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Abstract

Recent studies have shown the potential of task-based programming paradigms for
implementing robust, scalable sparse direct solvers for modern computing platforms.
Yet, designing task flows that efficiently exploit heterogeneous architectures remains
highly challenging. In this paper we first tackle the issue of data partitioning using
a method suited for heterogeneous platforms. On the one hand, we design task of
sufficiently large granularity to obtain a good acceleration factor on GPU. On the other
hand, we limit that size in order to both fit the GPU memory constraints and generate
enough parallelism in the task graph. Secondly we handle the task scheduling with a
strategy capable of taking into account workload and architecture heterogeneity at a
reduced cost. Finally we propose an original evaluation of the performance obtained
in our solver on a test set of matrices. We show that the proposed approach allows
for processing extremely large input problems on GPU-accelerated platforms and that
the overall performance is competitive with equivalent state of the art solvers designed
and optimized for GPU-only use.

1 Introduction

Sparse direct methods are among the most widely used computational kernels in scientific
computing. These algorithms are characterized by a heavy and heterogeneous workload and
by an irregular memory consumption. At the same time, modern supercomputing platforms
have deeply hierarchical architectures featuring multiple processing units and memories
with very heterogeneous capabilities. As a result, the High Performance Computing (HPC)
community has devoted a significant effort in delivering highly optimized sparse direct solvers
for modern platforms and, more precisely, numerous works have recently appeared that
address the porting of sparse, direct solvers to GPU-accelerated architectures. As for most
numerical kernels whose performance is critical, the main trend has consisted in writing such
codes at a relatively low level in order to tightly cope with the hardware architecture in a
variety of cases including single node with one or more GPUs [1, 2, 3, 4, 5] or the distributed
memory case with multiple nodes, each equipped with GPU boards [6]. In all of these related
works the scheduling and mapping of operations is statically defined according to techniques
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that are tightly coupled with the factorization method and data transfers between the host
and the device memories are manually handled by the developers. The ever increasing
versatility and complexity of modern supercomputers has pushed the community to consider
writing numerical algorithms at a higher level of abstraction in the past few years. In this
approach, the workload is commonly expressed as a Directed Acyclic Graph (DAG) of tasks;
an underlying “runtime system” is in charge of concurrently executing these tasks in an order
that respects their dependencies as well as of managing the associate data in a transparent
and consistent way. This method was first assessed with success for dense linear algebra
algorithms [7, 8, 9, 10]. These positive results combined with the progress of the runtime
community in delivering reliable and effective task-based runtime systems [11, 12, 13, 14]
motivated the application of the approach to more irregular algorithms such as sparse direct
methods [15, 16, 17].

The main strengths of task-based programming is that it allows for high productivity
while ensuring high performance across architectures. In previous studies [17, 18], we have
shown the effectiveness of task-based parallelization based on the Sequential Task Flow
(STF) model to design a high performance sparse multifrontal QR factorization for multicore
architectures. That STF code is used as a baseline (see Section 2.1) for the present study.
We show that a twofold extension allows for achieving a very high performance when the
multicore processor is enhanced with a GPU accelerator:

• we propose a new (hierarchical) partitioning strategy of the frontal matrices to cope
with the hardware heterogeneity (see Section 3);

• we design a scheduling policy that takes into account both the properties of the mul-
tifrontal method and the heterogeneity of the machine (see Section 4).

The force of our approach is that the algorithmic design and its implementation only undergo
minor modifications with respect to [18], allowing for focusing on what matters most, i.e.
data partitioning scheme and scheduling algorithm.

Another strength of task-based programming is that it allows for clearly separating
the concern of optimizing individual tasks and their global orchestration. Thanks to this
property, we are able to propose an original evaluation of the performance obtained by
our solver (see Section 5). We complete this performance evaluation by comparing our
task-based code with the state-of-the-art SparseSuite multifrontal QR [19] solver that was
designed and optimized for a GPU-only use [1] (besides one extra core used for driving the
GPU computation) using a more traditional, low level approach. The results show that task-
based programming approaches are extremely competitive and that the overhead due to the
usage of third party software (a runtime system) is negligible, especially in comparison to
the potential benefits in designing advanced strategies for data partitioning and scheduling
provided by modern runtime systems such as StarPU (see Section 2.2).

Our work share commonalities with the work by [15] where, however, tasks are statically
assigned to either CPUs or GPUs depending exclusively on their granularity and the number
of tasks that can be mapped on the GPU is limited by the amount of memory available
therein. As discussed below, the methods we propose, addresses these problems.

