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Abstract—This paper presents a robust and anticipative real-
time gesture recognition and its motion quality analysis module.
By utilizing a motion capture device, the system recognizes
gestures performed by a human, where the recognition process
is based on skeleton analysis and motion features computation.
Gestures are collected from a single person. Skeleton joints are
used to compute features which are stored in a reference database,
and Principal Component Analysis (PCA) is computed to select
the most important features, useful in discriminating gestures.
During real-time recognition, using distance measures, real-time
selected features are compared to the reference database to find
the most similar gesture. Our evaluation results show that: i)
recognition delay is similar to human recognition delay, ii) our
module can recognize several gestures performed by different
people and is morphology-independent, and iii) recognition rate
is high: all gestures are recognized during gesture stroke. Results
also show performance limits.

Keywords—Gesture recognition, Quality motion features, Mor-
phology independence

I. INTRODUCTION

In the past years, the development of virtual humanoids
able to interact naturally with humans has gained more and
more importance and interest in the Human-Machine Interfaces
domain. A main research problem consists in making the
interaction with these virtual entities as credible as possible,
endowing them not only with the capability of communi-
cating through the typical human multimodal communicative
channels, but also with the ability to perceive the user and
to adapt its verbal and non-verbal behaviors. Similarly, in
human-human interaction, people continuously adapt and in-
fluence each other’s behavior. This dynamical process has been
thoroughly studied by several researchers in psychology and
computer science who agree in considering it as fundamental
for natural human interaction [1], [2], [3].

Within the French national project called Ingredible, we
aim to model this dynamical mutual influence between users
and virtual agents. This study focuses especially on the gestural
behavior and gestural expressive quality shown by both agent
and human. Interaction considered in the project belongs to the
artistic domain, and we collaborate with a theatrical troup to
define scenarios in which the whole interaction is based solely
on gestural movements (neither speech nor facial expressions
were considered). So, our final goal is to create a virtual
character capable of maintaining a gestural coupling with a
human during an artistic interaction. Movements, also called
gestures in this paper, represent interaction vocabulary which

Fig. 1. Ingredible project framework. The Capture Module retrieves data from
tracking devices and generates a unified 15-joints skeleton. Skeletons are being
sent to the Analysis module which tries to recognize the current gesture and
its expressivity. The recognition results are being sent to the Decision module
which determines the agent’s response depending on the user’s behavior and
the interaction scenario. The Synthesis module receives the choices obtained
by the Decision module and computes the final skeleton animation displayed
by the Rendering module.

can replace words. For example, gestures can be: waving
hand to say hello, bow, applause, showing an object, showing
enthusiasm and so on. Duration is rarely less than two seconds.
All gestures described in this paper last between two and five
seconds.

To realize such a virtual agent we propose a system able
to: (i) recognize human’s gestures and gestural expressivity, (ii)
determine how the agent should adapt its behavior, and (iii)
generate the final animation on the virtual humanoid represen-
tation. Our system is based on the framework shown in Figure
1. The entire framework is not described in this paper, which
rather focuses on the progress done in the Analysis module,
consisting of gesture and gestural expressivity recognition. To
implement this module, the following requirements should be
satisfied.

Anticipation. Firstly, keeping in mind that the desired
interaction evolves continuously, the whole system must be
fast enough to be interactive: the agent reactions must be
triggered and displayed in a lapse of time that seems natural
to the user. So, the gesture recognition module quickly and
precisely detect the apparition of a new gesture at any time and
to provide continuously information about the user’s quality



movements in order to help the Decision module to anticipate
the user’s behavior and to adapt the agent behavior quickly
and consistently.

Full body. In interaction, our gesture recognition module
should perform gesture recognition and monitor expressivity
on a whole body, both the user’s and the agent’s.

Robustness. The gesture recognition rate should be high
no matter who interacts with the virtual agent nor how the
user performs gestures. People are very different and behave
very differently. Even the same person does not move always
in the same manner, that is showing the same expressivity. For
example, waving to say hello is always the same gesture even
if it is performed by shy people (barely moving, with the hand
close to body) or by happy people (waving the whole arm
above head, expressing enthusiasm). Therefore, our module
must recognize a gesture independently of both the user’s
morphology and the way in which it is performed.

Number of gestures. In an artistic interaction, the number
of gestures that could be performed could grow fast, depending
on the topic and the length of the interaction. Given that we
want our module to be adaptable to different performances and
consequently able to differentiate dozens of gestures, which
is not generally the case in the literature. Adding more and
more gestures introduces some confusions in recognition and
increases the computational cost.

Training efforts. The preparation of a theatrical perfor-
mance needs some adjustment. The director makes different
tests and try different scenarios. According to the director’s
choices, it could be necessary to modify the list of gestures
to recognize. Unfortunately, to obtain a robust recognizer,
many occurrences of the same gesture performed by different
people should be learnt, which is time-consuming. Ideally,
our Analysis module should recognize gestures from different
users, having only few references gestures recorded from a
single person.

