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Upscaling for Adiabatic Solid–Fluid Reactions in Porous
Medium Using a Volume Averaging Theory

Chen Yang1,2 · Michel Quintard1,3 · Gérald Debenest1

Abstract In this paper, an upscaling study of solid–fluid combustion in porous medium with
homogeneous and heterogeneous heat sources is carried out using a volume averaging theory.
For the sake of simplicity, the reaction rate is assumed to be of first-order Arrhenius type and
convection is not taken into account. Local thermal non-equilibrium is considered between
the solid and fluid phases. During the resolution of closure problems, periodic boundary con-
dition is utilized in order to determine the effective coefficients in the upscaled model.The
obtained macroscale theory is validated against direct numerical simulation results for two
typical porous medium geometries made of simple unit cells, namely unconsolidated and
consolidated porous media. The comparisons between the present upscaled and microscale
results are conducted for various Damköhler numbers for both homogeneous and hetero-
geneous reaction cases. It has been found that, for the low Damköhler number cases, the
temperature profiles generated from the derived upscaled model are in accordance with that
of the microscale model. For the high Damköhler number cases, however, the macroscale
model fails to predict the combustion front and temperature profile, which evidently sug-
gests that the effects of neglected terms during the upscaling process should be re-examined
carefully in further investigations.
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List of Symbols

Latin Symbols

b Closure variable (m)
C Closure variable (W m−2 K−1)

K Effective thermal conductivity tensor (W m−1 K−1)

n Normal unit vector
u Transport coefficient (J m−2 s−1 K−1)

A0 Pre-exponential factor (s−1)

aV Specific surface (m−1)

A f m Surface area between the fluid and solid phases (m2)

cp Specific heat capacity at constant pressure (J kg−1 K−1)

E Activation energy (J mol−1)

F Arbitrary function of Taylor series
H Heat of chemical reaction (J m−3)

h Heat transfer coefficient (J m−3 s−1 K−1)

k Thermal conductivity (W m−1 K−1)

L Macroscopic characteristic length (m)

l Microscopic characteristic length (m)

qr xn Heat flux due to the chemical reaction (W m−3)

R Universal gas constant (J mol−1 K−1)

r Closure variable (K m2 s J−1)

s Closure variable (s)
T Temperature (K)

t Time (s)
V Unit cell volume (m3)

x, y Cartesian coordinates (m)

Greek Symbols

ε Porosity (−)

ρ Density (kg m−3)

τ Tortuosity (−)

ξ Distribution coefficient (−)

ζ Arbitrary function for the closure problem

Subscripts

f Fluid phase
in Inlet
int Interface between the solid and fluid phases
m Solid phase
r xn Reaction
u Unit cell



Superscripts

f Fluid phase
m Solid phase

1 Introduction

Coupling between transport phenomena in porous media and reactions appears in many fields
of engineering sciences such as bioremediation (Clement et al. 1996), drying (Whitaker
1977), pyrolytic decomposition (Puiroux et al. 2004) or combustion (Akkutlu and Yortsos
2002). Often, transport phenomena are described at one relevant scale: the microscale or
the macroscale for instance. Considering combustion problems, for instance, the model may
be used at the microscale to check some assumptions (local-scale equilibrium or not as in
Debenest et al. 2005) or at the macroscopic or Darcy’s scale using effective macroscale
parameters (Bruining et al. 2009). How to relate these two scales of description? Developing
a proper upscaling procedure is more challenging when the transport equations are coupled
with other linear or nonlinear processes such as reactions.

Upscaling transport phenomena in porous media has been the subject of many con-
tributions, and to deal with this fundamental issue, various upscaling methods have been
developed. Marle (1967), Slattery (1967) and Whitaker (1967) developed the volume aver-
aging method, whereas Sanchez-Palencia (1980) made use of homogenization techniques
and Matheron (1965) used stochastic analysis. The coupling between transport phenomenon
and reaction and its upscaling are not novel fields. For instance, Marle (1982) proposed to
upscale diffusion and reaction processes in multiphase flow to obtain a macroscale model
using the volume averaging theory. A large review has been done in Cushman et al. (2002),
and reader could also refer to references herein.

One of the interesting approaches and pioneer works, with an upscaling perspective, on
mass transport phenomena and coupled heterogeneous reactions was those of Ryan (1983),
Shapiro and Brenner (1986), Whitaker (1987) but also Shapiro and Brenner (1988). Valdés-
Parada and Aguilar-Madera (2011) extended this study to linear heterogeneous reactions in
porous media. Interesting results were obtained for larger Thiele modulus than the one stud-
ied by Ryan (1983) (less than unity). They carried out the upscaling process of mass transport
with chemical reaction in porous media using the method of volume averaging under diffu-
sive and dispersive conditions. It has been found that, for the homogeneous chemical reaction
case, the effective reaction rate is simply the multiplication of its microscopic counterpart
with the porosity, whereas an effective reaction rate coefficient should be obtained from a
closure problem for the heterogeneous chemical reaction case. A recent contribution made by
Valdés-Parada and Alvarez-Ramirez (2010) is a study on diffusion and homogeneous reac-
tion in porous media. All these studies were carried out in an isothermal case and considering
linear reactivities regarding concentration. Considering thermal transport in porous media
with homogeneous and heterogeneous heat sources, Quintard and Whitaker (1993) and Quin-
tard and Whitaker (2000) developed an upscaling analysis based on the volume averaging
theory. In their works, the assumptions of local thermal equilibrium and local thermal non-
equilibrium between the solid and fluid phases have been discussed extensively. Nevertheless,
the heat source they treated was assumed to be constant and uniform, which is not generally
applicable for the case of chemical reaction terms which take generally the form of a highly
nonlinear expression of Arrhenius type. As a consequence of the above analysis, we see that



different problems must be resolved when trying to develop macroscale models for heat and
mass transfers in porous media with chemical reaction: the problem of local equilibrium or
local non-equilibrium, the impact of reaction on dispersion properties, effective reaction rates,
and the coupling with heat transfer and highly nonlinear reaction rates. Our objective in this
paper is to check the validity and possibly improve the generalized non-equilibrium model
proposed by Quintard and Whitaker (2000) taking into account nonlinear homogeneous and
heterogeneous reaction sources. We limited, however, our ambitions to a chemical reaction
simplified to a zeroth-order Arrhenius type, namely the dependency of the reaction term with
the reactant concentration was not taken into consideration, but it remains nonlinear with tem-
perature. The absence of concentration dependence is certainly a limitation of the model for
many practical applications. However, this limitation allowed us to go more deeply into the
question of how to upscale heat transfer problems with highly nonlinear source terms, espe-
cially in the case of local non-equilibrium models. A full coupling with dispersion of the vari-
ous chemical species potentially involved in the reaction will be the objective of future studies.