The rest of the paper is organized as follows. We first present the baseline task-based
multifrontal QR factorization and StarPU runtime sysem we rely on in Section 2. We then
propose partitioning (Section 3) and scheduling (Section 3) strategies for the multifrontal
QR factorization on heterogeneous architectures before presenting a performance evaluation
(Section 5) and concluding (Section 6).
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2 Background

2.1 Baseline STF multifrontal QR factorization

The multifrontal method, introduced by Duff and Reid [20] as a method for the factorization
of sparse, symmetric linear systems, can be adapted to the QR factorization of a sparse
matrix thanks to the fact that the R factor of a matrix A and the Cholesky factor of the
normal equation matrix ATA share the same structure under the hypothesis that the matrix
A is Strong Hall. As in the Cholesky case, the multifrontal QR factorization is based on the
concept of elimination tree introduced by Schreiber [21] expressing the dependencies between
elimination of unknowns. Each vertex f of the tree is associated with kf unknowns of A.
The coefficients of the corresponding kf columns and all the other coefficients affected by
their elimination are assembled together into a relatively small dense matrix, called frontal
matrix or, simply, front, associated with the tree node. An edge of the tree represents a
dependency between such fronts. The elimination tree is thus a topological order for the
elimination of the unknowns; a front can only be eliminated after its children. We refer
to [22, 19, 23] for further details on high performance implementation of multifrontal QR
methods.

1 forall fronts f in topological order
! allocate and initialize front

3 call activate(f)

5 forall children c of f
forall blockcolumns j=1...n in c

7 ! assemble column j of c into f
call assemble(c(j), f)

9 end do
! Deactivate child

11 call deactivate(c)
end do

13

forall panels p=1...n in f
15 ! panel reduction of column p

call panel(f(p))
17 forall blockcolumns u=p+1...n in f

! update of column u with panel p
19 call update(f(p), f(u))

end do
21 end do

end do
23

1 forall fronts f in topological order
! allocate and initialize front

3 call submit(activate , f:RW, children(f):R)

5 forall children c of f
forall blockcolumns j=1...n in c

7 ! assemble column j of c into f
call submit(assemble , c(j):R, f:RW)

9 end do
! Deactivate child

11 call submit(deactivate , c:RW)
end do

13

forall panels p=1...n in f
15 ! panel reduction of column p

call submit(panel , f(p):RW)
17 forall blockcolumns u=p+1...n in f

! update of column u with panel p
19 call submit(update , f(p):R, f(u):RW)

end do
21 end do

end do
23 call wait_tasks_completion ()

Figure 1: Sequential version (left) and corresponding STF version from [17] (right) of the
multifrontal QR factorization with 1D partitioning of frontal matrices.

The multifrontal QR factorization then consists in a tree traversal following a topolog-
ical order (see line 1 in Figure 1(left)) for eliminating the fronts. First, the activation
(line 3) allocates and initializes the front data structure. The front can then be assembled
(lines 5-12) by stacking the matrix rows associated with the kf unknowns with uneliminated
rows resulting from the processing of child nodes. Once assembled, the kf unknowns are
eliminated through a complete QR factorization of the front (lines 14-21). This produces
kf rows of the global R factor, a number of Householder reflectors that implicitly represent
the global Q factor and a contribution block formed by the remaining rows. These rows
will be assembled into the parent front together with the contribution blocks from all the
sibling fronts. In our previous work [18], we have chosen to apply a 1D, block-column par-
titioning to frontal matrices; we keep using this partitioning scheme here consistently with
state-of-the-art GPU dense algorithms such as the one available in the MAGMA library [9].

One distinctive feature of the multifrontal QR factorization is that frontal matrices are
not entirely full but, prior to their factorization, can be permuted into a staircase structure
that allows for moving many zero coefficients in the bottom-left corner of the front and
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for ignoring them in the subsequent computation. Although this allows for a considerable
saving in the number of operations, it make the workload extremely irregular and the cost
of kernels extremely hard to predict even in the case where a regular partitioning is applied
to fronts.

The multifrontal method provides two distinct sources of concurrency: tree and node
parallelism. The first one stems from the fact that fronts in separate branches are inde-
pendent and can thus be processed concurrently; the second one from the fact that, if a
front is large enough, multiple processes can be used to assemble and factorize it. Whereas
the classical approach to the parallelization of the multifrontal QR factorization [22, 19]
consists in exploiting separately these two distinct sources of concurrency, our task-based
parallelization allows for seamlessly handling both sources and has the further advantage
that it permits to pipeline the processing of a front with those of its children, which pro-
vides an additional source of concurrency. The higher performance and scalability of this
approach is assessed in our previous work [17, 18, 23].

Different paradigms exist for programming such a DAG of tasks. Among them, the
STF model is becoming increasingly popular because of the high productivity it allows
for the programmer. Indeed, this paradigm simply consists in submitting a sequence of
tasks through a non blocking function call that delegates the execution of the task to the
runtime system. Upon submission, the runtime system adds the task to the current DAG
along with its dependencies which are automatically computed through data dependency
analysis. The actual execution of the task is then postponed to the moment when its
dependencies are satisfied. This paradigm is also sometimes referred to as superscalar since
it mimics the functioning of superscalar processors where instructions are issued sequentially
from a single stream but can actually be executed in a different order and, possibly, in
parallel depending on their mutual dependencies. Figure 1(right) shows the 1D STF version
from [17, 18] of the multifrontal QR factorization described above. Instead of making
direct function calls (activate, assemble, deactivate, panel, update), the equivalent STF
code submits the corresponding tasks. Since the data onto which these functions operate
as well as their access mode (Read, Write or Read/Write) are also specified, the runtime
system can perform the superscalar analysis while the submission of task is progressing. For
instance, because an assemble task accesses a block-column f(i) before a panel task accesses
the same block-column in Write mode, a dependency between those two tasks is inferred.
Our previous work [17] showed that the STF programming model allows for designing a
code that achieves a great performance and scalability as well as an excellent robustness
when it comes to memory consumption.

