Christophe Pradal
email: christophe.pradal@cirad.fr

Christian Fournier
email: christian.fournier@inra.fr

Patrick Valduriez
email: patrick.valduriez@inria.fr

Sarah Cohen-Boulakia

OpenAlea: Scientific Workflows Combining Data Analysis and Simulation

Analyzing biological data (e.g., annotating genomes, assembling NGS data...) may involve very complex and interlinked steps where several tools are combined together. Scientific workflow systems have reached a level of maturity that makes them able to support the design and execution of such in-silico experiments, and thus making them increasingly popular in the bioinformatics community.

However, in some emerging application domains such as system biology, developmental biology or ecology, the need for data analysis is combined with the need to model complex multi-scale biological systems, possibly involving multiple simulation steps. This requires the scientific workflow to deal with retro-action to understand and predict the relationships between structure and function of these complex systems. OpenAlea (openalea.gforge.inria.fr) is the only scientific workflow system able to uniformly address the problem, which made it successful in the scientific community. One of its main originality is to introduce higher-order dataflows as a means to uniformly combine classical data analysis with modeling and simulation.

In this demonstration paper, we provide for the first time the description of the OpenAlea system involving an original combination of features. We illustrate the demonstration on a high-throughput workflow in phenotyping, phenomics, and environmental control designed to study the interplay between plant architecture and climatic change.

INTRODUCTION

Classical bioinformatics analysis (e.g. annotating genomes, building phylogenetic trees, assembling NGS data) involves the management and processing of huge data sets together . with the chaining of numerous complex and interlinked tools. Scientific workflow systems aim at facilitating and rationalizing the design and management of such tasks. They clearly separate the workflow specification from its execution and offer useful capabilities on both aspects. Among others, they may provide a user interface to design workflows by composing tools [START_REF] Missier | Proc. of SSDBM[END_REF], a scheduler to optimize the processing of huge amounts of data [START_REF] Dias | Algebraic dataflows for big data analysis[END_REF], a provenance module [START_REF] Davidson | Provenance in scientific workflow systems[END_REF] to keep track of the data used and generated during an execution and ensure the reproducibility of the experiments [START_REF] Sandve | Ten simple rules for reproducible computational research[END_REF].

However, the complexity of biological analysis increases in emergent interdisciplinary domains. This is especially the case in domains addressing the study of complex multiscale systems that require numerical simulations. In system biology for instance, analyzing the emergent behavior of a large number of interactions within a biological system requires simulating the interplay between the topological and geometrical development of the structure and its biological functioning. This involves coupling models from different disciplines, integrating experimental data from various sources at different scales (gene, cell, tissue, organism and population), and analyzing the reconstructed system with numerical experiments.

While scientific workflow systems have mainly been designed to support data analysis and visualization [START_REF] Missier | Proc. of SSDBM[END_REF][START_REF] Freire | Managing rapidly-evolving scientific workflows[END_REF][START_REF] Goecks | Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences[END_REF][START_REF] Bowers | Enabling scientific workflow reuse through structured composition of dataflow and control-flow[END_REF], only a few systems have attempted to support iteration or simulation [START_REF] Bowers | Enabling scientific workflow reuse through structured composition of dataflow and control-flow[END_REF][START_REF] Missier | Proc. of SSDBM[END_REF]. Most of the systems use either control flow edges or define loops in the workflow specification with specific routing nodes (e.g. switch [START_REF] Elmroth | Three fundamental dimensions of scientific workflow interoperability: Model of computation, language, and execution environment[END_REF]). Kepler [START_REF] Bowers | Enabling scientific workflow reuse through structured composition of dataflow and control-flow[END_REF] uses black box actors with different models of computation to provide iteration processes. These solutions can lead designing overly complex workflows that are difficult to understand, reuse, and maintain [START_REF] Bowers | Enabling scientific workflow reuse through structured composition of dataflow and control-flow[END_REF]. Expressing control flow (iteration) in scientific workflows is actually a difficult problem due to the absence of state variable and side-effect.

To address this problem, we have introduced the concept of λ-dataflow, which is inspired from the λ-calculus used in Functional Programming.

λ-dataflow makes use of higher-order constructs in the context of dataflows theory and thus allows to represent control flow using algebraic operators [START_REF] Dias | Algebraic dataflows for big data analysis[END_REF] (e.g., conditionals, map/reduce...). λ-dataflow allows to model retro-action. The OpenAlea system [START_REF] Pradal | Openalea: a visual programming and component-based software platform for plant modelling[END_REF] that we introduce in this paper is a workflow system based on λ-dataflow which is able to uniformly deal with classical data analysis, visualization, modeling and simulation tasks.