Device independence. The system should work in different
situations - anywhere, at any moment, and using even a simple
motion capture device such as Microsoft Kinect. Input devices
can be equipped with more sophisticated motion capture
system which can provide more accurate skeleton-based data
in real-time. For such a reason, the Analysis module must be
independent from the input device by working on a minimal
subset of skeleton joints.

These requirements introduce some challenges regarding
the state of the art in gesture recognition. To rise these
challenges, we developed a system based on the computation
of several motion features that provide several information
about a gesture, such as its expressivity. It also uses a sliding
window to cut gestures in smaller sequential chunks, that
allows us to recognize continuously gestures without detecting
the start and the end of the gesture.

The paper is organized as follows. Next section presents
related works about gesture recognition. In section III, the
whole recognition module is described in detail. Section IV
justifies some implementation choices. Finally, we present and
discuss a set of evaluations in section V.

II. RELATED WORK

Most of the approaches on automatic gesture recognition
tried to recognize gestures directly from video [4]. Even if
high recognition rates have been obtained, features extraction
remains quite a difficult task. Thanks to new tracking devices
the features extraction process has become easier; low-level
skeleton-based features, such as joints 3D position, angles and
quaternions can be obtained in real-time. The model presented
in this work uses skeleton-based features and for such a reason
this brief review of related works focuses on models which
use this type of data. As we will see, most of the previous
studies rarely use motion features to recognize gestures. These
features are mainly used to infer the user’s internal state, such
as emotional state [5].

Independently of the type of features considered, gesture
recognition is often seen as a classification problem. A set of
labeled gestures is recorded and a machine learning system is
used to generate a classifier. To recognize a new gesture, its
similarity to those in the classifier is computed and the closest
class is selected as the most probable result. Several ma-
chine learning algorithms have been successfully implemented,
among them Hidden Markov Models (HMM), Support Vector
Machines (SVM), k-Nearest Neighbors (kNN), and Dynamic
Time Warping (DTW) are surely the most commonly used. In
[6], Gu et al. proposed a model based on HMM to recognize
left arm gestures to interact in real-time with a robot. The
model was implemented to recognize gestures consecutively,
even if the user did multiple repetitions of the same gesture (all
gestures last around one and a half second). They tested their
model with five gestures performed by two subjects, of whom
one was used to train the system. Recognition was around 85%
for the person who provided the training data and 73% for the
other one.

Consecutive upper body gestures are recognized also in
[7]. Three-dimensional coordinates of seven joints were used
as low-level features and two machine learning algorithms
(SVM and Decision Tree) were applied and compared. Three
subjects were involved in the evaluation, two were used for
training purposes and one for testing. They had to perform
eight aircraft marshaling gestures. Continuous recognition is
assured by using a sliding window for each gesture, the
window dimension corresponded to the average dimension
of the gesture it was dedicated to. SVM scored better than
DTW and was less subject dependent, however no information
was provided about the subject morphology and the real-time
performances of the system.

Ibañez and colleagues [8] proposed a tool which supports
either HMM or DTW to classify and compare gestures trajec-
tory. Low-level features are normalized to make recognition
morphology independent and the tool allows user to select the
important trajectory points, which implies that points selection
depends on the user’s expertise. With both techniques, HMM
and DTW, the tool obtains good results when tested on 10
gestures, however to reach high accuracy (around 99%) many
repetitions of a gesture (20 repetitions from four different
subjects) are needed to train the system.

DTW technique is used also in the full body gesture
recognition model proposed by Sempena et al. [9]. The model
uses quaternions to avoid morphology dependence and has no



learning phase: DTW is applied between each labeled gestures
in the database and the new gesture to recognize. Evaluation
has been done on 6 separated gestures, but no information is
provided about performances.

In [10], a motion classifier for Kinect is presented. Joint
position is converted to a position relative to the head and
then their angle relative to the joints between the shoulders is
computed. These angles are the features used for the classi-
fication which is based on the DTW technique. The system
is tested on seven hand gestures of five seconds each and
the recognition rate reaches 100%. Unfortunately, information
about the number of repetitions used for training the system
and about the samples used for testing is missing.

A real-time DTW based gesture recognition system is
proposed in [11]. Raw data from an input device is reduced,
utilizing PCA, to a single artificial signature generated in a 2D
space. This signature is segmented to identify different phases
of a gesture (start, stroke, and end). A multi-agent systems
is used for real-time recognition: each time the beginning of
gesture is detected, an observer agent is instantiated. When
the end of the gesture is detected, the system collects all
the ended observer agents and select the best one using the
DTW algorithm. The system was tested on two different input
devices: the Xsens Moven suit, which provides 23 human joints
quaternions, and on Wiimote, which produces six acceleration
values for the hand movement. In the first evaluation, a single
person (performing several times) eight pointing gestures were
used to train the system, with obtained recognition rate of
88%. In the second test, the system was trained with three
repetitions of four gestures performed by seven participants.
The recognition rate reached 75% and the system needed at
least 2.3 seconds to recognize a gesture.