2.2 The StarPU task-based runtime system

Many runtime systems [13, 24, 11] support the STF paradigm and a complete review of
them is out of the scope of this paper. The OpenMP standard, for example, supports
the STF model through the task construct with the recently (in version 4.0) introduced
depend clause. Although this OpenMP feature is already available on some compilers (gcc
and gfortran, for instance), we chose to rely on StarPU (read *PU ) as it provides a very
wide set of features. Two of them are especially crucial for the present study: (1) StarPU
provides an excellent support for hardware accelerators and heterogeneous platforms and
(2) it provides an API that allows the application developer to design and tune complex
task scheduling policies.

In StarPU, tasks may have multiple implementations, usually one for each type of pro-
cessing units available on the machine (CPU cores and GPU in the context of the present
study); indeed StarPU tasks are defined as multi-version kernels, gathering the implemen-
tations available for CPU cores and GPUs, associated with a set of input/output data.
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Whenever the execution of a task is triggered, StarPU gathers all the necessary data on
the unit where the task is to be executed. To avoid unnecessary data transfers, StarPU al-
lows multiple copies of the same data to reside concurrently on several processing units and
makes sure of their consistency. For instance, when a data is modified on a computational
unit StarPU marks all the corresponding copies as invalid. One further optimization tech-
nique used by StarPU is asynchronous data prefetching which allows for hiding the latency
of memory transfers. For that, each GPU is driven by a dedicated CPU core (which may
also be involved in the numerical computation). Together, a GPU and its associated CPU
core, are called a GPU worker ; other CPU cores are called CPU workers. StarPU further-
more facilitates the management of data partitioning at runtime. This feature comes very
handy when targeting performance on an heterogeneous platform where it may be critical
to execute tasks of fine granularity on CPU cores (to ensure concurrency between tasks) but
of coarse granularity on GPU (to ensure performance of the task on the accelerator). We
exploit this feature in Section 3 to design partitioning strategies for the multifrontal method
in order get the most out of a GPU-accelerated multicore architecture.

StarPU provides a framework for developing, tuning and experimenting various task
scheduling policies in a portable way. Implementing a scheduler consists in creating a task
container and defining the code that will be triggered each time a new task gets ready to be
executed (push) or each time a processing unit has to select the next task to be executed
(pop) as illustrated in Figure 2. The task container usually consists of a set of queues.
The implementation of each queue may follow various strategies (e.g. FIFOs or LIFO) and
sophisticated policies such as work-stealing may be implemented.

Figure 2: Designing a scheduling policy in StarPU.

Several built-in schedulers are available, ranging from greedy and work-stealing based
policies to more elaborate schedulers implementing variants of the Heterogeneous Earliest
Finish Time (HEFT) policy [25]. This latter family of schedulers usually relies on history-
based performance models; the speed of data transfers is benchmarked right after installation
of the runtime system whereas the performance of tasks is automatically collected by StarPU
during the first executions of a given task. We show how we can benefit from this framework
for designing a scheduling policy tailored for the multifrontal QR factorization in Section 4.

3 Frontal matrices partitioning strategies

One of the main challenges in implementing a multifrontal matrix factorization on GPU-
accelerated multicore systems consists in finding front partitioning strategies allowing for
the exploitation of both CPU and GPU resources. This issue results from the fact that
GPUs are potentially able to deliver higher performance than CPUs by several orders of
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magnitude but require coarse granularity operations to achieve it while a CPU reaches its
peak with relatively small granularity tasks. Therefore we aim at designing a partitioning of
frontal matrices that generates as much parallelism as possible in the DAG while delivering
a sufficient amount of large granularity tasks in order to efficiently exploit GPUs.

In our study we consider the three front partitioning strategies illustrated in Figure 3:
fine-grain, coarse-grain and hierarchical. The fine-grain partitioning (Figure 3(a)), which
is the method of choice in work [18], consists in applying a regular 1D block partitioning
on fronts and is therefore mainly suited for homogeneous architectures (e.g. multicore
systems). The coarse grain partitioning (Figure 3(b)), where fine-grained panel tasks are
executed on CPU and large-grain (as large as possible) update tasks are performed on GPU,
corresponds to the algorithm developed in the MAGMA package [9] and aims at obtaining
the best acceleration factor of computationally intensive tasks on GPU. In order to keep
the GPU constantly busy, a static scheduling is used that allows for overlapping GPU and
CPU computation thanks to a depth-1 lookahead technique; this is achieved by splitting the
trailing submatrix update into two separate tasks of, respectively, fine and coarse granularity.

Figure 3: Front partitioning strategies. (a) Fine-grain. (b) Coarse-grain. (c) Hierarchical.