The emphasis in this paper will be on local non-equilibrium models. Indeed, these models
have shown their potential to capture, even in extreme conditions, the local-scale behavior in
multiphase reactive systems. Referring to the literature, Kaviany (1991) made an inventory of
various situations and defined possible macroscale models to treat phase changes, reaction and
transport phenomena in multiphase systems. From this screening study, we see that flow prob-
lems involving chemical reactions, such as the case for combustion in multiphase systems,
often lead to local non-equilibrium processes and, therefore, requires the development of such
theories. Some problems have been formally upscaled in the literature. Sahraoui and Kaviany
(1994) proposed averaged models for premixed flames in porous media. Duval et al. (2004)
have developed a non-equilibrium model to treat intense evaporation in porous media. Puiroux
et al. (2004) developed an original three-phase non-equilibrium model to study heat transfer
and pyrolysis in ablative composite layers. In recent studies, Davit et al. (2010a) emphasized
the fact that different models may be developed, depending on the interplay of various charac-
teristic time and spatial scales. In particular, they discussed the use of a one-equation dynamic
model as a substitute for the asymptotic behavior of a more complicated two-equation model.
While such a model is simpler and may work under certain conditions (Moyne et al. 2000;
Quintard et al. 2001; Davit et al. 2010b), it is not as robust as the two-equation model and
may provide wrong indications, as illustrated in Davit and Quintard, (in press). Therefore,
we prefer not to develop this model and focus on the classical two-equation model.

In the present study, heat transfer in a porous medium is upscaled with the consideration
of homogeneous and heterogeneous source terms, which are assumed to be of the first-order
Arrhenius type, i.e., not limited to a mass transport equation but limited by temperature with
a nonlinear function. For convenience, we will depict the medium as a two-phase domain
with solid inclusions surrounded by a fluid phase. Only conductive transport in the solid and
fluid is considered. Local thermal non-equilibrium between the solid and fluid phases is con-
sidered. In order to test the theoretical results, microscopic calculations were performed for
a simple representation of a porous medium (namely inline arrangement of cylinders), thus
allowing for accurate numerical simulations which could be used to compare with macroscale
predictions.

2 Upscaling of Purely Conductive Two-Phase Medium

In this section, we will upscale the microscale system of equations in two distinct cases. At
first, we will consider the case of a porous medium with homogeneous reaction in the solid



Fig. 1 Averaging volume for solid and fluid phases in the representative elementary volume

phase. Then, we will homogenize the same system in the heterogeneous reaction case where
the reaction occurs at the surface between the two phases.

2.1 Pure Conduction with Homogeneous Reaction

We consider a rigid and immobile porous medium saturated by a fluid phase, such as the one
sketched in Fig. 1. Subscript f refers to the fluid phase and m to the solid phase.

We are interested in studying heat transport coupled with reactions. As previously men-
tioned, we first consider the purely conductive case with reactions in the bulk of the solid
phase. The reaction rate is a nonlinear function, depending only on the temperature and writ-
ten using an Arrhenius form, thus providing a strong coupling between heat transport and
mass transport. For the solid, energy balance is written as

(
ρcp

)
m

∂Tm

∂t
= ∇ · (km∇Tm) + qr xn (1)

and for the fluid phase as
(
ρcp

)
f

∂T f

∂t
= ∇ · (

k f ∇T f
)

(2)

The interfacial boundary conditions are expressed by

Tm = T f (3a)

nm f · km∇Tm = nm f · k f ∇T f (3b)



Furthermore, the reaction rate is assumed to be of zeroth order, so the released heat due
to the reaction is

qr xn = A0e−E/RTm × Hr xn (4)

As indicated above, this reaction rate does not depend on mass concentration. In general,
the reaction rate depends on both oxidizer and fuel concentrations. However, in the one-
dimensional discrete models, the zeroth-order reactions were widely used as reviewed by
Mukasyan and Rogachev (2008). For example, Beeston and Essenhigh (1963) studied the
kinetics of coal combustion in vitiated and enriched oxygen atmospheres and pointed out
that the reaction rate can be simplified to be zeroth order at a temperature as low as 800 ◦C.
Recently, Vandadi et al. (2013) introduced a novel structure for superadiabatic radiant porous
burner to enhance the efficiency. They used the zeroth-order reaction rate to model the
combustion fuel and air mixture. It is possible in the case where the reaction is not so
dependent of the oxygen concentration. Therefore, we will use the zeroth-order reaction as
presented in Eq. (4) to model the combustion in the porous medium in the present study, since
our goal is mainly to explore the conditions under which a local thermal non-equilibrium
model can be developed for highly nonlinear reactions.

We will now decompose the temperature into two contributions: an average temperature〈
T f,m

〉 f,m and a fluctuation T̃ f,m . One can note the reaction term is only a function of tem-
perature. Using Taylor’s series and neglecting the higher terms, for an arbitrary function F ,
we have

F
(
T f,m

) = F
(〈

T f,m
〉 f,m

)
+

(
T f,m − 〈

T f,m
〉 f,m

) {
∂ F

∂T f,m

∣∣∣∣
T f,m=〈T f,m〉 f,m

+ 1

2

(
T f,m − 〈

T f,m
〉 f,m

)2
{

∂2 F

∂T 2
f,m

∣∣∣∣∣
T f,m=〈T f,m〉 f,m

+ · · · (5)

Using the decomposition law T f,m = 〈
T f,m

〉 f,m + T̃ f,m , we have

F
(
T f,m

) = F
(〈

T f,m
〉 f,m

)
+ (

T̃ f,m
) {

∂ F

∂T f,m

∣∣∣∣
T f,m=〈T f,m〉 f,m

+ 1

2

(
T̃ f,m

)2

{
∂2 F

∂T 2
f,m

∣∣∣∣∣
T f,m=〈T f,m〉 f,m

+ · · · (6)