In their recognition of hand gestures and poses Yin and
Davis [12] employed low-level skeleton features with velocity
and acceleration, as well as the depth frame, to determine the
hand shape. Each gesture phase (pre-stroke, stroke, and post-
stroke) is represented by a HMM which allows the model to
recognize gestures continuously and quite fast (0.3 seconds on
average). Their study proves that richer feature vector increases
the recognition speed.

Another work which exploited motion features for gesture
recognition was conducted by Truong et al. [13]. Their model
computes the whole gestures mid-level features based on
Laban qualities, such as Shape and Effort [14]. Thus, each
gesture is represented by a set of 81 features. For classification
they use and compare SVM and Extra Trees. The model was
tested on the 12 full body iconic and metaphoric gestures
collected in the Microsoft Research Cambridge-12 (MSRC-
12) database [15]. High level of performance was obtained,
particularly with Extra Trees, showing the pertinence of Laban
features for gesture recognition.

All gesture recognition systems have limits and none of
them fit completely to our recognition constraints of dynamical
coupling during gestural interaction between a human and a
virtual character. HMM based recognition systems need a lot
of training samples to obtain good recognition rates, while
DTW underperforms with high within-gesture variance. For all
systems, the number of recognizable gestures is limited. The
gesture recognition is often based on upper body movements

and constraint by the user’s morphology. The recognition
systems need to reach the end of gesture to obtain a good
recognition rate and are not able to recognize gestures contin-
uously in the data flow.

To our knowledge, Yin [12] and Truong [13] research is
the closest system corresponding to our requirements. They
show that taking different features into account improves speed
recognition and robustness. However, Yin’s system is based
solely on upper body gestures and, even if it recognizes
quite fast, it does not seem to take big variation of gesture
expressivity into account. Truong’s system computes features
on the whole gesture, while we propose a use of sliding
window in the learning phase, to capture features at different
time of gesture execution. As explained in section III, this
technique will allow our Analysis module to recognize a
gesture fast and continuously, which is crucial in real-time
interactive applications and one of our main challenge in
human-virtual agent dynamical coupling.

III. GESTURE RECOGNITION BASED ON MOTION
FEATURES

Gesture recognition and features analysis process is divided
in two main parts: (i) an offline process in which the database
of reference gestures is created and used to determine the most
discriminant features able to differentiate the gestures, and (ii)
an online process that runs during the user-agent interaction
and that recognizes human’s gestures and expressivity in real-
time. For each gesture we collected ten repetitions performed
by a single person. Indeed, one of our goals is to implement
a module easy to train. Moreover, the person performs each
repetition in very different ways to ensure gestures recognition
is expressivity-independent. To assure expressivity variation in
recordings, each gesture was performed twice in five different
emotional states: neutral, happy, sad, stressed, and relaxed
(note that gestures vary in expressivity more naturally when
performed through emotional states than by asking the partic-
ipant to perform gestures faster or slower, more or less fluid,
etc.). Gestures are recorded as a sequence of unified 15-joints
skeleton in 3D positions, which allows device-independent
system, as explained in the introduction.

A. Database creation and features selection

The set of recorded gestures is divided in two subsets of
the same size. Both subsets are used in the offline process
- the first one is employed to create the reference database,
which is used during the online process to recognize gestures
in real-time; the second subset is utilized to create the support
database, which is necessary to determine the minimal number
of discriminant features. Both databases are created as follows.
A sliding window of 60 frames is used to cut each repetition
of a gesture in chunks with a shift of 30 frames. In each chunk,
motion features are computed frame by frame and their mean,
minimum, maximum, and standard deviation are calculated and
stocked as a line of the database, together with the correspond-
ing gesture class. This way each gesture is represented in the
database by several lines, one line per gesture repetition chunk.
Using several chunks for each repetition provides information
about the gesture temporal evolution. Moreover, with a shift
of only 30 frames, each chunk retains some information of



Fig. 2. Reference database creation: M gesture are recorded, each one
repeated N times. Overlapping sliding windows of 60 frames cut gestures
in chunks. Two hundred thirty three motion features are computed for each
gesture chunk and recorded as a line of the database, together with the class
name the gesture belongs to.

the previous chunk, avoiding any loss of potentially valuable
information in between two frames.

To compute features, the 3D coordinates of the skeleton
joints and the body position in the space (that corresponds to
the root joint position) are employed. To assure independence
of human’s morphology and of input device coordinate system,
all features are computed with normalized joints positions,
expressed in a relative coordinate system. Hands and elbows
joints are expressed in the coordinate system of the correspond-
ing shoulder and normalized with respect to the arm length,
while feet and knees joints are expressed in the coordinate
system of the corresponding hip and normalized with respect
to the leg length. The human position is considered to be
X=0, Y=0, and Z=0 in order to be independent of input device
coordinates.

Most of the features, such as body density, hands and feet
symmetry, and head, hands and feet kinetic energy, fluidity,
and directness, are computed following Piana and colleagues’
work [5]. Other features, computed for head, and each arm
and leg, are amplitude, speed, acceleration, velocity, and joints
direction in the coordinate systems XY, YZ, and ZX. Finally,
some arms and legs significant angles are computed: shoulder
angle (between the trunk and the arm), elbow angle (between
the arm and the forearm), leg angle (between the trunk and
the thigh), and knee angle (between the thigh and the calf). In
all, 233 features, normalized between 0 and 1, are computed.
Database creation is shown in Figure 2.