1 forall outer panels o_p =1... o_n in f
! partition (outer) block column f(o_p) into

3 ! i_n inner block columns f(o_p ,1) .. f(o_p ,i_n)
call submit(part., f(o_p):R, f(o_p ,1):W... f(o_p ,i_n):W)

5

forall inner panels i_p =1.. i_n
7 ! panel reduction of inner block column i_p

call submit(inner_panel , f(i_p):RW)
9 forall inner blockcolumns i_u=i_p +1.. i_n in f(o_p)

! update (inner) column in_u with panel i_p
11 call submit(inner_update , f(i_p):R, f(i_u):RW)

end do
13

forall outer blockcolumns o_u=o_p +1.. o_n
15 ! update outer block column o_u with panel i_p

call submit(outer_update , f(i_p):R,f(o_u):RW)
17 end do

end do
19

! unpartition (outer) block column
21 call submit(unpart., f(o_p ,1):R...f(o_p ,i_n):R, f(o_p):W)

end do

Figure 4: STF code for the hierarchical QR factorization of fronts.
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Although the fine-grain strategy generates enough parallelism in the DAG to reduce idle
times, it results in a limited efficiency of GPU kernels as the tasks granularity is excessively
small. On the the other end, the coarse-grain strategy allows for an optimal efficiency of
kernels with respect to the problem size but reduces the parallelism and, combined with
the static scheduling, increases the starvation of resources. The hierarchical partitioning of
fronts (Figure 3(c)) is similar to the approach proposed in [26] and corresponds to a trade-off
between parallelism and GPU kernel efficiency with task granularity suited for both types of
resources. The front is first partitioned into coarse grain block-columns, referred to as outer
block-columns, of width NBGPU suitable for GPU computation (this happens at the moment
when the front is activated) and then each outer block-column is dynamically re-partitioned
into inner block-columns of width NBCPU appropriate for the CPU only immediately before
being factorized. This is achieved through a dedicated partitioning task which is subject
to dependencies with respect to the other, previously submitted, tasks that operate on the
same data. When these dependencies are satisfied, StarPU ensures that the block being
re-partitioned is in a consistent state, in case there are multiple copies of it. Furthermore,
StarPU ensures that the partitioning is performed in a logical fashion: no actual copy is
performed and there is no extra data allocated. The initial STF code corresponding to the
QR factorization of a front (lines 14-21 in Figure 1(right)) is turned into the one proposed
in Figure 4 for hierarchically partitioned fronts. We define inner and outer tasks depending
on whether these tasks are executed on inner or outer block-columns. In order to ease the
understanding we use different names for inner and outer updates although both types of
tasks perform exactly the same operation and thus employ the same code.

Because the number of fronts in the elimination tree is commonly much larger than the
number of working threads, the above-mentioned partitioning strategy is not applied to all of
them. In our code we employ a technique similar to that proposed by Geist and Ng [27] that
we describe in our previous work [23] under the name of logical tree pruning. Through this
technique, we identify a layer in the elimination tree such that each subtree rooted at this
layer is treated in a single task with a purely sequential code. This has a twofold advantage.
First it reduces the number of generated tasks and, therefore, the runtime system overhead.
Second, because we do not exploit node parallelism in these subtrees, we apply a coarse-
grain partitioning of their fronts in order to maximize the granularity and subsequently the
efficiency of GPU kernels. This could be achieved in a straightforward way by using the
QR factorization routine of MAGMA for processing all the nodes in these subtrees; this,
however, would result in a suboptimal choice because, as explained in Section 2.1 fronts
have a staircase structure. Consequently we extended the MAGMA dgeqrf routine to take
into account such a staircase structure. The assembly and panel operations within these
sequential subtrees are executed on the CPU associated with the GPU worker thread (see
Section 2.2) while update operations are handled by the GPU.

Concerning the memory consumption, the GPU can obviously be used only for those
tasks whose footprint does not exceed the memory available on the device. For inner and
outer updates the memory footprint is, respectively two inner panels and one inner plus
one outer panel; the tasks that treat entire sequential subtrees, instead, are subject to the
same memory constraint as the MAGMA kernels they rely on. This allows for using the
GPU device on all the GPU-enabled tasks even for extremely large input problems (see
Section 5.4).

4 Scheduling

Once the partitioning has been performed, one could statically assign the tasks of coarse
granularity to GPUs and the ones of fine granularity to CPU cores. However, the variety of
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front shapes and staircase structures combined with this hierarchical partitioning induces
an important workload heterogeneity, making load balancing extremely hard to anticipate.
For this reason, we chose to rely on a dynamic scheduling strategy. In the context of an
heterogeneous architecture, the scheduler should be able to handle the workload hetero-
geneity and distribute the tasks taking into account a number of factors including resource
capabilities or memory transfers while ensuring a good load balance between the workers.
Dynamic scheduling allows for dealing with the complexity of the workload and limit load
imbalance between resources.

