Julien Sabin 
email: julien.sabin@math.u-psud.fr
  
LITTLEWOOD-PALEY DECOMPOSITION OF OPERATOR DENSITIES AND APPLICATION TO A NEW PROOF OF THE LIEB-THIRRING INEQUALITY

come    

Littlewood-Paley decomposition of operator densities and application to a new proof of the Lieb-Thirring inequality

Introduction

Let d 1 and ψ a smooth function on R d , supported in R d \ {0}, satisfying

1 = j∈Z ψ(2 -j ξ), ∀ξ ∈ R d \ {0}. (1) 
An example of such a function is given in [START_REF] Muscalu | Classical and multilinear harmonic analysis[END_REF]Lemma 8.1]. In particular, the function ψ can be chosen to be radial and non-negative. We define the Littlewood-Paley multiplier localizing on frequencies |ξ| ∼ 2 j by

P j u := F -1 (ξ → ψ j (ξ)F u(ξ)) , ψ j := ψ(2 -j •), j ∈ Z, u ∈ S ′ (R d ),
where F denotes the Fourier transform. The Littlewood-Paley theorem [START_REF] Muscalu | Classical and multilinear harmonic analysis[END_REF]Thm. 8.3] states that for any 1 < p < ∞, there exists C > 0 such that for any u ∈ L p (R d ) one has

1 C ||u|| L p j∈Z |P j u| 2 1/2 L p C ||u|| L p . (2) 
This harmonic analysis result has countless applications, from functional inequalities to nonlinear PDEs. It allows to obtain information about L p -properties of a function u from the frequency-localized pieces P j u. For instance, it leads to a very short proof of the Sobolev embedding H s (R d ) ֒→ L p (R d ) for p = 2d/(d -2s), 0 < s < d/2, as we recall in Section 2.1. It was also used, for instance, to prove Strichartz-type inequalities [START_REF] Keel | Endpoint Strichartz estimates[END_REF][START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]. We refer to [START_REF] Frazier | Littlewood-Paley theory and the study of function spaces[END_REF] for more general applications of Littlewood-Paley theory. This note is devoted to a generalization of (2) to densities of operators. When γ 0 is a finite-rank operator on L 2 (R d ), its density is defined as

ρ γ (x) := γ(x, x), ∀x ∈ R d ,
where γ(•, •) denotes the integral kernel of γ. We prove that for any 1/2 < p < ∞, there exists C > 0 such that for any finite-rank γ 0 with

ρ γ ∈ L p (R d ) we have 1 C ||ρ γ || L p (R d ) j∈Z ρ P j γP j L p (R d ) C ||ρ γ || L p (R d ) . (3) 
When γ is a rank-one operator, this last inequality is equivalent to the usual Littlewood-Paley estimates [START_REF]On the Hartree-Fock time-dependent problem[END_REF]. Indeed, if u with ||u|| L 2 = 1 belongs to the range of γ, then ρ γ = |u| 2 . The motivation to generalize the Littlewood-Paley decomposition to operator densities comes from many-body quantum mechanics. Indeed, a simple way to describe a system of N fermions in R d is via an orthogonal projection γ on L 2 (R d ) of rank N. The quantity ρ γ then describes the spatial density of the system. Variational or time-dependent models depending on γ then typically include interactions between the particles via non-linear functionals of ρ γ , like in Hartree-Fock models [START_REF] Lieb | The Hartree-Fock theory for Coulomb systems[END_REF][START_REF] Bove | An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction[END_REF][START_REF]On the Hartree-Fock time-dependent problem[END_REF][START_REF] Chadam | The time-dependent Hartree-Fock equations with Coulomb two-body interaction[END_REF]. As a consequence, L p -properties of ρ γ are often needed to control these interactions. When γ is a rank-one operator, these properties can be derived via Littlewood-Paley estimates (we typically think of Sobolev-type or Strichartz-type estimates). The estimate (3) allows to treat the rank N case, and we illustrate this on the concrete example of the Lieb-Thirring inequality, which is a rank N generalization of the Sobolev inequality.

In Section 1 we prove the inequality (3). In Section 2 we apply it to give a new proof of the Lieb-Thirring inequality.