All features are not necessary to discriminate gestures. To
determine the minimal subset of discriminant features, PCA
is computed. Features are considered to be PCA individuals,
and gestures chunks are considered to be PCA variables. PCA
reduces the original data space in a lower-dimensional space,
transforming variables into new axes. From this new space, all
the axes that together can represent 90% of the information
are selected. Each individual (feature) has a value associated
in this new space. All the couples feature-value are sorted
in descending order, from the most important to the least
important. It is used to determine the minimum features list,
which is useful to discriminate database gestures. To deduce

this list, several global theoretical recognition1 rates, using
the support database as the test set, are computed: the first
recognition rate is obtained using only the first feature of the
list, the second recognition rate is computed using the first two
features of the list, the third one is obtained using the first three
features of the list, and so on, until all the features of the list
have been used. At the end a list of couples number of features-
recognition rate is obtained and sorted in descending order.
The first element (that is the best recognition rate) corresponds
to the minimum features list which are needed to discriminate
the gestures in the database.

A recognition rate is computed as follows. Each line of
the support database (which corresponds to a gesture chunk)
is compared with all the lines in the reference database to find
the most similar one. To determine this similarity with the best
possible reliability, three distance measures, based on different
mathematics concepts, are computed:

• Euclidean distance – computes the sum of the dis-
tances between each couple of two n-dimension vec-
tors (that is, two lines in the databases).

• Cosine distance – is the inverse of the similarity
between two n-dimension vectors computed as the
cosine of the angle between them.

• Jaccard distance – computes the dissimilarity between
two sets.

The comparison between a gesture chunk in the support
database and every gesture chunk in the reference database
returns, for each distance measure, a list of couples distance-
gesture class sorted in ascending order. This means that the
first elements of the three lists correspond to the most similar
gesture classes in the reference database. Since the module
knows which was the real gesture class of the current chunk,
it can determine which couples were correct and which were
not, and consequently compute the recognition percentage as
an average of correctly classified results. For example, if the
current chunk in the support database belongs to a gesture
in class G1 and if the comparison with all the lines in the
reference database determines that the closest gestures class is
G2 with Euclidean distance, G1 with Cosine distance, and G1
with Jaccard distance, then recognition rate is 66.6% (that is
(0% + 100% + 100%)/3).

Taking into account only the first element in the lists
of couples distance-gesture class is not as good as it could
seem. We noticed, in fact, that when a gesture chunk is hard
to recognize, several different gesture classes appear among
the first elements of the lists, which means that there is too
much uncertainty in order to determine the gesture class of
the current chunk. In this case, it would be a mistake to
consider only the closest gesture class determined by each
distance measure, that could provide a high recognition per-
centage for a gesture class when, in reality, the module is far
from recognizing correctly the chunk. For such a reason we
decided to take into account the first five most similar gestures
classes for each distance measure. Thus, the chunk recognition
percentage is computed five times: that is considering just the
first element in the lists, then considering the first two, then the

1For theoretical recognition we mean that gestures are recognized separately
and not in continuous flow.



first three, and so on. Each time the recognition percentage is a
weighted average of the good results provided by the distance
computation. It is weighted in the sense that the closest correct
gesture class (or classes) is more important than the most
distant ones.

The offline process computes the five recognition percent-
ages for each gesture chunk in the support database and deter-
mines the five global recognition rates as the mean of all chunk
recognition percentages. As explained before, it computes
these values several times, using just the most discriminant
feature to compute the distance with the gesture chunks in the
reference database, then using two features, and so on. At the
end, it selects the higher recognition rate and returns the list
of features associated as the most discriminant set of features,
as well as the number of the closest gesture classes that must
be considered in order to avoid false recognition.

B. Real-time recognition

Once the reference database calculated, the minimal set
of discriminant features selected and the number of closest
gesture classes to consider determined, the recognition mod-
ule is ready to recognize in real-time. The system, working
30 frames-per-second (fps), receives a skeleton of 15-joints
representing the user who is moving in front of the tracking
device. The skeleton joints are normalized and modified to
be represented in the body coordinate system, as explained
in section III-A. Then recognition algorithm computes and
stores features in a history (that is an array of 60 elements).
This history represents the sliding window used to compute all
discriminant features. The sliding window shift is one frame,
that is, once the history is full, each new features sequence
replaces the oldest one. That means that the discriminant
features are computed at each frame, which allows the system
to recognize gestures continuously. At each frame, the subset
of discriminant features is compared with all the lines in
the reference database using the three distance measures,
as described above, and recognition percentage is computed
taking into account the number of closest gesture classes to
consider, which have been determined in the offline process.
The Analysis module decides that a gesture is recognized only
if this gesture obtained a recognition percentage of 100%.