We made the choice to develop Eq. (4) with a Taylor series using the average value of
temperature in the REV . Replacing F by the reaction heat equation gives

qr xn = A0e−E/R〈Tm 〉m × Hr xn + T̃m A0 Hr xn
E

R
(〈Tm〉m

)2 e−E/R〈Tm 〉m + · · · (7)

The upscaling process involves many steps which have been discussed at length in the
literature. We will not provide details for the most well-known aspects which can be found in
Whitaker (1999) for the associated discussion and will focus on the original parts. Macroscale
temperatures are defined over the representative elementary volume (Bear 1972) sketched in
Fig. 1 as

〈Tm〉 = 1

V

∫

Vm

TmdV, 〈Tm〉m = 1

Vm

∫

Vm

TmdV (8a)

〈Tm〉 = εm〈Tm〉m (8b)



where
εm = Vm/V (9)

In addition, the local phase temperatures are related to the intrinsic phase averages and their
corresponding deviations based on Gray’s (1975) spatial decomposition written as follows

Tm = 〈Tm〉m + T̃m (10a)

T f = 〈
T f

〉 f + T̃ f (10b)

All subsequent development will make use of the assumption of scale separation, usually
expressed as l f , lm � r0 � L .The averaging of Eqs. (1) and (4), after usual modifications
involving the classical averaging theorems, leads to

εm
(
ρcp

)
m

∂ 〈Tm〉m

∂t
= ∇ · (

εmkm∇ 〈Tm〉m) + ∇ ·
(

km

V

∫

Am f

nm f T̃md A

)

+ 1

V

∫

Am f

nm f · km∇Tmd A + 〈qr xn〉 (11)

Dividing Eq. (11) by εm , which we assume to be constant (Darcy-scale homogeneous
medium), one obtains

(
ρcp

)
m

∂ 〈Tm〉m

∂t
= ∇ · (

km∇ 〈Tm〉m) + ε−1
m ∇ ·

(
km

V

∫

Am f

nm f T̃mdA

)

+ ε−1
m

V

∫

Am f

nm f · km∇ T̃mdA + ε−1
m 〈qr xn〉 (12)

With reference to Eq. (7), further manipulation of the last term on the right side gives

〈qr xn〉 = 1

V

∫

Vm

(

A0 Hr xn + T̃m A0 Hr xn
E

R
(〈Tm〉m

)2

)

e−E/R〈Tm 〉m
dV

=
(

εm A0 Hr xn + A0 Hr xn
E

R
(〈Tm〉m

)2

〈
T̃m

〉
)

e−E/R〈Tm 〉m
(13)

Furthermore, the averaging of Eq. (2) based on the similar procedures presented in the
preceding part generates

(
ρcp

)
f

∂
〈
T f

〉 f

∂t
= ∇ ·

(
k f ∇

〈
T f

〉 f
)

+ ε−1
f ∇ ·

(
k f

V

∫

A f m

n f m T̃ f d A

)

+ ε−1
f

V

∫

A f m

n f m · k f ∇ T̃ f d A (14)

Now applying the decomposition Eqs. (10a) to (1), we obtain

(
ρcp

)
m

∂ 〈Tm〉m

∂t
+ (

ρcp
)

m

∂ T̃m

∂t
= ∇ · (

km∇ 〈Tm〉m) + ∇ · (
km∇ T̃m

) + qr xn (15)



Replacing the reaction term in the above equation by Eq. (13) and then subtracting it from
Eq. (12), we have the following equation

(
ρcp

)
m

∂ T̃m

∂t
= ∇ · (

km∇ T̃m
) − ε−1

m ∇ ·
(

km

V

∫

Am f

nm f T̃mdA

)

− ε−1
m

V

∫

Am f

nm f · km∇ T̃md A

− (〈
T̃m

〉
ε−1

m − T̃m
)

A0 Hr xn
E

R
(〈Tm〉m

)2 e−E/R〈Tm 〉m
(16)

It is important to notice that the derivation of Eq. (16) involves neglecting the spatial
variations of km within V . In addition, under the constraint of length scales separation, it is
reasonable to regard intrinsic averaged quantities as linear within the REV so that Eq. (12)
is a local equation. In the development of Eq. (16), we made the assumption that the medium
is locally homogeneous, in particular, εm can be extracted from differential operators or
integrals. This is most of the time a reasonable assumption, unless one is close to a boundary,
problem that requires a specific treatment, or in the case where the medium structure is
strongly modified during the combustion process.

We can simplify this result on the basis of the restrictions (lm � L)

∇ · (
km∇ T̃m

) � ε−1
m ∇ ·

(
km

V

∫

Am f

nm f T̃mdA

)

(17)

〈
T̃m

〉 = 0 (18)

Therefore, Eq. (16) can be simplified as follows

(
ρcp

)
m

∂ T̃m

∂t
= ∇ · (

km∇ T̃m
) − ε−1

m

V

∫

Am f

nm f · km∇ T̃mdA + T̃m Da
km

l2
m

(19)

where Da is the Damköhler number defined as follows

Da = Hr xn

(ρcp)m

E

R
(〈Tm〉m

)2

A0e−E/R〈Tm 〉m
l2
m

km/(ρcp)m
(20)

The conduction term can be estimated as

∇ · (
km∇ T̃m

) = O
(

km T̃m

l2
m

)
(21)

and the estimation of the interfacial flux term is

ε−1
m

V

∫

Am f

nm f · km∇ T̃mdA = O
(

ε−1
m km T̃m

lm L

)
(22)

In order to compare the significance of the reaction term with the two other terms in
Eq. (19), we need to evaluate the multiplier term of T̃m in the last term of this equation.
To this end, we consider 〈Tm〉m equal to the combustion front temperature. However, this
is not a constant value and varies with time. Referring to some other parameters presented
in Table 1, we adopted the coefficients in the reaction schemes proposed by David et al.
(2003), who conducted thermal gravimetric analysis on cardboard material at different heating
rates. In order to obtain different Damköhler numbers, the pre-exponential factor A0 varies
substantially as shown in Table 1.