As discussed in Section 2.2, scheduling algorithms based on HEFT constitute a popular
solution to schedule task graphs on heterogeneous systems. These methods consist in first
ranking tasks (typically according to their position with respect to the critical path) and then
assigning them to resources using a minimum completion time criterion. The main drawback
of this strategy lies in the fact that the acceleration factor of tasks is ignored during the
worker selection phase. In addition, the centralized decision during the worker selection
potentially imposes a significant runtime overhead during the execution. A performance
analysis conducted with the so-called dmdas StarPU built-in implementation of HEFT (and
not reported here for a matter of conciseness) showed that these drawbacks are too severe
for designing a high-performance multifrontal method.

Instead, we implemented a scheduling technique known as HeteroPrio, first introduced
in [28] in the context of Fast Multipole Methods (FMM). This technique is inspired by the
observation that a DAG of tasks may be extremely irregular and alternate regions where
concurrency is abundant with others where it is scarce. In the first case we can affect tasks
to the units where they are executed the most effectively. In the second case, however, what
counts most is to prioritize tasks which lie along the critical path because delaying their
execution would result in penalizing stalls in the execution pipeline. As a result, in the
HeteroPrio scheduler the execution is characterized by two states: a steady-state when the
number of tasks is large compared to the number of resources and a critical-state in the
opposite case.

Worker
queues

Scheduling
queues

Figure 5: HeteroPrio steady-state policy.

A complex, irregular workload, such as a sparse factorization, is typically a succession
of steady and critical state phases. During a steady-state phase, tasks are pushed to dif-
ferent scheduling queues depending on their expected acceleration factor (see Figure 5). In
our current implementation, we have defined one scheduling queue per type of tasks (eight
in total as listed in column 1 of Table 1). When they pop tasks, CPU and GPU work-
ers poll the scheduling queues in different orders. The GPU worker first polls scheduling
queues corresponding to coarse-grain tasks such as outer updates (priority 0 on GPU in
Table 1) because their acceleration factor is higher. On the contrary, CPU workers first
poll scheduling queues of small granularity such as subtree factorizations or inner panels
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(as well as tasks performing symbolic work such as activation that are critical to ensure
progress). Consequently, during a steady-state, workers process tasks that are best suited
for their capabilities. The detailed polling orders are provided in Table 1. Furthermore, to
ensure fairness in the progress of the different paths of the elimination tree, tasks within
each scheduling queue are sorted according to the distance (in terms of flop) between the
corresponding front and root node of the elimination tree.

In the original HeteroPrio scheduler [28], the worker selection is performed right before
popping the task in a scheduling queue following the previously presented rules. If data
associated to the task are not present on the memory node corresponding to the selected
worker then the task completion time is increased by the memory transfers. While the
associated penalty is usually limited in the FMM case [28], preliminary experiments (not
reported here for a matter of conciseness) showed that it may be a severe drawback for the
multifrontal method. For the purpose of the present study, we have therefore extended the
original scheduler by adding worker queues (one queue per worker) along with the scheduling
queues as shown in Figure 5. When it becomes idle, a worker pops a task from its worker
queue and then fills it up again by picking a new task from the scheduling queues through
the polling procedure described above. The data associated with tasks in a worker queue
can be automatically prefetched on the corresponding memory node while the corresponding
worker is executing other tasks. If the size of the worker queues is too high, a task may
be assigned to a worker much earlier than its actual execution, which may result in a sub-
optimal choice. Therefore, because no additional benefit was observed beyond this value,
we set this size to two in our experiments.

Scheduling queues Steady-state Critical-state
CPU GPU CPU GPU

activate 0 - 0 -
assemble 7 - 5 -
deactivate 1 - 1 -
do subtree 2 2 2 0
part./unpart. 3 - 3 -
inner panel 4 - 4 -
inner update 5 1 6 1
outer update 6 0 7 2

Table 1: Scheduling queues and polling orders in HeteroPrio.

When the number of tasks becomes low (with respect to a fixed threshold which is set
depending on the amount of computational power of the platform), the scheduling algorithm
switches to critical-state. CPU and GPU workers cooperate to process critical tasks as early
as possible in order to produce new ready tasks quickly. For instance, because outer updates
are less likely to be on the critical path, the GPU worker will select them last in spite of
their high acceleration factor. The last two columns of Table 1 provide the corresponding
polling order. Additionally, in this state, CPU workers are allowed to select a task only
if its expected completion time does not exceed the total completion time of the tasks
remaining in the GPU worker queue. This extra rule prevents CPU workers to select all the
few available tasks at that moment and let the GPU idle whereas it could have finished to
process them all earlier.
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5 Experimental results

All the above discussed techniques have been implemented in the qr mumps solver on top
of the StarPU runtime system and assessed on a set of eight matrices from the UF Sparse
Matrix Collection1 plus one (matrix #1) from the HIRLAM2 research program. These
matrices are listed in Table 2 along with their size, number of nonzeroes and operation
count obtained when applying a COLAMD fill-reducing column permutation.