IV. IMPLEMENTATION CHOICES

Some of the choices we made to implement the Analysis
module could appear arbitrary: (i) we use a sliding window
of 60 frames with a shift of 30 frames to create the reference
database, (ii) we compute PCA on all gestures and not on
each gesture separately, and (iii) we use the same sliding
window and shift than in reference database to create the
support database (utilized in the features selection process).
In the following subsections these choices are clarified.

A. Reference database sliding window and shift

To determine the best size of the sliding window for
cutting gestures into chunks and the best size of the window
shift, a test was conducted: we compared the recognition rate
obtained with different sliding window and shift sizes. To
perform this evaluation, we collected 10 repetitions of 10
gestures as described before (in 5 different emotional states)

Fig. 3. Recognition rate for several window-shift couples

plus rest position2. We utilized five repetitions of each gesture
to create the reference database and five for testing purpose.
The recognition rates for the following couples of sliding
window size-shift size were computed: 16-8, 30-15, 46-23, 60-
30, 76-38, 90-45, 106-53, 120-60, and then 60-10, 60-15, 60-
20, 60-25, 60-35, 60-40, 60-45, 60-50, 60-55, and 60-60; for
each couple we conducted three tests:

• Test 1 – The reference database and the recognition
algorithm use the same couple of sliding window size-
shift size. We perform a theoretical recognition for
each gesture separately.

• Test 2 – The reference database and the recognition
algorithm use the same sliding window size, but a
different shift size. The recognition algorithm shifts
the sliding window of one frame. That is, we have a
set of features that represents a chunk of the gesture
at each single frame. Like in the first test, we perform
a theoretical recognition for each gesture separately.

• Test 3 – Similar to Test 2 but performed on a continu-
ous flow of gestures. This test uses the whole module
as it is actually used for real-time recognition.

Figure 3 presents the best recognition rates obtained in
each test, as well as their mean, and only rates higher than
95% are considered. Best results are obtained for reference
database created with couple of sliding window size-shift size
60-10, 60-30, 60-20, 60-15 and 60-60 (in descending order),
and with a shift size of one frame for the recognition algorithm.
In any case, best results are obtained with sliding windows
of 60 frames. We chose a shift of 30 frames rather than 10
because it stores less information in the reference database (the
third of the information that the couple 60-10 would generate).
Indeed, we need to favor the smallest possible database in
respect of real-time constraints and memory consumption.

B. PCA computed on the whole database

To determine the most discriminant features we utilized
PCA and performed two tests. The same set of 10 gestures (+
rest position), described in the previous section, was used with
the recognition algorithm on a continuous flow of gestures to
recognize the most pertinent features obtained with PCA: first
on the whole reference database (disregarding the gesture), and
secondly on each class of gestures separately. A recognition

2Upright with the arms parallel to the body.



rate of 100% was reached in the first and 99,8% in the second
test. The solution which leads to the best recognition rate was
chosen.

C. Support database

To compute the minimum features list which can discrimi-
nate the gestures, we created a support database with a sliding
window of 60 frames and a shift of 30 frames. Recognition
rates would be more precise if we would have used a shift of
a single frame, but computation would have increased signifi-
cantly. For our 10 gestures (+ rest position), creating reference
and support databases takes around 4 minutes, whatever the
shift size. But features selection takes 12 minutes with a shift
of 30 frames, and three hours and ten minutes with a shift of a
single frame, with quite similar results. We favored the fastest
solution because our system must respect the “training efforts”
requirement described in section I, that is it must be trained
easily and fast whenever new gestures need to be integrated.

V. EVALUATION

Several tests were performed in order to evaluate the
Analysis module performance. These evaluations answer the
following questions:

• Recognition delay – How fast does the module recog-
nize a gesture compared to a human?

• Recognition plasticity – Can the module recognize
gestures performed by different people? Can the mod-
ule recognize different gestures?

• Recognition rate – What is the module recognition
rate?

• Performance – How many gestures can theoretically
be added to the reference database without the com-
putational process exceeding 33.33 ms (time between
two consecutive skeletons in 30 fps)?

Implementations and evaluations were realized with a
computer ASUS N56V Series with proc Intel(R) Core(TM)
i7-3630QM 2.40 Ghz, RAM 6.00 Go, NVIDIA Geforce 740M.

A. Recognition delay

It is important that the recognition delay of the Analysis
module is not longer than that shown by a human. If such
a delay was longer, effective and satisfying human-agent
interactions would be very hard to obtain, as the user would
sense the unnatural movements/reactions of the virtual agent.
An evaluation was made using three gestures (two of them
start in a similar way and can be easily mixed up). We tracked
with a Kinect a human performing these three gestures ten
times, in a random order. The flow of skeletons is sent to the
Analysis module which prints the name at the beginning and
at the end of the gestures it recognizes. We created a video, as
shown in Figure 4, which shows a virtual character performing
these gestures as well as the Analysis module results.

The video is then annotated in three different ways:

• Expert annotation – an expert annotates the beginning
(when the virtual character starts to move from rest

Fig. 4. Gestures recognition video example

position) and the end (when the virtual character
comes back to the rest position) of each gesture. To
be accurate, the expert can view the video frame-by-
frame and rewind it whenever necessary.