Table 1 Parameters for estimation of the reaction term

Parameter A0 E Hr xn km lm R

Unit 1/s J/mol J/m3 W/m ◦C m J/mol K

Value 105 − 108 6.8 × 104 2.25 × 106 1.5 3 × 10−3 8.314

Fig. 2 The value of Damköhler number in Eq. (20) with the variations of 〈Tm 〉m and A0

Based on these values, estimations of the three multiplying terms in the right side of
Eq. (19) are

conduction term:
km

l2
m

(23a)

interfacial flux term:
ε−1

m km

lm L
= ε−1

m lm
L

km

l2
m

� km

l2
m

(23b)

reaction term: Da
km

l2
m

(23c)

One should note that the value of 〈Tm〉m plays an important role in this comparison.
Fig. 2 indicates how the Damköhler number in Eq. (20) changes with temperature and pre-
exponential factor. We may conclude that, for small temperature values, the reaction term
becomes negligible, but when the temperature increases, this term becomes dominant by
comparison with the conduction and interfacial exchange terms. Based on this figure, we
assume that the rightmost term in Eq. (19) is negligible compared to the other terms, only for
the case where the Damköhler number defined in Eq. (20) is <1. According to Aldushin et al.
(1999), we can obtain an analytical estimate of the characteristic front temperature. Even if
heat losses are important, a superadiabatic regime might be observed. Reference temperature
depends on the thermal capacities and mass balance of fuel and oxidant. Then, referring to
the results of this study, one can obtain an estimate of the multiplier terms.



At the small scale, we can establish the deviation equations for temperature in the two
phases. In the solid,

(
ρcp

)
m

∂ T̃m

∂t
= ∇ · (

km∇ T̃m
) − ε−1

m

V

∫

Am f

nm f · km∇ T̃mdA (24)

In the fluid,

(
ρcp

)
f

∂ T̃ f

∂t
= ∇ · (

k f ∇ T̃ f
) − ε−1

f

V

∫

Am f

n f m · k f ∇ T̃ f dA (25)

The interfacial boundary conditions

T̃m = T̃ f + 〈
T f

〉 f − 〈Tm〉m at A f m (26a)

nm f · km∇ T̃m = nm f · k f ∇ T̃ f + nm f · k f ∇
〈
T f

〉 f − nm f · km∇〈Tm〉m at A f m (26b)

At this point of the development, we have to solve a mixed problem combining the
macroscale equations Eqs. (12) and (14) with the microscale equations Eqs. (24) and (25),
as well as the boundary conditions Eqs. (26a) and (26b). Such problems have received a lot
of attention in the literature, as discussed in Davit et al. (2012). Several models may be built
depending on the degree of approximation of the coupling. If one wants to keep the whole
dynamic of the coupling, a closure may be introduced involving time convolution products
(Moyne 1997; Davit et al. 2012). As shown in Davit et al. (2012), the time convolutions after
some relaxation times may be approximated by a quasi-steady closure, which plays a fun-
damental role in the discussion about the various macroscale models. In this paper, we will
use such a closure, and following Quintard and Whitaker (1993), we introduce the following
representations for T̃m and T̃ f .

T̃m = bmm · ∇〈Tm〉m + bm f · ∇〈
T f

〉 f + sm

(
〈Tm〉m − 〈

T f
〉 f

)
+ ζm (27a)

T̃ f = b f m · ∇〈Tm〉m + b f f · ∇〈
T f

〉 f − s f

(〈
T f

〉 f − 〈Tm〉m
)

+ ζ f (27b)

where ζm and ζ f are arbitrary functions, and bmm , bm f , b f m , b f f , sm and s f are known as
the closure variables. The corresponding closure problems can be found in “Appendix 1.”

Introducing the representations of Eqs. (27a) and (27b) into the averaged equations
Eqs. (12) and (14), we obtain a two-equation model (TEM) with reaction in the solid phase
such as

εm
(
ρcp

)
m

∂ 〈Tm〉m

∂t
= ∇ ·

(
Kmm · ∇〈Tm〉m + Km f · ∇〈

T f
〉 f

)
+ umm · ∇〈Tm〉m

+ um f · ∇〈
T f

〉 f − h
(
〈Tm〉m − 〈

T f
〉 f

)
+ εm A0e−E/R〈Tm 〉m × Hr xn

(28)

ε f
(
ρcp

)
f

∂
〈
T f

〉 f

∂t
= ∇ ·

(
K f f · ∇〈

T f
〉 f + K f m · ∇〈Tm〉m

)
+ u f m · ∇〈Tm〉m

+ u f f · ∇〈
T f

〉 f + h
(
〈Tm〉m − 〈

T f
〉 f

)
(29)



where the transport coefficients are defined by

Kmm = εmkmI + km

V

∫

Am f

nm f bmmd A (30a)

Km f = km

V

∫

Am f

nm f bm f d A (30b)

K f f = ε f k f I + k f

V

∫

Am f

n f mb f f d A (30c)

K f m = k f

V

∫

Am f

n f mb f md A (30d)

The heat transfer coefficient has already been defined in Eq. (71) and is given by the
resolution of the closure problem Eqs. (67) through (69). The four non-traditional convective
transport terms in Eqs. (28) and (29) depend on the coefficients umm , um f , u f m and u f f that
are determined by

umm = 1

V

∫

Am f

nm f · km∇bmmdA + km

V

∫

Am f

nm f smdA (31a)

um f = 1

V

∫

Am f

nm f · km∇bm f dA − km

V

∫

Am f

nm f smdA (31b)

u f m = 1

V

∫

Am f

n f m · k f ∇b f mdA + k f

V

∫

Am f

n f ms f dA (31c)

u f f = 1

V

∫

Am f

n f m · k f ∇b f f dA − k f

V

∫

Am f

n f ms f dA (31d)

As a partial conclusion, we may emphasize the fact that starting with a purely conductive
problem, we have obtained a TEM of a conductive form with cross-terms and some additional
convective terms. The average flux exchanged between the two phases involves a traditional
exchange term with additional “convective”-like terms. Finally, the nonlinear reaction rate
is expressed in terms of the average temperature only, but we must keep in mind that there is
below this result an assumption that the Da number is small enough. This assumption will
be tested later in this paper.

This allows to close the entire macroscale model, and effective parameters calculations
will be done in simple unit cells. We will now study the case of heterogeneous Arrhenius
reaction between two phases and the local non-equilibrium macroscale model.