Littlewood-Paley for densities

In this section we prove the generalization of the Littlewood-Paley theorem to densities of operators. We will see that the proof is a simple adaptation of the proof of the usual Littlewood-Paley theorem. Thus, let us first recall briefly the proof of (2). It is usually done via Khinchine's inequality [START_REF] Muscalu | Classical and multilinear harmonic analysis[END_REF]Lemma 5.5], see the proof of Theorem 8.3 in [START_REF] Muscalu | Classical and multilinear harmonic analysis[END_REF]: if one denotes by (r j ) a sequence of independent random variables taking values in {±1} and satisfying P(r j = ±1) = 1/2, one has

1 C j |a j | 2 p/2 E j a j r j p C j |a j | 2 p/2
, for any set of coefficients (a j ) ⊂ C, for some C > 0, and for any 1 p < ∞. From this one deduces that

j |P j u| 2 1/2 p L p E R d j r j P j u(x) p dx.
The Fourier multiplier by the function ξ → j r j ψ j (ξ) is bounded from L p (R d ) to L p (R d ) for any 1 < p < ∞, with a bound independent of the realization of the (r j ). Indeed, one has to notice that for any given ξ ∈ R d , there are only a finite number of non-zero terms in the sum j r j ψ j (ξ) (and this number only depends on ψ). The Mikhlin multiplier theorem [START_REF] Muscalu | Classical and multilinear harmonic analysis[END_REF]Thm. 8.2] shows the boundedness of the Fourier multiplier. We deduce from all this the inequality

E R d j r j P j u(x) p dx E R d |u(x)| p dx = ||u|| p L p .
The reverse inequality is done by a duality argument where the condition (1) appears: we use the identity

R d f g dx = j R d P j f P j g dx,
where P j is another sequence of Littlewood-Paley multipliers such that P j P j = P j (which may be built from a ψ which is identically 1 on the support of ψ). The fact that we cannot take P j = P j is related to the deep fact that we cannot choose P j to be a projection (that is, we cannot take

ψ j = 1(2 j • < 2 j+1 )); indeed such a P j is not bounded on L p (R d ) (except for d = 1 or p = 2
) by Fefferman's famous result [START_REF] Fefferman | The multiplier problem for the ball[END_REF].

The main result of this section is the following lemma.

Lemma 1. For any 1/2 < p < ∞, there exists C > 0 such that for any N 1, for any

(λ k ) N k=1 ⊂ R + and any functions (u k ) N k=1 in L 2p (R d ) we have 1 C k λ k |u k | 2 L p j,k λ k |P j u k | 2 L p C k λ k |u k | 2 L p . ( 4 
)
Lemma 1 implies the Littlewood-Paley decomposition (3) for densities using the spectral decomposition of γ. We first need a version of Khinchine's inequality for tensor products, which is proved for instance in [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF]Appendix D]. We however include a proof here for completeness.

Lemma 2. Let (a j,k ) ⊂ C a sequence of coefficients and (r j ) a sequence of independent random variables such that P(r j = ±1) = 1/2. Then, we have

j,k |a j,k | 2 p/2 E j,k a j,k r j r k p ,
for all 1 p < ∞, where the implicit constant is independent of (a j,k ).

Remark 3. The reverse inequality also holds; we however do not need it here.

Remark 4. This inequality does not follow from the Khinchine inequality from abstract arguments because the sequence (r j r k ) is not independent anymore: knowing r 1 r 2 and r 1 r 3 implies that we know r 2 r 3 as well.

Proof of Lemma 2. We only prove it for 1 p 2, which is sufficient since E|g| p (E|g| 2 ) p/2 for p 2. We first apply Khinchine's inequality with respect to the random parameter associated to (r k ):

E j,k a j,k r j r k p E 1   k j a j,k r j 2   p/2
, where E 1 denotes the expectation with respect to the random parameter associated to (r j ). Since p/2 1, we may apply the reverse Minkowski inequality1 to infer that

E 1   k j a j,k r j 2   p/2   k E 1 j a j,k r j p 2/p   p/2
.

Using a second time Khinchine's inequality leads to

  k E 1 j a j,k r j p 2/p   p/2 j,k |a jk | 2 p/2
.

From this tensorized Khinchine inequality, we deduce one side of the desired inequality.

Lemma 5. Let (λ k ) ⊂ R + a finite sequence of coefficients and (u k ) a finite sequence in L 2p (R d ). Then, we have

j,k λ k |P j u k | 2 L p k λ k |u k | 2 L p , (5) 
for all 1/2 < p < ∞, where the implicit constant is independent of (λ k ), (u k ).

Proof. By Lemma 2,

j,k λ k |P j u k | 2 p L p E R d j,k λ 1/2 k r j r k P j u k (x) 2p dx.
By the boundedness of the Fourier multiplier by ξ → j r j ψ j (ξ) on L 2p , we have

E R d j,k λ 1/2 k r j r k P j u k (x) 2p dx E R d k λ 1/2 k r k u k (x) 2p dx.
Applying again Khinchine's inequality, we have

R d E k λ 1/2 k r k u k (x) 2p dx R d k λ k |u k (x)| 2 p dx.
The other side of the inequality uses Lemma 5.