• Natural annotation – twenty participants annotate the
video. Obviously, the Analysis module printing is
hidden. They have to annotate their own perception of
the gestures beginning and end. They cannot rewind
the video. They are only allowed to pause the video
in order to write their annotation.

• Analysis module results annotation – an expert an-
notates gestures’ beginning and end printed by the
Analysis module. This is necessary to synchronize all
the annotations done in the video.

Annotations are made using the ELAN software [16].

1) Participants: Twenty students (19 men and 1 woman)
aged from 20 to 23 (mean age: 21.25, SD: 1.04) were recruited
at the Brest National Engineering School for the annotation
purposes.

2) Experimental setting: An experimenter was present dur-
ing all the evaluation to check if the participants obeyed
the rules and to help them to use the annotation software if
needed. Before showing the video to annotate, the experiment
invited the participant to watch a video which showed the three
gestures to annotate with their corresponding names. Since it
was important that participants correctly memorized the three
gestures, they were allowed to re-watch this video as many
time as they wanted. Then, the experimenter taught them how
to make an annotation and, finally, determined the participant
reaction time. She showed them a video where the virtual
character raised its right arm three times; the participants had
to pause the video as soon as they could see the arm moving.
Reaction times were subtracted to the participants recognition
delay.

Eventually the test could begin. The experiment showed the
participant the video to annotate, reminding them that they had
to pause the video only when they recognized a gesture. At any
moment, the participant could consult a reminder sheet where
the name and the number of the gestures were written. For each
gesture, they had to annotate bX for “beginning gesture X”,
and eX for “ending gesture X”, X being the gesture number.



3) Analysis and results: To analyze the annotations, we
considered that the expert annotation provided the real be-
ginning and end time of each gesture. So, all delays were
computed with respect to them. Firstly, we computed the
average human recognition delay for the beginning and the
end of each gesture. Then we compared them with our module
recognition delay always for the beginning and the end of
each gesture. We performed a Wilcoxon test using the Minitab
software.

Figure 5 shows our module and the participants’ average
recognition delay for each gestures beginning. The average
human delay is 0.48 seconds (SD: 0.04). The average mod-
ule delay is 0.41 seconds (SD: 0.19). The Wikcoxon test
indicates a significant difference between human recognition
times and module recognition times. Our module detects faster
gesture beginning than humans (Wilcoxon test=170, P<0.01,
Median=0.49).

Figure 6 shows our module and the participants’ average
recognition delay for each gesture end. The average human
delay is -0.29 seconds (SD: 0.23). The average module delay
is 0.99 seconds (SD:0.45). The Wikcoxon test indicates a
significant difference between human recognition delay and
module recognition delay. Our module is slower than humans
to detect the end of a gesture (Wilcoxon test=0, P<0.001,
Median=0.1).

Fig. 5. Beginning detection delay in seconds. 0 corresponds to the expert
annotation. Gestures G5 and G6 were deleted since mixed up by our module.

Fig. 6. End detection delay in seconds. 0 corresponds to the expert annotation.
Gestures G5 and G6 were deleted since mixed up by our module.

4) Discussion: Gestures beginning are recognized faster by
our module than by participants. However, analyzing Figure
5 and the standard deviation, we noticed that ther module

recognition delay is quite irregular and depends on the type
of the gesture. When gestures are quite different, our module
recognizes them more easily and faster, so the recognition de-
lay could be improved if dissimilar gestures were considered,
consequently it could get worse if similar gestures were used.
Thus, we consider that the Analysis module can recognize a
gesture at the same time and speed as human, with possible
hesitation if gestures are too similar. The end of a gesture is
recognized faster by participants than by our module. Clearly,
participants anticipated the end of the gesture. The expert
annotator considered that a gesture was over when the virtual
character went back to the rest position, while participants
considered that a gesture ended when its stroke was finished.
Concerning the Analysis module, it does not detect gesture
end, it only detects that “something else” is beginning. We
decided to interpret this change as the end of the previous
gesture. Finally, it is important to notice that for people it is
more difficult to detect the end of a gesture (SD: 0.23) than
the beginning (SD: 0.04), which could indicate that the end of
a gesture depends on the context.

B. Recognition plasticity

This evaluation aims at verifying if the Analysis module
can recognize several gestures performed by people with
different morphology. We remind that one of our module
requirements is that training efforts should be limited, and
that gestures collected using just a person should be enough
to create a reference database which allows morphology-
independent gesture recognition. We want also to show that the
recognition rate is not correlated to the person who performed
the gestures to train the system.

Ten gestures are used in this evaluation. Five of them come
from the MSRC-12 Kinect gesture data set [15]: “Crouch/hide”
(G16), “shoot with a pistol” (G17), “throw an object” (G18),
“kick to attack an enemy” (G20), and “wind up the music”
(G24). Other gestures are provided by the Magician scenario
from Ingredible project: “say hello with the right hand” (G01),
“magician bow” (G05), “show enthusiasm” (G07), “no big
deal” (G09), and “incite to go faster” (G10). To test our module
plasticity, we added following:

• Gesture “no big deal” is a chunk of “wind up the
music” and “show enthusiasm” - it is supposed to be
badly recognized because confusion between the both
gestures is expected.