2.2 Pure Conduction with Heterogeneous Reaction

We consider now the same porous medium, but the reaction will take place at the inter-
face separating the two phases. We write the system of equations, with adapted boundary
conditions, as

(
ρcp

)
m

∂Tm

∂t
= ∇ · (km∇Tm) in Vm (32)

(
ρcp

)
f

∂T f

∂t
= ∇ · (

k f ∇T f
)

in V f (33)

Tint = Tm = T f at A f m (34a)

n f m · k f ∇T f = n f m · km∇Tm + qr xn at A f m (34b)



where the heterogeneous reaction heat is taken as

qr xn = A0e−E/RTint × Hr xn (35)

Here, we keep the same mathematical notation than for the homogeneous reaction for
sake of simplicity, while units and values are different. Moreover, the Damköhler number for
the heterogeneous reaction case is different with the Eq. (20) and defined as follows

Da = A0e−E/R〈Tm 〉m
lm

km/(ρcp)m
(36)

Following the volume averaging method outlined before, we can obtain two macroscopic
equations

εm
(
ρcp

)
m

∂ 〈Tm〉m

∂t
= ∇ ·

[

km

(

εm∇ 〈Tm〉m + 1

V

∫

Am f

nm f T̃mdA

)]

+ 1

V

∫

Am f

nm f · km∇Tmd A (37)

for the solid, and

ε f
(
ρcp

)
f

∂
〈
T f

〉 f

∂t
= ∇ ·

[

k f

(

ε f ∇
〈
T f

〉 f + 1

V

∫

A f m

n f m T̃ f dA

)]

+ 1

V

∫

A f m

n f m · k f ∇T f d A (38)

for the fluid.
Furthermore, the governing equations of the spatial deviation temperatures are obtained

after manipulations similar to the ones outlined in the previous section. We have

(
ρcp

)
m

∂ T̃m

∂t
= ∇ · (

km∇ T̃m
) − ε−1

m

V

∫

Am f

nm f · km∇ T̃mdA in Vm (39)

and
(
ρcp

)
f

∂ T̃ f

∂t
= ∇ · (

k f ∇ T̃ f
) − ε−1

f

V

∫

A f m

n f m · k f ∇ T̃ f dA in V f (40)

The interfacial boundary conditions give

T̃m = T̃ f + 〈
T f

〉 f − 〈Tm〉m at A f m (41a)

n f m · k f ∇ T̃ f = n f m · km∇ T̃m − n f m · k f ∇
〈
T f

〉 f

+ n f m · km∇〈Tm〉m + qr xn (41b)

Analogous to Eq. (7), the heterogeneous reaction heat can also be expanded as the function
of

〈
T f

〉 f and T̃ f . Then, one can have

qr xn = A0e−E/R〈T f 〉 f × Hr xn + T̃ f A0 Hr xn
E

R
(〈

T f
〉 f

)2 e−E/R〈T f 〉 f + · · · (42)



Based on the boundary condition Eq. (41a), the combination of Eqs. (7) and (42) readily
gives spatial deviation temperature of solid phase at the interface:

T̃m =
E

R
(〈T f 〉 f

)2 e−E/R〈T f 〉 f
(
〈Tm〉m − 〈

T f
〉 f

)
−

(
e−E/R〈Tm 〉m − e−E/R〈T f 〉 f

)

E
R(〈Tm 〉m)

2 e−E/R〈Tm 〉m − E

R
(〈T f 〉 f

)2 e−E/R〈T f 〉 f

= w (43)

In this study, following the discussion in the previous section, the closure problem is
assumed to be quasi-steady. As a consequence, the closure problem can be simplified to

0 = ∇ · (
km∇ T̃m

) − ε−1
m

V

∫

Am f

nm f · km∇ T̃mdA (44)

0 = ∇ · (
k f ∇ T̃ f

) − ε−1
f

V

∫

A f m

n f m · k f ∇ T̃ f dA (45)

Based on the flux boundary condition Eq. (41b), these two surface integrals can be related
by

1

V

∫

A f m

n f m · k f ∇ T̃ f dA = 1

V

∫

A f m

n f m · km∇ T̃mdA + aV 〈qr xn〉 f m (46)

where

〈qr xn〉 f m = 1

A f m

∫

A f m

(

A0 Hr xn + wA0 Hr xn
E

R
(〈Tm〉m

)2

)

e−E/R〈Tm 〉m
d A

=
(

1 + w
E

R
(〈Tm〉m

)2

)

A0 Hr xne−E/R〈Tm 〉m
(47)

According to Quintard and Whitaker (1993, 2000), this form of the closure problem
suggests the following representations for T̃m and T̃ f .

T̃m = bmm · ∇〈Tm〉m + bm f · ∇〈
T f

〉 f + sm

(
〈Tm〉m − 〈

T f
〉 f

)
+ rm〈qr xn〉 f m (48a)

T̃ f = b f m · ∇〈Tm〉m + b f f · ∇〈
T f

〉 f − s f

(〈
T f

〉 f − 〈Tm〉m
)

+ r f 〈qr xn〉 f m (48b)

where rm and r f are the specific closure variables for the heterogeneous case. The closure
variables bmm , bm f , b f m , b f f , sm and s f can be solved by the Eqs. (57)–(71). Therefore, the
focus in this part is to determine how the heterogeneous heat source is distributed between
the solid and the fluid. This is the major difference with the preceding section. As the reaction
occurs at the local scale on the surface A f m , the macroscale distribution of heat is not given
a priori. The problem of the impact of the heat source terms has received less attention,
but our idea is to follow the development presented in Quintard and Whitaker (2000). The
corresponding closure problem takes the form

km∇2rm = aV ε−1
m ξm in Vm (49)

Boundary conditions
r f = rm at A f m (50a)

n f m · k f ∇r f = n f m · km∇rm + 1 at A f m (50b)



k f ∇2r f = aV ε−1
f ξ f in V f (51)

Periodicity: r f (r + �i ) = r f (r) , rm (r + �i ) = rm (r) , i = 1, 2, 3 (52a)

Average:
〈
r f

〉 f = 0, 〈rm〉m = 0 (52b)

where ξm and ξ f are given by

ξm = 1

Am f

∫

Am f

nm f · km∇rmd A, ξ f = 1

A f m

∫

A f m

n f m · k f ∇r f d A (53)

According to the boundary condition Eq. (50b), we get

ξ f + ξm = 1 (54)

After determining the terms associated with the spatial deviation temperatures, we can
obtain the closed form of the macroscopic governing equations given by

εm
(
ρcp

)
m

∂ 〈Tm〉m

∂t
= ∇ ·

(
Kmm∇〈Tm〉m + Km f ∇

〈
T f

〉 f
)

+ umm · ∇〈Tm〉m

+ um f · ∇〈
T f

〉 f − h
(
〈Tm〉m − 〈

T f
〉 f

)