Mat. # Mat. name Ordering m n nz op. count
(Gflop)

1 karted COLAMD 46502 133115 1770349 281
2 cat ears 4 4 COLAMD 19020 44448 132888 805
3 hirlam COLAMD 1385270 452200 2713200 2419
4 TF16 COLAMD 15437 19321 216173 2884
5 e18 COLAMD 24617 38602 156466 4278
6 flower 7 4 COLAMD 27693 67593 202218 4386
7 Rucci1 COLAMD 1977885 109900 7791168 12957
8 Mitt3D 27 60 COLAMD 216000 238328 5832000 30332
9 TF17 COLAMD 38132 48630 586218 37918
10 hirlam SCOTCH 1385270 452200 2713200 1384
11 flower 8 4 SCOTCH 55081 125361 375266 2851
12 Rucci1 SCOTCH 1977885 109900 7791168 5671
13 ch8-8-b3 SCOTCH 117600 18816 470400 10709
14 GL7d24 SCOTCH 21074 105054 593892 16467
15 neos2 SCOTCH 132568 134128 685087 20170
16 spal 004 SCOTCH 10203 321696 46168124 30335
17 n4c6-b6 SCOTCH 104115 51813 728805 62245
18 TF18 SCOTCH 95368 123867 1597545 194472

Table 2: The set of matrices used for the experiments.

The experiments were run on two platforms:

• Bunsen: includes one Intel Xeon E5-2650 processor (eight cores) accelerated with an
Nvidia Kepler K40c GPU. In this case, the experiments were done with fixed values
for the inner and outer block size of, respectively, 128 and 512; these values allow for
a good average performance but may be rather far from the optimal.

• Sirocco: includes two Intel Xeon E5-2680 (twelve cores each) and one Nvidia Kepler
K40m GPU. On these platform all the block-size combinations in the set (nbgpu,nbcpu)={(256,128),
(256,256), (384,128), (384,384), (512,128), (512,256), (512,512) (768,128),

(768,256), (768,384), (896,128), (1024,128), (1024,256), (1024,512) } were
tested in order to evaluate the best achievable performance. For this platform, the
results presented below are related to the best possible block-size combination.

5.1 Performance

We compare the performance of the discussed front partitioning strategies for the multi-
frontal factorization of our test set of sparse matrices. The results presented in Figure 6

1http://www.cise.ufl.edu/research/sparse/matrices/
2http://hirlam.org
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show that the hierarchical partitioning offers the best performance and a speedup of up to
4.7 compared to the CPU only version on the Bunsen platform. When using one CPU along
with the GPU, the performance becomes very low compared to the CPU only version for
the smaller matrices as no tree parallelism is exploited during the factorization and also
because the problem size leads to a limited acceleration of the factorization of fronts. A
noticeable results in the factorization of matrix #9 is that the speed-up when using eight
CPUs instead of one is greater than the peak performance offered by the additional CPUs.
This is due to the fact that when multiple CPUs are available, the scheduling achieves a
better matching between the characteristics of the tasks and the processing units whereas
when only one CPU is available, the GPU is more likely to execute small granularity tasks.
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Figure 6: Performance results on te Bunsen platform for qr mumps with three partitioning
strategies: fine-grain, coarse-grain and hierarchical partitioning. GPU* indicates a GPU
worker, i.e., with an associated CPU as explained in Section 2.2.

Figure 7 shows performance results on the Sirocco platform which confirm those obtained
on the Bunsen one. Nonetheless it has to be noted that on Sirocco higher performance was
achieved which proves that the code is well capable of exploiting heterogeneity as it took
advantage of the extra performance provided by the CPUs.

5.2 Analysis

While the results presented above show the superiority of the hierarchical scheme with re-
spect to the other proposed partitioning strategies, one may wonder how this scheme behaves
in absolute. The most straightforward reference would be the cumulative peak performance
over all computational units. This choice, however, does not take into account the fact
that, due to their nature (be it their maximum granularity or the nature of operations they
perform), tasks cannot be executed at the peak speed and may result in an excessively
coarse bound on achievable performance. For this reason we decided to use a more accurate
reference, the area bound tarea(p), which is obtained by solving a relaxed version of our
scheduling problem built on the following assumptions: there are no dependencies between
tasks; tasks are moldable (i.e. may be processed by multiple units); CPU-GPU memory
transfers are instantaneous.
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Figure 7: Performance results on the Sirocco platform for qr mumps with three partitioning
strategies: fine-grain, coarse-grain and hierarchical partitioning. GPU* indicates a GPU
worker, i.e., with an associated CPU as explained in Section 2.2.

Figure 8 gives a pictorial example of how tarea(p) is defined on a simple execution with
three resources (2 CPUs and 1 GPU).

Figure 8: Gantt chart. (a) Actual schedule. (b) Area schedule.

For a set of tasks Ω running on a set of P processors, we define αω
p as the share of work

in task ω processed by PU p and tωp as the time spent by PU p processing its share of task ω.
Based on these definitions, tarea(p) can be computed as the solution of the following linear
program

Linear Program 1 Minimize T such that, for all p ∈ P and for all ω ∈ Ω:

∑
ω∈Ω

αω
p t

ω
p = tp ≤ T

P∑
p=1

αω
p = 1

For all tasks ω ∈ Ω and for all processes p ∈ P , tωp is computed using performance
models automatically built by StarPU upon previous executions of the code The comparison
between the performance obtained with the qr mumps execution time and tarea(p) is shown
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in Figure 9 for the test matrices; it must be noted that the reference performance is well
below the architecture peak speed.
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Figure 9: Performance results for qr mumps compared to theoretical performance bounds on
the Bunsen platform.