• Gesture “kick to attack enemy” is recorded as a perfect
art martial kick (perhaps badly performed by inflexible
people).

• Gesture “show enthusiasm” is recorded with wide
amplitude and strong energy (perhaps badly performed
by shy people).

1) Participants: Twenty participants with very different
morphology were recruited. There were 10 men and 10
women, aged from 22 to 58 (mean age: 32.65, SD: 10.84).
Their size varied from 1.53 meters to 1.83 meters (mean
size: 1.68, SD: 0.1). Their weight varied from 44.2 kg to
114.8 kg (mean weight: 67.74, SD: 16.41). We computed each
participant body mass index (BMI) which varied from 17.7 to
46.57 (mean BMI: 24.05, SD: 6.44).



The person who performed the gestures used to train
the system is a 39 year old woman measuring 1.61 meters,
weighting 51.2 kg, and with a BMI of 19.75.

2) Experimental setting: This evaluation was conducted in
a room dedicated to gestures capture where each participant
was located in front of the capture device (a Microsoft Kinect).
The evaluation was performed in two steps:

• Gestures learning – Each gesture was showed to the
participant, who could reproduce it several times in
order to be at ease with it. Gestures order was different
for each participant in order to avoid a bias due to
gestures learning order.

• Gestures performing – The participant was asked to
perform all ten gestures. He had to go back to rest
position after each gesture and wait for five seconds.
Gestures order was different for each participant. This
session was recorded to be analyzed.

3) Analysis and results: Each recording session was pro-
vided to the Analysis module which printed frame by frame
the name of the gesture it recognized (it printed “unknown”
otherwise). A Mann-Whitney test was computed to determine
whether there was a statistical difference concerning the results
obtained by men and women. A Pearson correlation test
was computed to determine whether age, size, weight, or
BMI influenced the recognition results. Since the woman who
performed the gestures to train the system participated also
to the evaluation, these tests aimed to verify if the module is
really morphology independent. Statistical tests were realized
with the Minitab software.

Figure 7 shows, for each gesture, the number of participants
whose gesture was correctly recognized. A Friedmann test
is computed to verify whether recognition rate is different
between gestures. There is a significant difference (Friedmann
test: 71.75, p<0.001).

Figure 8 shows, for each participant, the number of ges-
tures which were correctly recognized. The Mann-Whitney
test indicates that there is no significant difference between
results obtained by men and women (p>0.05). The Pearson
correlation test indicates that there is no significant difference
between results with respect to age (ρ: 0.334, p>0.05), size
(ρ: 0.034, p>0.05), weight (ρ: 0.214, p>0.05), and BMI (ρ:
0.221, p>0.05).

4) Discussion: Results show that our module can recognize
several gestures performed by people with different morphol-
ogy. It confirms that we succeed in normalizing features, and in
removing information related to the morphology of the person
used to train the system. We deliberately recorded only 5
variations of each gesture to test our module. But, it is possible
to improve recognition by recording more variations of the
same gesture.

Results show, however, that some people were recognized
better than other. A reason could be that participants had a brief
introduction to gestures, and did not necessarily memorize
correctly them. Sometimes, they did not make the correct
gesture, like for the gesture G07 (“show enthusiasm’), or were
not flexible enough, like for the gesture G20 (“kick”), which
requires the leg to be horizontal, which was not realizable by

Fig. 7. Number of correct recognized gestures

Fig. 8. Number of recognized gestures by participants

everyone. Concerning gesture G09 (“no big deal”), it was not
recognized even when the person who recorded the database
performed it. It confirms our hypothesis that a gesture which
is also a trunk of others gestures is not well detected by our
module.

C. Recognition rate

This evaluation aims at measuring our module raw recog-
nition rate in a real-time context, which means that the module
computes motion features for each received skeleton and
indicates the gesture it recognizes every time the recognition
percentage reaches 100%. This evaluation uses ten gestures,
which are almost the same than in the evaluation described in
section V-B. The gesture G09 (“no big deal’)’ is replaced by
G08 (“applause’)’.

Again, the ten gestures used to train our module were
performed by a single person, we call her person A. Another
person, person B, performed the gestures used for testing.
Person B knew the ten gestures quite well, she was at ease to
perform them. Person B did not have to purely copy gestures
from person A, but has to perform gesture in her own way; for
example, person A performed the gesture “shoot with a pistol”
shooting just once, while person B shot three times.

Person B was recorded twice:



TABLE I. RECOGNITION ACCURACY

Test 01 Test 02 Test 03

Total number of recognition 576 576 2175

Number of correct recognitions 575 575 2092

Number of incorrect recognitions 1 1 83

Accuracy 99.83% 99.83% 96.18%

TABLE II. RECOGNITION PRECISION AND RECALL

Precision Recall
Test 01 Test 02 Test 03 Test 01 Test 02 Test 03

G01 100% 100% 100% 100% 100% 100%

G05 100% 100% 100% 97% 97% 100%

G07 100% 100% 98% 100% 100% 100%

G08 100% 100% 94% 100% 100% 96%

G10 98% 98% 100% 100% 100% 77%

G11 100% 100% 93% 100% 100% 100%

G16 100% 100% 100% 100% 100% 100%

G17 100% 100% 100% 100% 100% 89%

G18 100% 100% 100% 100% 100% 100%

G20 100% 100% 100% 100% 100% 100%

G24 100% 100% 86% 100% 100% 100%

• Gesture by gesture – Each gesture was recorded in a
file, starting and finishing with rest position. Within
this session, we obtained 11 files (10 gestures + rest
position, called G11).