In this paper, we show how the notion of λ-dataflow allows OpenAlea to uniformly deal with workflows involving data analysis and simulation steps. Our demonstration introduces the capabilities of OpenAlea on a workflow involving high-throughput phenotyping, phenomics, and environmental control, to study the interplay between plant architecture and climatic change. OpenAlea is a Python open source project (openalea.gforge.inria.fr) that provides support to a large community of users and developers. We consider a use case in the context of crop plant breeding [START_REF] Parent | Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?[END_REF], where high throughput data analysis needs to deal with simulation models at different scales (genes, organism and population). The objective of a breeding program is to produce plants that perform better than others (higher or more stable yields) in a given environment. This is challenging as environmental conditions vary a lot among cropping areas, and are subjected to rapid change in a global warming context.

USE CASE

Model-assisted breeding [START_REF] Hammer | Models for navigating biological complexity in breeding improved crop plants[END_REF][START_REF] Messina | Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance[END_REF] aims at tackling this issue. It combines plant models, which reduce phenotypic plasticity (that is, the response to external environmental changes), to a set of environment-independent plant parameters (stable traits), genetic models that link genetic profile (allele set) to stable traits, and simulation models that run virtual experiments to predict crop performance in a large set of environmental conditions (e.g., different light exposure, hydric conditions, nutriments...). Traits and plant parameters (such as the size of the plant, the length of its leaves, the number of tillers, ...) depend both on the plant genetic profile and on the response of the plant to environmental conditions, expressed as its phenotypic plasticity.

Model-assisted breeding recently gained interest thanks to the development of automated phenotyping platforms that allow the measurement of plant traits for a large number of accessions in controlled conditions. For example, the M3P-PhenoArch facility1 allows to characterize daily plant growth and transpiration for 1,600 individuals at a time, together with precise control of water availability to the plants.

It respectively generates 52 GB of data per day, 2.75 TB per essay (for a typical 50 days experiment) and 11 TB per year.

Managing such experiments is particularly challenging due to the volume of data involved, and the multi-disciplinary nature of the tasks, as it requires biological data production, data analysis, mathematical and biological modeling, and computer simulation. From a scientific workflow perspective, the main issue remains to combine (model-assisted) data analysis and model simulation with retro-action. In the use case, the simulated model is the growth of a set of plants, driven by environmental conditions (i.e. light and temperature). The growth of each plant depends on its parameters (plant traits), the environmental conditions modified by the other plants that compete for resource acquisition. The retro-action is due to the relationship between structure and function: the plant growth is impacted by the amount of light intercepted by the plant while the light intercepted by the plant, to its turn, depends on the plant growth. As a consequence, analyzing plant response to light first requires to estimate light amounts intercepted by each individual plant during their growth, using light simulation models and 3D plant reconstruction. Then, a light-driven growth model is to be inferred by fitting it to the observations. Finally, simulations allow to study how the light-growth feedback loop operates in a larger range of environmental conditions.

OPENALEA

This section introduces the OpenAlea system, with its programming and execution models.

Actors and workflows.

An actor in OpenAlea is an elementary brick (a.k.a. component or activity) that has a name, a function object (a functor, a program, a web service or a composite actor), and explicitly defined input and output ports. A semantic type [START_REF] Bowers | Enabling scientific workflow reuse through structured composition of dataflow and control-flow[END_REF] is associated to each port (with a corresponding color).

A workflow is represented as a directed multi-graph where nodes are actors, and directed edges are data links between output and input ports (see Figure 2(a)). A workflow can become a (composite) actor in another workflow to allow composition.

Dataflow variable.

One of the major originality of OpenAlea lies in the way iteration is handled by introducing a specific kind of actor, called dataflow variable X. It allows to specify that, at a given port, an actor receives an unbound variable rather than a value. Connecting an X to an actor transforms a workflow into a lambda function, and allows to express higher-order programming providing control flow behavior using a set of algebraic operators. The three iteration types can be expressed as [START_REF] Elmroth | Three fundamental dimensions of scientific workflow interoperability: Model of computation, language, and execution environment[END_REF][START_REF] Dias | Data-centric iteration in dynamic workflows[END_REF]: (1) counting loops without dependencies (map operator), (2) counting loops with dependencies (reduce and for operators) and (3) conditional loops (while operator). In Figure 2(a), the dataflow variables and the algebraic operators are represented using yellow and white nodes, respectively.

Execution (model-driven).

Dataflow execution in OpenAlea is orchestrated in a modeldriven manner (rather than input-driven): the execution of a given workflow is launched in response to requests for data of one of its actors. Such an actor can satisfy the request when the upstream subworkflow has been executed, that is, when all the relevant actors connected to its input ports have been executed. When such an actor has received its data on its input ports, it executes and places data on its output ports. OpenAlea is able to deal with extremely large datasets to perform big data analysis in parallel environments.

