∈ I 2 is a Li Yorke pair for g : I → I, by [START_REF] Kuchta | Two-point scrambled set implies chaos[END_REF] g is chaotic hence f is chaotic. (2) is non empty contains a subdendrite Y with closed set of endpoints and E(Y ) (2) is reduced to one point. Proof. Claim. If F is a closed set such that F (2) is non empty then it contain a closed subset A such that A (2) is reduced to one point. Let e ∈ F (2) , there is a sequence of pairwise different elements (e n ) n≥0 in F converging to e. Let (ε n ) n≥0 a sequence of non negative reels such that the sequence of balls (B(e n , ε)) n≥0 are pairwise disjoint. For any n ≥ 0, since e n ∈ F then there is a sequence (e k n ) k≥0 in B(e n , ε n ) ∩ F converging to e n . Hence the set A = {e k n ; n, k ≥ 0} ∪ {e n ; n ≥ 0} ∪ {e} satisfy the condition of the Claim. Now, let A be a closed subset in E(X) such that A (2) 

Lemma 2 . 5 .

 25 ([18], Lemma 2.3) Let (C n ) n≥1 be a sequence of pairwise disjoint connected subsets of a dendrite (X, d). Then we have lim n→+∞ diam(C n ) = 0. Lemma 2.6. ([3], Theorem 3.3) If a dendrite has a closed set of endpoints then any point of it has finite order. Theorem 2.7. ([3], Theorem 3.2) Every subcontinuum of a dendrite with a closed set of endpoints is a dendrite with a closed set of endpoints. Proposition 2.8. ([3], Corollary 3
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 31 ([9], Proposition 4.4) Let X be a dendrite with E(X) closed and E(X) = E(X). Then for any e ∈ E(X)\E(X) , there is b ∈ X, b = e such that [e, b] is a neighborhood of e and [e, b] ∩ B(X) = ∅.

  so [a, a -1 ] and [c, a -1 ] form an arc horseshoe for f , absurd. This finish the proof of Claim 2. Now, we have ω g (x) ⊂ [a, c]. Denote by [a, d] = [ω g (x)

Figure 1 .

 1 Figure 1. Dendrite with E(X) is reduced to one point.

Figure 2 .

 2 Figure 2. Dendrite with a non closed countable set of endpoints.

4. 3 .

 3 Example 3. 

  finite. Hence Y is a tree. Now, denote byC 1 , C 2 , . . . , C k ; k > 0 the connected components of X\Y . For any 1 ≤ n ≤ k; denote by {e n } = Y ∩ C n . For any n, m ∈ {1, 2, . . . , k}, n ∼ m ⇔ e n = e m . For any 1 ≤ n ≤ k, let D n := ∪ m∼n C m .Then we obtain a pairwise disjoint subdendrites D 1 , D 2 , . . . , D s ; s ≥ 1 satisfying the conditions of the Lemma.Proof of Proposition 5.2. We distinguish two cases.Case 1: M ∩ F ix(f ) = ∅. Let a ∈ F ix(f )∩M . Denote by F a = ∪ +∞ n=0 f -n (a)∩M and Y := [F a ]. We remark that by Theorem A, a ∈ M \L ⊂ M \E(M ), hence 2 ≤ ord(a, M ).

Lemma 5 . 8 .

 58 This contradict Lemma 2.15. Hence ∀s ∈ {1, 2, . . . , n}, O σ (s) = {1, 2, . . . , n} then σ is an n-cycle. Denote by s 1 := [l 1 ] ⊂ C 1 . The subset S := ∪ +∞ k=0 f kn (s 1 ) satisfy conditions (i) -(iv) of the Proposition 5.2.

5 ) 5 . 1 .

 551 for any 1 ≤ k ≤ n, l k is a clopen set relatively to L, Proof of Theorem B. Let S be a connected subset of X satisfying conditions (i) -(iii) of proposition 5.2. Denote by α 1 := n 1 and D 1 = S. Then we have L

Figure 3 .

 3 Figure 3. Dendrite with E(X) is infinite

  is one point. By Lemma 2.4, Y := [A] is a subdendrite of X with E(Y ) = A. By Lemma 7.1, there is a non chaotic dendrite map g : Y → Y having a Li-Yorke pair (x, y) ∈ Y 2 . Let r Y : X → Y be the retraction map and f= g • r Y : X → Y ⊂ X.Then (x, y) is also a Li Yorke pair for f but f is not Li-Yorke chaotic.

  M \Y 0 has finitely many connected components. The connected components of M \F z 0 intersecting L are denoted by C 1 , C 2 , . . . , C n where n > 1,we denote by l k

Lemma 5.6. Let Assumption 5.1 be satisfied. Then L ⊂ M \Y .

Proof. Claim 1. For any z ∈ F a , we have [a, z] ∩ L = ∅.