• Continuous flow – The whole gestures were recorded
in a single file. In this sample, gestures order was
different than that in the precedent one.

With these records, we tested recognition rate three times:

• Test 1 – The Analysis module receives the flow
of skeletons deriving from the “Gesture by gesture”
recording, in the same order in which the gestures
were recorded.

• Test 2 – Similar to Test 1, but the gesture order was
different.

• Test 3 – The Analysis module receives the flow of
skeletons deriving from the “Continuous flow” record-
ing.

1) Analysis and results: Comparing Test 1 to Test 2
determines whether the gestures order has an influence on
the recognition rate, while comparing Test 1 to Test 3 shows
the difference between pure gestures recognition and real-time
gestures recognition. To compute recognition rate, we used the
same measures proposed in [8]: accuracy, precision, and recall.

Table I shows details about recognition accuracy for
the three tests. Table II shows precision and recall for each
gesture. There is not difference between Test 1 and Test 2
results, which confirms that gestures are properly recorded
independently in the database.

For the three tests, 100% of gestures were correctly rec-
ognized during stroke. The bad recognition always appeared
between two gestures, during transitions.

Fig. 9. Module recognition computation times according to database number
of lines

2) Discussion: Results show a good recognition rate. In
fact, all gestures were recognized during stroke, without errors.
Errors appeared during transitions between two gestures. That
was the only difference between Test 1 (gesture by gesture)
and Test 3 (continuous flow). This result cannot be generalized
because recognition rate depends on recorded gestures. If we
record some gestures which have similar parts, the confusion
level will increase, so will the error rate. On the other hand, if
we record gestures which employ different parts of the body,
or which are quite different, confusion level will decrease, and
so will the error rate. The interpretation of these transitions
depends on the Decision module according to the scenario.

D. Performance

The recognition process compares real-time features with
all lines of the database. That means that the bigger the
database, the longer the computation time. This is one of
the limits of our module. This evaluation aims at measuring
the maximum number of gestures which can be added in the
reference database without computation time exceeding 33.33
ms. Our objective is to find the module’s computation limit.

1) Results and discussion: As explained in section III, each
line in the reference database represents a gesture chunk. The
longer gestures to recognize, the bigger the database will be.
Thus, this evaluation compares computation times according
to the database number of lines. We use database with several
number of lines: 100, 200, 300, and so on, until computation
times reaches 33.33 ms. For each database, the Analysis mod-
ule computes times between skeleton reception and gesture
recognition. This time is computed for 100 skeletons, and the
average time is stored in a file.

Figure 9 shows computation times in milliseconds accord-
ing to the database number of lines. A computation time
of 33.33 ms is reached when the database contains 1200
lines. Analyzing the gestures we collected for the evaluations
described in the previous sections, we noticed that the average
number of lines for a gesture was 37 lines. So, in theory we
could collect up to 32 gestures to recognize before that the
computation time becomes too long.

VI. CONCLUSION

The Analysis module, a component of the Ingredible
project framework which recognizes continuous gestures per-
formed by a user, was described in this paper. We propose
to represent gestures as a set of motion features computed on



a sliding window of 60 frames with 30 frames overlapping.
Thus, a gesture is cut into chunks and, since sliding windows
overlap, each chunk retains some information of the previous
chunk.

During real-time recognition, motion features are computed
at each received skeletons and they are compared to those in
the reference database to determine the most similar class of
gesture. This allows continuous recognition. Three different
distance measures are used which allows us to determine
when the module is 100% certain of its recognition and
when confusion appears, which means that the module cannot
provide an answer. In continuous real-time recognition this
confusion appears mainly during transitions. The evaluations
we conducted allowed us to provide answers to the questions
we rose in section V and to show that most of the the re-
quirements we described in section I are satisfied. Evaluations
confirmed that the recognition delay is similar to that shown
by humans, then our module is fast enough to be used in
interactive applications.

Moreover, the Analysis module has been proven quite
robust: it can recognize several gestures performed either with
different expressivity or by people with different morphology.
This is true even if the module was trained with just 5
very different repetitions of each gesture performed by a
single person. Such a result satisfies our “training efforts”
requirement.

The number of gestures in the database could increase
till 32 without loosing real-time performances, however code
optimization is still possible and we think that this number
could be higher. Last but not least, the recognition rate in
a continuous flow is quite good, when gestures are not too
similar the recognition rate is 100% during the stroke. Gestural
transitions are still a cause of confusion, however this informa-
tion could be used by the Decision module to anticipate that
something has changed in the user’s behavior.
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