Lemma 6. Let (λ k ) ⊂ R + a finite sequence of coefficients and (u k ) a finite set of functions in L 2p (R d ). Then, we have

k λ k |u k | 2 L p j,k λ k |P j u k | 2 L p , (6) 
for all 1/2 < p < ∞, where the implicit constant is independent of (λ k ), (u k ).

Remark 7. The right side of ( 6) is well-defined due to Lemma 5.

Proof. For any V 0, we have

R d k λ k |u k (x)| 2 V (x) dx = k λ k R d u k (x)V (x)u k (x) dx = j,k λ k R d P j u k (x) P j V u k (x) dx,
where the sequence P j was defined earlier. By Hölder's inequality,

j,k λ k R d P j u k (x) P j V u k (x) dx R d j,k λ k |P j u k (x)| 2 1/2 j,k λ k | P j V u k (x)| 2 1/2 j,k λ k |P j u k (x)| 2 1/2 L p j,k λ k | P j V u k (x)| 2 1/2 L p/(2p-1)
.

By Lemma 5, using that p/(2p -1) > 1/2, we have

j,k λ | P j V u k (x)| 2 L p/(2p-1) V 2 k λ k |u k | 2 L p/(2p-1)
, which leads to the desired result by choosing

V = ( k λ k |u k | 2 ) p-1 .

Application: Lieb-Thirring inequalities

In this section, we explain how to use the Littlewood-Paley decomposition (3) to provide a simple proof of the Lieb-Thirring inequality. We first compare the Littlewood-Paley decompositions (2) and (3), and argue why they cannot be used in the same way. 

||u|| L 2+4/d ||u|| 2 d+2 L 2 ||∇u|| d d+2 L 2 , ∀u ∈ H 1 (R d ). ( 7 
)
This last inequality can be proved very easily using the usual Littlewood-Paley decomposition [START_REF]On the Hartree-Fock time-dependent problem[END_REF]. Indeed, by Hölder's inequality we have

||P j u|| L 2+4/d ||P j u|| d d+2 L 2 ||P j u|| 2 d+2 L ∞ ||P j u|| d d+2 L 2 ||F (P j u)|| 2 d+2 L 1 2 d d+2 j ||P j u|| L 2 ||P j u|| 2 d+2 L 2 ||∇P j u|| d d+2 L 2 ,
meaning that the Gagliardo-Nirenberg-Sobolev inequality is immediate for frequency-localized functions. To get it for any function, we use the Littlewood-Paley decomposition (2) and obtain

||u|| 2 L 2+4/d j ||P j u|| 2 L 2+4/d j ||P j u|| 4 d+2 L 2 ||∇P j u|| 2d d+2 L 2 j ||P j u|| 2 L 2 2 d+2 j ||∇P j u|| 2 L 2 d d+2 ||u|| 4 d+2 L 2 ||∇u|| 2d d+2 L 2 .
We see here the power of the Littlewood-Paley decomposition: it allows to deduce functional inequalities from their version for frequency-localized functions. This has been used in several contexts, for instance concerning Strichartz inequalities [START_REF] Keel | Endpoint Strichartz estimates[END_REF][START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]. In particular, notice that we have used something much weaker than the Littlewood-Paley decomposition, namely the inequality

||u|| 2 L p j ||P j u|| 2 L p ,
which follows from (2) by a triangle inequality. We now explain why the same strategy does not work in the context of the Lieb-Thirring inequality. This inequality reads Tr(-∆)γ

R d ρ γ (x) 1+ 2 d dx,
for any finite-rank 0 γ 1. To see that it is indeed a generalization of the Gagliardo-Nirenberg-Sobolev inequality, notice that it is equivalent to the inequality andany N 1. The usual Gagliardo-Nirenberg-Sobolev inequality thus corresponds to the particular case N = 1 of the Lieb-Thirring inequality. However, the Lieb-Thirring inequality does not follow from the Gagliardo-Nirenberg-Sobolev and the triangle inequalities, they only imply that

R d N k=1 λ k |u k (x)| 2 1+ 2 d dx N k=1 λ k R d |∇u k (x)| 2 dx, for any (λ k ) ⊂ R + , (u k ) ⊂ H 1 (R d ) orthonormal in L 2 (R d ),
R d N k=1 λ k |u k (x)| 2 1+ 2 d dx N k=1 λ k 2 d N k=1 λ k R d |∇u k (x)| 2 dx,
which is weaker than the Lieb-Thirring inequality, especially for large N. Let us notice that Frank, Lieb, and Seiringer have proved in [START_REF] Frank | Equivalence of Sobolev inequalities and Lieb-Thirring inequalities[END_REF] an equivalence between the Gagliardo-Nirenberg-Sobolev and (the dual version of) the Lieb-Thirring inequality.