Suppose contrary that [a, z] ∩ L = ∅ for some z ∈ f -p (a) ∩ M ; p ≥ 1. Let y be such a point in the intersection above. Denote by I = [a, y], J = [y, z] then we have f p (I)∩f p (J) ⊃ [a, f p (y)]. By Lemma 3.3, there is i, j ≥ 0 such that [a, f p+j (y)] ⊃ [a, f i (x)] so we have f p+j (I) ∩ f p+j (J) ⊃ [a, f i (x)]. Let w ∈ L such that z ∈ (y, w) then there is r ≥ 0 such that [a, z] ⊂ [a, f i+r (x)]. Then f p+j+r (I) ∩ f p+j+r (J) ⊃ [a, f i+r (x)] ⊃ [a, z] = I ∪ J. Then I, J form an arc horseshoe for f , so h(f ) > 0, absurd. This finish the proof Claim (1).

Suppose that there is y ∈ L ∩ F a . First, we will prove that f n (y) / ∈ F a for some n ≥ 0. Suppose contrary that O f (y) ⊂ F a , then we have ω f (y) ⊂ F a , since ω f (y) ⊂ L then it contain no periodic point, so ω f (y) is uncountable. By Lemma 3.2, there is an open free arc

Since X\F a is a non empty open subset in X and since f n 0 is continuous, there is an open subset U of X containing y such that f n 0 (U ) ⊂ X\F a , let t ∈ F a ∩ U , then f n 0 (t) ∈ f n 0 (U ) ⊂ X\F a , but f n 0 (t) ∈ F a , absurd. This finish the proof of Claim [START_REF] Alseda | Entropy and periodic points for transitive maps[END_REF].

By Claims (1) and (2), we have for any z ∈ F a , [a, z] ∩ L = ∅, so we have

5, Y is a tree and M \Y has finitely many connected components. Lemma 5.7. Let Assumption 5.1 be satisfied. In [START_REF] Adler | Topological entropy[END_REF] we suppose that

M \F a has finitely many connected components intersecting L, we denote it by C 1 , C 2 , . . . , C n ; n ≥ 2 and for any k ∈ {1, 2, . . . , n}, we denote by

Proof.

(1) Claim 1. There is n 0 ≥ 0 such that ∀n ≥ n 0 we have

Hence we prove by induction that for any n ≥ 0, f n (I) ⊃ [z 0 , f n (y)]. As the proof of Lemma 5.6, Claim 1, we show easily that I, J form an arc horseshoe hence h(f ) > 0, a contradiction.

Suppose contrarily that there is y ∈ L ∩ F z 0 . Let (z i ) i>0 be a sequence in F z 0 converging to y and f n i (z i ) = z 0 ; ∀i > 0. Let prove that there is a neighborhood V of y in X and k ≥ 0 such that f k (V ) ⊂ I where I is a free open arc in X such that [z 0 , s] ∩ L = ∅ for some s ∈ F z 0 . Indeed, since ω f (y) is uncountable then there is a free open arc I in X such that I ⊂ M and ω f (y) ∩ I is uncountable. Let y 1 , y 2 two distincts points in the intersection such that y 1 ∈ (z 0 , y 2 ) and I 1 , I 2 two open disjoint arc in I containing y 1 , y 2 respectively. Let k, p > 0 such that f k (y) ∈ I 1 , f p (y) ∈ I 2 . By continuity of f p there is an open set, V , in X containing y such that f p (V ) ⊂ I 2 . If the sequence (n i ) i>0 is bounded then by taking a subsequence we may assume that n i =: m for any i > 0. So we have f m (z i ) = z 0 , ∀i > 0, since z i → i→+∞ y then f m (y) = z 0 ∈ L, absurd. If the sequence (n i ) i>0 is unbounded, we may assume that it is non decreasing and

The proof of (3) -(7) are similar as in Lemmas 5.7 and 5.8.

) contains a periodic point, say u. Then (x n , u) ∈ I 2 is a Li Yorke pair for g, by [START_REF] Kuchta | Two-point scrambled set implies chaos[END_REF] g is chaotic, hence f is chaotic.

Example

Example 4. (Due to I. Naghmouchi) We will construct a dendrite X with E(X) is countable closed set such that (E(X)) (2) is reduced to one point and a map f on X having a Li-Yorke pair but not Li-Yorke chaotic.

Proof. Construction of the dendrite X.

Denote by D

and X = I ∪ (∪ n≥1 X n ) where for any n ≥ 1,

We can see that the set X is a dendrite such that E

Construction of the map f . (See Figure 3) The map f is defined as follows:

• f (a 1 ) = f (a 0 ) = a 0 and f (b We see that f is a dendrite map having a Li-Yorke pair (take for example (a 0 , a 1 1 ) ) but f is not not Li-Yorke chaotic. Indeed, if (x, y) ∈ X × X is a Li yorke pair then (x, y) ∈ E(X) 2 .