Additionally, it allows actors to be lazy and blocked. When an actor is blocked, the execution is not propagated to the upstream subworkflow and when the actor is lazy, the execution is performed only if the actor's inputs have not changed compared to its previous execution. This type of orchestration performs only the operations needed to produce the required result, executing the subset of the graph relevant to the output [START_REF] Curcin | Scientific workflow systems-can one size fit all?[END_REF].

Algebraic operators and λ-dataflow evaluation.

An algebraic operator is an actor that iterates over firstorder function calls, and thus takes one or more functions as inputs. Ports that require a function have an associated semantic type Function (colored in white). For instance, the first input port of the map and reduce operators requires a function as input (see Figure 2.(a)).

λ-dataflow evaluation differs from the classical evaluation when the workflow contains at least one dataflow variable X. The execution is then decomposed into two stages. First, for each port of type Function, a subworkflow is computed if the upstream subworkflow contains at least one dataflow variable. This subworkflow is defined by all the actors needed to produce the data on this port, i.e. the upstream sub-workflow and the connected output port. This subworkflow is dynamically transformed into a function (i.e. an actor) of one or several variables corresponding to its dataflow variables. Second, the evaluation of this function by algebraic operators consists in replacing the variables by real data and evaluating the subworkflow using the model-driven algorithm.

Reproducibility.

OpenAlea allows to make experiments reproducible by providing two capabilities. First, it is able to capture both prospective and retrospective provenance (following the PROV-DM model2), that is, it is equipped of a provenance module that keeps track of the complete description of the workflows as well as the full history of the data produced and consumed during each execution.

Second, and very originally, OpenAlea's architecture is based on IPython and makes use of IPython notebooks [START_REF] Shen | Interactive notebooks: Sharing the code[END_REF] to generate executable papers (see Figure 4). More precisely, OpenAlea workflows can be executed within IPython notebooks, through a web interface. Workflow results (including 2D plots, 3D scene graph, mathematical equations...) can be displayed within the notebook document and be shared with other users.

DEMONSTRATION

This section describes the main points of our demonstration.

We consider the workflows depicted in Figure 2 and 3 which implement the use case introduced in Figure 1. More precisely, the step Stable Heritable Traits of the use case is implemented by the module entitled Plant Traits in the workflow of Figure 2. A virtual crop is then designed (output of the reduce module). The crop growth is simulated and its performance assessed using a light interception model (implemented by the module Growth & Light). As for the step Virtual Crop Performance of the use case, it is evaluated by the amount of intercepted light at flowering time, still computed by the workflow of Figure 2. This workflow is reused as a composite module entitled virtual experiment in Figure 3, allowing to explore the genotypic variability by modifying the Plant Traits. Finally, both Genotypic data and Phenotypic data are taken into account to simulate Virtual Crop Performance for a large range of traits.

In our demonstration, we show how users can create or interact with highly expressive workflows (able to perform analysis, modeling and simulation tasks), both using the visual programming environment (Figure 3) and the IPython notebooks (Figure 4) of OpenAlea.

Reusing or designing a workflow.

OpenAlea offers a visual programming environment where users are provided with a set of predefined workflows and libraries of tools to be combined to form new workflows (see the left part of Figure 3, "Package Panel"). Users can create new wrapped tools by implementing them in Python. Each tool and workflow is associated with some documentation and saved. Ports of actors are typed and widgets can be associated with data types to allow users interacting with the data (see the widgets depicted in Figure 3. To execute a workflow, users have to click on their output of interest (as OpenAlea is model-driven). For instance in Figure 2, by clicking on the plot actor, users trigger the execution of all the actors of the workflow, from top to bottom.

If users click again on any actor of the same workflow, they can visualize or access to intermediate results. OpenAlea determines whether or not any calculation has to be redone (default Lazy mode). If no input or parameter change has occurred, data is not recomputed. Otherwise, the subworkflow impacted by the change is executed again. In Figure 2(a), the is flowering actor is a non-lazy or eager actor, colored in green. It is always recomputed, even if its input data has not changed.

Using algebraic operators for simulation.

Algebraic operators are higher-order actors that take function as argument. In our demonstration, we use three different operators: map, reduce and while. Other types of algebraic operators in OpenAlea follow the same principle while users can define their own operators.

The map operator is a higher-order function map ::

(α → β) → [α] → [β].
Its argument are a function f :: α → β (first port) and a set of elements of type α (second input port). The map operator applies f to each element of the set and returns the set of resulting elements of type β.