A better understanding of the difference between the two performance measures in Fig-
ure 9 can be achieved by decomposing t(p) into tt(p), tr(p) and ti(p), defined as, respectively,
the cumulative time spent in tasks, the cumulative time spent in the runtime and the cu-
mulative idle time spent waiting for dependencies to be satisfied. Thanks to the prefetching
feature implemented in our scheduler (see Section 4), most of the CPU-to-GPU (and vice-
versa) memory transfers are hidden behind computation but, whenever this is not the case,
the corresponding time is included in ti(p). This decomposition allows us to write the
parallel execution time as t(p) = (tt(p) + tr(p) + ti(p))/p and, consequently, the efficiency as

e(p) =

eh

tarea(p)× p
tt(p)

·

er

tt(p)

tt(p) + tr(p)
·

ep

tt(p) + tr(p)

tt(p) + tr(p) + ti(p)
.

This expression allows us to decompose the efficiency as the product of three well defined
effects. eh , which we call the “heterogeneity efficiency”, measures how well the assignment
of tasks to processing units matches the one computed by the linear program above and,
therefore, how well the capabilities of each unit have been exploited. ep, which we call the
“pipeline efficiency” measures how much concurrency is available (depending on the size
and structure of the input matrix and on the chosen block sizes) and how well it is exploited
to feed the processing units. Note that eh can be greater than 1 which happens when the
GPU is overloaded; this inevitably results in CPUs starvation and, thus, a poorer pipeline
efficiency. In essence, the product of eh and ep can be seen as a measure of the quality of the
scheduling and is always lower than or equal to 1. Finally, er , which we call the “runtime
efficiency”, measures how the overhead of the runtime system reduces the global efficiency.

Figure 10 shows the efficiency analysis for our code on the test matrices. The run-
time overhead becomes relatively smaller and smaller as the size of the problems increases:
whereas this overhead is penalizing on smaller size matrices, it becomes almost negligible
on the largest ones. These results also show that our scheduling policy makes a relatively
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Figure 10: Efficiency of qr mumps on the matrix test set on the Bunsen platform.

good job in assigning tasks to the units where they can be executed more efficiently, apart
for the case of matrix #1. In most cases, the most penalizing effect on the global efficiency
is the pipeline efficiency ep. This is mainly due to a lack of concurrency resulting from
the choice of partitioning. This choice aims at achieving the best compromise between the
efficiency of kernels and the amount of concurrency; it must be noted that ep could certainly
be improved by using a finer grain partitioning but this would imply a worse efficiency of the
tasks and thus, as a consequence, higher values for both tt(p) and tarea(p). We are working
at extending our efficiency analysis in a way to show the loss of tasks efficiency due to the
applied partitioning. It must also be noted that fixed inner and outer block sizes have been
chosen for all our experiments; although we have used values that deliver a good average
performance, custom values for each problem could yield considerable improvements.

5.3 Multi-streaming

Choosing the good size for inner and outer operations is a delicate act of balance between
concurrency and efficiency of operations; this task is difficult mostly because of the very
high granularity of operations required by GPUs. The use of multiple streams – a feature
available on relatively recent GPUs – allows for achieving a better occupancy of the device
even for smaller grained tasks thanks to the concurrent execution of GPU tasks; this leads
to a better compromise between efficiency of tasks and concurrency and, as a consequence,
to higher performance. In addition, multiple streams allow for a better exploitation of tree
and node parallelism by enabling the concurrent processing tasks, possibly from different
fronts of the elimination tree, on the same GPU. We report in Table 3, preliminary results
when exploiting the multistream feature of the GPU (we only use two streams). The impact
of the multistream feature on small matrices is marginal while the performance gap between
the mono and multi stream version tend to increase with the problem size.

5.4 Comparison with a state-of-the-art GPU solver

In this section we provide a comparison of our solver with the GPU-enabled version of the
spqr solver [1]. This solver is specifically designed for a GPU-only execution where all
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Factorize time (s)
Bunsen Sirocco

Mat. # 1 stream 2 streams Mat. # 1 stream 2 streams

1 2.401E+00 2.425e+00 10 1.237E+01 1.238E+01
2 6.242E+00 6.678e+00 11 1.034E+01 9.044E+00
3 1.989E+01 1.938E+01 12 2.151E+01 2.489E+01
4 9.471E+00 1.078E+01 13 2.125E+01 1.904E+01
5 1.445E+01 1.492E+01 14 2.915E+01 2.658E+01
6 1.984E+01 2.069E+01 15 1.353E+02 1.514E+02
7 5.897E+01 4.923E+01 16 4.962E+01 4.395E+01
8 1.101E+02 8.357E+01 17 1.114E+02 1.010E+02
9 6.870E+01 6.104E+01 18 3.312E+02 3.022E+02

Table 3: Factorization time for the test matrices with qr mumps using 1 and 2 streams.
On the last column, the factorization times for the spqr solver on the Bunsen and Sirocco
platforms.