+ aV ξm

(

1 + w
E

R
(〈Tm〉m

)2

)

A0e−E/R〈Tm 〉m
Hr xn (55)

for the macroscale solid phase and

ε f
(
ρcp

)
f

∂
〈
T f

〉 f

∂t
= ∇ ·

(
K f f ∇

〈
T f

〉 f + K f m∇〈Tm〉m
)

+ u f m · ∇〈Tm〉m

+ u f f · ∇〈
T f

〉 f + h
(
〈Tm〉m − 〈

T f
〉 f

)

+ aV ξ f

(

1 + w
E

R
(〈Tm〉m

)2

)

A0e−E/R〈Tm 〉m
Hr xn (56)

for the macroscale fluid phase.
In this section, the two macroscale models associated with the homogeneous and het-

erogeneous reactions are obtained. The appearance of these two models are similar, but the
corresponding two thermal sources play different roles in the closure problem. As pointed
out by Quintard and Whitaker (2000), the heterogeneous thermal source gives rise to both a
source and a coupling term, whereas the homogeneous thermal source gives rise to only a
coupling term.

3 Physical Model and Validations

In this section, we are interested in validation tests. Even if one would normally use complex
unit cells and more realistic geometries for practical applications, we will only use simple
unit cells, which have all the necessary characteristics for the testing purposes. Those are
illustrated in Fig. 3. The first one is typical of an unconsolidated porous medium, in which
the cylinders are placed in inline arrangement. In addition, the second one is an example of
consolidated porous medium, in which the solid matrix is connected and surrounded by the



Fig. 3 Schematic of the DNS models and the unit cells

quadrant voids. This latter case was chosen because we know that contact point effects may
have a strong impact for heat transfer problem (Shonnard and Whitaker 1989; Davarzani
et al. 2011). As shown in the previous part, there are closure variables which need to be
determined in the upscaled model. Generally, the closure calculations are carried out by
using symmetric unit cells (Ryan et al. 1981; Eidsath et al. 1983; Ochoa et al. 1986; Kim
et al. 1987; Quintard 1993) for illustrating effective properties behavior. Moreover, Nozad
et al. (1985) claimed that the utilization of periodic boundary condition in the closure problem
can provide excellent agreement between theory and experiment for disordered systems.

While the use of periodic boundary condition is fulfilled in our case given the geometry
periodicity, we would like to remind the reader that, in many real cases, the use of periodic
conditions is impossible. With the development of imaging techniques like X-ray tomog-
raphy, it is possible to access the 3D microstructure of porous media. In some cases, the
traditional periodic closure problem may be used to give an acceptable estimate of the effec-
tive properties, but the periodicity conditions may result in dramatic errors according to the
results of Lux (2010). Comparing the use of different boundary conditions to determine the
effective diffusion tensor of low porosity materials, he showed how bad could be the estimate
when using periodic conditions, due to percolation effects.

In this study, the first geometry will be used in order to check the accuracy of our upscaling
method by comparison with previous works. The second one is different and was chosen in
order to investigate the effects of contact between solids. It must be noticed that this is not
a realistic geometry in terms of transport in the “fluid” phase, which is now not percolating,
but it serves our purposes to emphasize the impact of a continuous solid phase.

Based on those unit cells, closure variables are calculated and the corresponding effective
properties are presented in Figs. 4, 5, 6 and 7. In order to validate the upscaled model, the
properties calculated from the first unit cell are compared with that of Quintard et al. (1997).
The integro-differential system of equations is solved using the COMSOL Multiphysics



Fig. 4 Effective conductivity of the macroscale solid phase versus the ratio km/k f and for different porosities

package. For the convergence criteria, the residuals of all equations are < 10−6. Moreover,
we have performed a sensitivity analysis to the grid size, which can guarantee that all of the
calculation results in this study are independent of the grid size with a relative error < 2 %. In
all cases, the results of our calculations are compared with the one of Quintard et al. (1997) for
the first unit cell, namely the inline arrangement of cylinders. For two porosities equal to 0.38
and 0.70, results in Figs. 4, 5, 6 and 7 show a very good agreement between our calculations
and those previously obtained based on a finite volume method over a Cartesian grid.

In Figs. 4, 5, 6 and 7, the effects of contact between solids on the effective properties of
porous medium are addressed. Furthermore, the effects of porosity on the effective properties
of porous medium based on the two unit cells are also investigated in these four figures.

In Fig. 4, the effective solid conductivity is plotted over a large range of small-scale
conductivity ratio. With the rise of km/k f , the effective conductivity Kmm/km = Kmm/kmI
decreases and approaches a constant value, depending on the porosity and unit cell geometry.
Based on the analysis conducted in “Appendix 2,” Kmm/km tends to εm/τm in the limit of
large ratio km/k f . Here, τm is the solid phase tortuosity, which is larger than unity and can be
determined by the solution of the closure problem over a representative unit cell. Comparing
these two unit cells, it can be seen that effects of contact points are not significant at small
ratio km/k f , for the same porosity.

In Fig. 5, the effective fluid phase conductivity is plotted for the two unit cells and two
porosities. At a given porosity, it can be clearly seen that the effective conductivity K f f /k f =
K f f /k f I is influenced by the geometry and contact points. At low ratio km/k f , the effective
conductivity of the fluid phase based on the second unit cell is zero, because the fluid phase
is isolated by the solid phase with low thermal conductivity and not conducting directly the
heat within the sample. Same effects are present in the first unit cell, but they are not so
important regarding the effective fluid conductivity values determined at low ratio. Based
on the analysis conducted in “Appendix 2,” K f f /k f tends to ε f /τ f in the limit of small
ratio km/k f , where τ f is the fluid phase tortuosity. Moreover, K f f /k f is not significantly
dependent on the ratio values for the first unit cell. Also, we can note the influence of the
porosity on the conductivity values. Increasing the porosity, i.e., increasing the fluid fraction



Fig. 5 Effective conductivity of the macroscale fluid phase versus the ratio km/k f and for different porosities

Fig. 6 Heat transfer coefficient for two porous medium geometries and different porosities depending on the
ratio km/k f

volume, leads to larger values of K f f /k f , as expected from the contribution of terms like
εαkα in the RHS of Eq. (79). For all cases, with large values of km/k f , a constant value
K f f /k f is obtained, which is consistent with the previous observations in Quintard and
Whitaker (1993). It can be noticed that large ratio values of effective conductivities are the
same in all cases, and they do not depend on the geometry at the microscale if the fluid phase
is not insulated by solid inclusions.