Similarly, the reduce operator takes a function g of two variables and a sequence of elements [xi] and returns one element. while is an iteration operator that takes three inputs: an initial element t0, a boolean function cond and function h. It initializes a variable t with t0 and iteratively applies the function h on t while cond(t) is true.

In the workflow in Figure 2, the map actor takes a λsubworkflow f and a sequence of parameters S. The λsubworkflow f , composed of two actors (Plant Traits and PlantArchitecture), takes a parameter set that corresponds to one plant trait (e.g., leaf growth dynamic) and generates an object that represents a fully parameterised individual plant model to be simulated. The sequence S is produced by the actor internal variability, and represents the intragenotype (inter-individual) variability of the trait. During the execution, the map actor produces a sequence of individual plant models.

The reduce operator concatenates this sequence of plants into one graph corresponding to the crop canopy. Finally, the while operator simulates the development of the crop by iterating a growth function, that takes into account environmental data (meteo01.csv), the state and the specific parameters of each plant and the light intercepted by each 3D organs. The later is computed from the 3D geometry of the canopy. The simulation stops at the flowering stage.

Last, this workflow is reused as a composite workflow (see Figure 3) and run on a large set of genotypes to select the most efficient plant variety in a given environment.

From workflow to executable paper.

Execution of OpenAlea workflows can be embedded into IPython notebooks (Figure 4), able to produce executable papers, where users can share, visualize and interact with input and output produced by each step of an in-silico experiment in a web-based application.

CONCLUSION

Faced with the need of coupling data analysis with modeling and simulation, OpenAlea provides a unique solution able to extend the dataflow model of computation by introducing higher-order language constructs in a visual programming environment. Introducing first-class functions allows to design highly expressive workflows in a fully uniform way. First-class functions are increasingly popular and have also been introduced in several imperative languages like PHP, VisualBasic, C# or C++.

As for related work, considering Functional Programming in the context of scientific workflow systems [START_REF] Brandt | A functional language for large scale scientific data analysis[END_REF][START_REF] Turi | Taverna workflows: Syntax and semantics[END_REF][START_REF] Kelly | Lambda calculus as a workflow model[END_REF] is not new and the number of solutions taking this direction has even increased in the last years. Functional Programming coupled with workflows is mainly used to reach to kinds of First, Functional Programming is used to represent and formalize the semantics of workflows and their relationships with their executions. Interestingly, Kelly et al. [START_REF] Kelly | Lambda calculus as a workflow model[END_REF] have introduced the λ-calculus (new) model of computation (MOC). In this context, authors have actually demonstrated that side-effect free workflow models can be defined as a subset of Functional Programming. Functional languages have been used to formalize workflow models in concrete workflow systems: this is the case in the Ptolemy II [START_REF] Ludäscher | On providing declarative design and programming constructs for scientific workflows based on process networks[END_REF] system but also in the Taverna system where the semantics of Taverna's workflows have been recently rethought in functional terms [START_REF] Turi | Taverna workflows: Syntax and semantics[END_REF].

Another (possibly complementary) aim to achieve when using Functional Programming is to deal with high-level data parallel structures. This is the case of the very recent Cuneiform system [START_REF] Brandt | A functional language for large scale scientific data analysis[END_REF], which works on the Hi-WAY platform based on Hadoop YARN.

Like Cuneiform, the aim of the OpenAlea system is to exploit high-level data parallel structures. However, we want our system to be directly usable by end-users who are not computer scientists. Our originality here thus lies in allowing the use of functional programming and higher-order construct within a visual programming environment, as a mean to express control-flow constructs.

While OpenAlea is in used since 2007 (160,000 downloads, 1,200 distinct visitors a month, 20 active developers) leading to several biological findings (e.g., [START_REF] Lucas | Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues[END_REF]), this paper is the first to provide an overview of the major capabilities of the OpenAlea system and the first to introduce the λ-dataflow concept.

This demonstration deals with the study of plant response to climatic change illustrating the research challenges in areas of high and increasing interest including big data analysis and reproducible science.

Figure 1 :

 1 Figure 1: Use case

Figure 2 :

 2 Figure 2: (a) OpenAlea workflow for simulating Maize and Wheat crop performance based on phenotypic and environment data, and two image outputs (b and c). Colors represent the organ's type in (b) and the amount of intercepted light in (c).

Figure 3 :

 3 Figure 3: OpenAlea visual programming environment

Figure 4 :

 4 Figure 4: OpenAlea IPython notebook

http://www6.montpellier.inra.fr/lepse/M3P

http://www.w3.org/TR/prov-dm/

Acknowledgements

This work has been done in the context of the Computational Biology Institute (http://www.ibc-montpellier.fr). It has been partly funded by the ProvRecFlow project.