Again, for frequency-localized γ, this inequality is elementary: the constraint 0 γ 1 implies that 0 P j γP j P 2 j and hence 0 ρ P j γP j (x) 2 dj for all x ∈ R d . As a consequence,

ρ P j γP j L 1+2/d ρ P j γP j d d+2 L 1 ρ P j γP j 2 d+2 L ∞ 2 2d d+2 j (Tr P j γP j ) d d+2 (Tr(-∆)P j γP j ) d d+2 ,
which is exactly the Lieb-Thirring inequality. Here, we used the fact that ρ γ = Tr γ. Using the same idea as in the proof of the Gagliardo-Nirenberg-Sobolev inequality, we find that for any γ, is of course wrong because d/(d+2) < 1. We thus see the difference between the applications of the Littlewood-Paley decompositions for functions or for densities of operators: one cannot directly resum the frequency-localized inequalities in the context of operators. Of course, the reason behind it is the use of the rough triangle inequality ||ρ γ || L p j ρ P j γP j L p , which one should not do for operators. We now explain how to go beyond this difficulty.

2.2.

Proof of the Lieb-Thirring inequality. Let us prove the Lieb-Thirring inequality using the Littlewood-Paley decomposition for densities. Hence, let 0 γ 1 an operator on L 2 (R d ), which we may assume to be of finite rank. Since 1 = j P j with P j 0, we deduce that 1 j P 2 j . We thus have

Tr(-∆)γ j Tr √ γP j (-∆)P j √ γ j 2 2j Tr √ γP 2 j √ γ = R d j 2 2j ρ P j γP j (x) dx. (8) 
Lemma 8. Let (α j ) j∈Z a sequence of real numbers satisfying 0 α j 2 jd for all j. Then, we have the inequality

j α j 1+ 2 d j 2 2j α j .
Let us first notice that the lemma implies the Lieb-Thirring inequality: indeed, since 0 γ 1 we deduce that 0 P j γP j P 2 j and hence 0 ρ P j γP j (x) 2 jd for all x ∈ R d . Hence, from the Lemma and (8) we deduce that Tr(-∆)γ

R d j ρ P j γP j (x) 1+ 2 d dx R d ρ γ (x) 1+ 2 d dx,
where in the last inequality we used the Littlewood-Paley theorem for densities. Let us now prove the lemma.

Proof of Lemma 8. We split the following sum as

j α j = j J α j + j>J α j .
We estimate the first sum using that 0 α j 2 jd :

j J α j 2 dJ ,
and the second sum is estimated in the following way:

j>J α j 2 -2J j 2 2j α j .
We thus find that for all J,

j α j 2 dJ + 2 -2J j 2 2j α j .
Optimizing over J leads to the result.

Of course, the same strategy of proof allows to obtain more general inequalities of the type

Tr(-∆) b γ R d ρ γ (x) 1+ 2b d+2a dx,
for all 0 γ (-∆) a , with b 0 and a > -d/2. In particular, the case d 3, a = -1, b = 1 is due to Rumin [START_REF] Rumin | Spectral density and Sobolev inequalities for pure and mixed states[END_REF] and was shown to be equivalent to the CLR inequality by Frank [START_REF] Frank | Cwikel's theorem and the CLR inequality[END_REF]. Our method is similar to the one used by Rumin, except that he uses a continuous decomposition -∆ = ∞ 0 1(-∆ > τ ) dτ instead of a dyadic decomposition coming from Littlewood-Paley. Rumin's method is actually far more powerful when dealing with these kind of inequalities, and was shown to work when replacing -∆ by general a(-i∇) by Frank [START_REF] Frank | Cwikel's theorem and the CLR inequality[END_REF]. The dyadic decomposition seems useless in these more general cases since it does not distinguish the high/low values of a. We expect that the Littlewood-Paley decomposition might be useful when one wants to exploit the "almost orthogonality" between the blocks (P j ): we have P j P k = 0, except for finite number of blocks, a phenomenon which does not appear in Rumin's decomposition. This orthogonality might be useful when dealing with higher Schatten spaces S α compared to the trace-class S 1 which appears for instance in the Lieb-Thirring inequality. We hope to find such applications in the future.

2. 1 .

 1 Comparison of the two Littlewood-Paley decompositions. The Lieb-Thirring inequality generalizes to densities of operators the Gagliardo-Nirenberg-Sobolev inequality

  ||ρ γ || L 1+2/d j ρ P j γP j L 1+2/d j (Tr(-∆)P j γP j ) d d+2 ,which we cannot sum. Indeed, the inequality j (Tr(-∆)P j γP j ) d d+2 j Tr(-∆)P j γP j d d+2 ∼ (Tr(-∆)γ) d d+2

Stating that || k f k || L p/2 k ||f k || L p/2 for any f k 0.
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