In Fig. 6, we plot the heat transfer coefficient for two unit cells as a function of the ratio
km/k f . It should be mentioned that the parameter k⊥ indicated in Fig. 6 is defined as 1

k⊥ =



Fig. 7 Distribution coefficient for two porous medium geometries and different porosities depending on the
ratio km/k f

ε f
k f

+ εm
km

, which is the theoretical lower bound of the effective stagnant thermal conductivity
based on the perpendicular model. For the large conductivity ratio, the behaviors of closure
problem associated with heat transfer coefficient are investigated in “Appendix 2.” The ana-
lytical solutions show that the asymptotic behaviors exist when the limit of km/k f (or k f /km)
goes to infinity. This phenomenon is consistent with the numerical results observed in Fig. 6.

In Fig. 7, the distribution coefficient is plotted for increasing ratio km/k f . Two porosities
and the contact point effects are investigated. At low values of km/k f , all the heat is distributed
in the fluid phase. When the heat conduction in the fluid phase is not the dominating process,
the distribution coefficient is nearly equal to zero, i.e., all the heat is transferred to the solid
phase. This is in good agreement with previous observations made in Quintard et al. (2000). It
also can be found that the increase of ε f results in the decrease of the distribution coefficient,
but the thermal conductivity ratio km/k f has more significant influence on the distribution
coefficient than porosity does for both unit cells.

From the comparisons in these four figures, it can be concluded that for the same porosity,
effective conductivities of solid and fluid phases and heat transfer coefficient have a higher
dependence on the phase connectivity than the distribution coefficient does. In all cases, we
have validated our approach using the comparison with previous calculations from Quintard
et al. (1997), Quintard and Whitaker (2000) and then studied the effects of porosity variations
and contact points.

4 Validation Against DNS Results

In this part, the idea is to verify whether or not the proposed upscaled model is able to
reproduce the results obtained with direct numerical simulation (DNS) over the microscopic
geometry. The system presented in Fig. 3 is under thermal adiabatic condition, except at the
inlet face (i.e., x = 0) which is kept at a uniform temperature. The main characteristics of



Table 2 Model parameters Parameter Value

Unit cell dimension, mm (x, y) 3, 3

Solid dimension for the first unit cell, mm (radius) 1.332

Fluid dimension for the second unit cell, mm (radius) 1.043

Model dimension, mm (x, y) 15, 3

Inlet temperature/Initial temperature (◦C) 300/25

Thermal conductivity ratio
(
km/k f

)
10

Heat capacity ratio
(
ρcp

)
m /

(
ρcp

)
f 1.6 × 103

Fig. 8 Low Damköhler number (Da = 0.2) for the homogeneous case (ε f = 0.38) based on the first unit
cell

the model are given in Table 2. We give the real values used in our calculations and geometry
definitions. One can note that we focus our attention on specific values of thermal conductivity
and heat capacity ratio close to values encountered in solid–gas combustion (Debenest et al.
2005). Furthermore, the dimensionless microscopic and macroscopic governing equations
are obtained and presented in “Appendix 3.” It should be mentioned that the Damköhler
number discussed in this section is based on the inlet temperature and varies by changing the
pre-exponential factor A0.

In Figs. 8, 10 and 12, the comparisons between the upscaled and DNS results for the
homogeneous case are presented for three different Damköhler numbers and for the first unit
cell, namely the inline arrangement of cylinders versus the dimensionless T , which is the ratio
of volume averaged temperature to the inlet temperature. In Figs. 9, 11 and 13, we represent
the averaged temperature profiles of the upscaled model for the second unit cell at different
front locations compared with that of DNS model for different Damköhler numbers. In Figs.
8 and 9, for low Damköhler numbers, we obtain a good prediction for the temperature profiles
compared to those given using the DNS model. Temperature fluctuations are observed for the



Fig. 9 Low Damköhler number(Da = 0.2) for the homogeneous case (ε f = 0.38) based on the second unit
cell

Fig. 10 Medium Damköhler number (Da = 2) for the homogeneous case (ε f = 0.38) based on the first unit
cell

averaged temperatures in the inline arrangement of cylinders and not so evident in the second
unit cell. This is a classical behavior when averaged values are built from the DNS results
by averaging over a single unit cell. This kind of averaging is not sufficient to produce a
completely regularized average field as pointed out by Marle (1965; 1967; 1982), Mls (1987)
and Prat (1989). It has been discussed at length in Quintard and Whitaker (1993, 1994a, b, c).
This is why we can observe local-scale fluctuations for the DNS averaged values in Figs. 8,
10 and 12. However, these values are enough to materialize the trend and permit a comparison
with the upscaled model results.



Fig. 11 Medium Damköhler number (Da = 2) for the homogeneous case (ε f = 0.38) based on the second
unit cell

Fig. 12 High Damköhler number (Da = 20) for the homogeneous case (ε f = 0.38) based on the first unit
cell

For the medium Damköhler number as shown in Figs. 10 and 11, the prediction of the
upscaled model is still acceptable at the initial times of the combustion process, where the
temperature is not so high. But, after one unit cell, the temperature increases and the upscaled
models fail in predicting with accuracy the temperature level. Nevertheless, the differences
remain acceptable.

Furthermore, for the high Damköhler number as indicated in Figs. 12 and 13, the upscaled
model fails in predicting the temperature. This is because, for high Damköhler number, the
rightmost term in Eq. (16) neglected in the present upscaled model becomes significant and



Fig. 13 High Damköhler number (Da = 20) for the homogeneous case (ε f = 0.38) based on the second
unit cell

more important than the two other terms. Hence, the ignorance of reaction term in Eq. (16)
would result in significant discrepancies in this situation. Another possible reason is the
discard of higher order terms for the reaction heat term in Eq. (6). Contact point effects are
significant in terms of fluctuations within the unit cell when averaging DNS results in all
cases. They decrease the local-scale variations of temperature. It is important to notice that
even with contact point effects, no important differences exist between DNS and upscaled
model.

In Figs. 8, 9, 10, 11, 12 and 13, it also can be found that for low Damköhler number, no
peaks are present in the averaged temperature profiles. These are exactly the same behaviors
with those observed in Fadaei (2009). This can be explained by the Damköhler value, where
characteristic times for reaction and transport are compared. In this case, Da = 0.2, heat is
much faster conveyed by conduction than produced by the reaction. Then, no accumulation
is possible.