the operations (linear algebra kernels as well as assemblies) are executed on the GPU; one
core is used to drive the activity of the GPU through a technique referred to as bucket
scheduling. Essentially, the factorization proceeds in sequential steps where, at each step,
the bucket scheduler builds a list of independent and heterogeneous tasks and transmits it
to the GPU; on the GPU side, a single kernel is launched which is capable of executing
all the different types of tasks in the list provided by the bucket scheduler. In spqr fronts
are allocated and assembled directly on the GPU; this strategy has the great benefit of
improving performance by relieving the code from the burden of moving data back and
forth from the host to the device memory. Nonetheless, this requires a careful handling
of the data because of the limited size of the GPU memory. For this reason, in spqr the
elimination tree is statically (at the analysis time) split into stages such that each piece fits
in the GPU memory; these pieces are sequentially processed in successive steps. It must be
noted that the smallest possible stage is formed by a family, i.e., a front plus its children
which are needed to assemble the front itself. Therefore, spqr will not be able to factorize
a matrix whose elimination tree includes a family that does not fit in the GPU memory.

A comparison of the execution time of qr mumps and spqr is shown in Table 4. In both
cases COLAMD ordering is applied resulting in the same amount of flop during factorization.
The performance results show that, despite the additional logic needed to exploit both the
GPU and the CPUs and to processes problems that require higher memory than what is
available on the GPU, our solver achieves a better performance than spqr on the largest
size problems. It must be noted that spqr could not factorize matrices #8 and #9 because
of memory consumption issues. Our solver, instead, always runs to completion as long as
enough memory is available on the host and will be capable of using the GPU for all tasks
whose memory footprint does not exceed the GPU memory size, as explained in Section 3.
In two cases (matrices #3 and #7) the spqr solver returned an erroneous solution.

6 Conclusion and future work

We have presented a multifrontal QR factorization technique for single-node architectures
equipped with multicore processors and GPUs. Our approach relies on the simplicity and
expressiveness of the STF paradigm and on the robustness and performance of modern
runtime systems that implement this parallel programming model. Using the features of
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# Mat. name Factorize time (s)
best(1,2) streams spqr

1 karted 2.401 2.721
2 cat ears 4 4 6.242 5.281
3 hirlam 19.384 ∗
4 TF16 9.471 14.373
5 e18 14.451 18.263
6 flower 7 4 19.841 22.004
7 Rucci1 49.237 ∗
9 TF17 61.040 ∗∗

Table 4: Factorization time on the Bunsen platform for the test matrices with qr mumps

using either 1 or 2 streams and with spqr. ∗ means that the solver returned an erroneous
solution and ∗∗ means that the memory requirement for these matrices exceeded the GPU
memory size.

these efficient tools, we defined a dynamic, hybrid partitioning of the data that produces
a good mixture of fine and large granularity tasks that aims at maximizing the efficiency
of operations on both the CPUs and the GPU while still achieving a sufficient amount of
concurrency. In order to cope with the heterogeneity of the workload and of the underlying
architecture, we have implemented a scheduling policy capable of deploying tasks on the
units where they can be executed the most efficiently when concurrency is abundant while
resorting to a more conservative approach where critical tasks are prioritized in the case
where parallelism is scarce. We have presented experimental results assessing the effective-
ness of the proposed techniques and provided a fine and detailed analysis of the behavior of
our solver.

Our work shows that the STF programming model is suitable for handling extremely
heterogeneous workloads that feature tasks of very different nature and granularity, and
to deploy it on a heterogeneous architecture that includes units with different processing
capabilities while relieving the programmer from the burden of manually handling the mem-
ory transfers and of ensuring the consistency of multiple data copies. This programming
model as well as the rich set of features of modern runtime systems, ease the development of
complex techniques for dealing with the irregularity of the workload and the heterogeneity
of the architecture.

This work opens up a large number of perspectives and allows for further research and
developments. First, and most naturally, the case of a single node equipped with multiple
GPUs should be addressed. It must be noted that our solver can be executed on such
an architecture right away: the runtime system will take care of dispatching tasks to the
multiple GPUs as well as to the CPUs. However, most likely this will not lead to an
acceptable performance because the scheduling as well as the partitioning techniques must
be adapted to this case.

A block-column partitioning is not well suited for the cases where frontal matrices are
extremely over-determined (which is often the case for the multifrontal QR method); in
such cases a 2D blocking of frontal matrices can be applied and Communication-Avoiding
factorization algorithms can be used to improve the amount of concurrency. This technique
has the major drawback of considerably reducing the granularity of operations and therefore
much better care must be taken when partitioning the data and scheduling the resulting
tasks. This is a natural extension of our previous work on multicore architectures [17];
the memory-aware task scheduling discussed therein can also be adapted to the case of
GPU-accelerated architectures.
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Another possible evolution of our solver is towards distributed memory, parallel systems:
modern runtime systems, such as StarPU, are capable of handling this type of architectures
by transparently managing the transfer of data between nodes through the network. A
solver that implements all the above-mentioned features is our ultimate objective.
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