In summary, there are two potential possibilities to further improve the validity of the
upscaled model for high Damköhler number:

1. the reconsideration of reaction term in Eq. (16);
2. the utilization of higher order terms in Eq. (6), which would introduce some other closure

variables.

The results for the heterogeneous case based on the upscaled and DNS models are pre-
sented for the two unit cells in Figs. 14, 15, 16, 17, 18 and 19. Once again, for low Damköhler
number, in Figs. 14 and 15, the good match between DNS results and upscaled approach is
obvious. Nevertheless, fluctuations appear more significant with the inline arrangement of
cylinders. It is consistent with previous observations for the homogeneous reaction. Even for
high Damköhler numbers, the agreement between upscaled approach and the DNS results
can be considered to be acceptable. In the first unit cell, the same observations are done for
fluctuations, but the profiles in the second unit cell are smoother and follow with accuracy
the prediction of local-scale model.



Fig. 14 Low Damköhler number (Da = 0.2) for the heterogeneous case (ε f = 0.38) based on the first unit
cell

Fig. 15 Low Damköhler number (Da = 0.2) for the heterogeneous case (ε f = 0.38) based on the second
unit cell

However, with the increase of Damköhler number, the prediction based on the upscaled
model is getting worse, especially in the range of high temperature. This suggests to take
into account other terms inside the developments of the effective reaction rate. Increasing the
reactivity will lead us to strong variations of temperature within the unit cell, and an average
value of temperature to estimate the reactivity will lead to major errors.

As discussed in this section, it also should be noted that for both unit cells studied in this
paper, the discrepancy between DNS and the upscaled model is smaller for the heterogeneous
case than that for the homogeneous case. The possible reason is that, for the homogeneous
case, the multiplier term of T̃m in the rightmost term of Eq. (19) was neglected for the sake of



Fig. 16 Medium Damköhler number (Da = 2) for the heterogeneous case (ε f = 0.38) based on the first
unit cell

Fig. 17 Medium Damköhler number (Da = 2) for the heterogeneous case (ε f = 0.38) based on the second
unit cell

simplicity. But this simplification is only suitable for low Da number. For the heterogeneous
case, however, the spatial deviation temperature of the solid phase at the interface T̃m was
estimated by Eq. (43), which resulted in a better agreement between DNS and the upscaled
model.

Finally, it should be remarked that our results show that the additional convective-like
terms do not play a significant role for the purely diffusive case under consideration and
for the 1D initial boundary value problems solved in this paper. For instance, numerical
results for the macroscale equations with or without these terms do not exhibit a significant
difference.



Fig. 18 High Damköhler number (Da = 20) for the heterogeneous case (ε f = 0.38) based on the first unit
cell

Fig. 19 High Damköhler number (Da = 20) for the heterogeneous case (ε f = 0.38) based on the second
unit cell

5 Conclusions

In the present study, we have developed a macroscale model for heat transport with Arrhe-
nius type reactions in porous medium. We used a simplified form of the chemical reaction to
describe both homogeneous and heterogeneous reactions. The chemical reaction was simpli-
fied to be of zeroth-order Arrhenius type, namely the dependency of reactant concentration
was not taken into consideration, but it remains nonlinear with temperature. The absence



of concentration dependence is certainly a limitation of the model. However, this limitation
allowed us to go more deeply into the question of how to upscale heat transfer problems
with highly nonlinear source terms, especially in the case of local non-equilibrium models.
A full coupling with dispersion for the various chemical species potentially involved will
be the objective of future studies. Moreover, convection at the local scale in the fluid phase
was discarded, and local thermal non-equilibrium assumption between the fluid and solid
phases was considered, according to the literature review. Based on two unit cell models, we
have obtained the effective properties, effective conductivities of each phases, heat transfer
coefficient, as well as the distribution coefficient depending on the ratio of conductivities
at the local scale. We have compared our values with those of previous studies, in order to
validate our approach. The effects of porosity variations were investigated using these two
unit cells. At this point, we can make two remarks:

– All the effective parameters depend on the porosity. But the distribution coefficient has
much smaller dependence on porosity than other effective properties do.

– The asymptotic behaviors of effective thermal conductivities of solid and fluid phases
are investigated analytically and numerically. The effective thermal conductivity ratio
of solid phase Kmm/km approaches to εm/τm in the limit km/k f −→ +∞, whereas
the fluid phase effective thermal conductivity ratio K f f /k f tends to ε f /τ f in the limit
k f /km −→ +∞.

In a second time, a comparison between the unconsolidated and consolidated porous medium
was made, so as to investigate the effects of contact between solid particles on the effective
properties. This is not really significant on the distribution coefficient, but more important
for the heat transfer coefficient and effective conductivities. Validity tests were performed
by comparing results obtained with the macroscale model and results obtained with direct
numerical simulations of the pore-scale equations. We can draw several remarks :

– At low and medium Damköhler numbers, the comparison between local-scale simulations
and our macroscale model is good for both homogeneous and heterogeneous reactions
(see Figs. 8, 9, 10, 11, 14, 15, 16 and 17), which is consistent with the approximation
made in the upscaling process,

– For high Damköhler numbers, the homogeneous reaction case is not well captured by
the effective model. The upscaled model is still capable of predicting the location of the
combustion front for a medium Damköhler number, whereas it fails to estimate accurately
the combustion front temperature. This is mainly due to the rightmost term in Eq. (16) we
have ignored in our developments. This is not so evident in the heterogeneous reaction
case where local-scale approach is well matched by the effective model for the same
range of Damköhler numbers.

This implies that the neglected terms should be re-examined carefully in order to break
the bottleneck of the present upscaled model in the range of high Damköhler numbers.
One possibility is to keep in the upscaling process the higher order terms, especially those
associated with the treatment of the heat sources. This will lead to more complete closure
problems and effective properties. Another possibility is the implementation of a mixed
model, i.e., the coupling between a macroscale equation, for instance for describing transport
in the fluid phase, and a microscale equation in the other phase, for example, the solid phase.
This mixed model will be reminiscent to the one of Golfier et al. (2007). The other advantage
of this method could be a correct treatment of the Arrhenius function, treated in its original
form at the local scale without any linearization process.
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Appendix 1: Closure Problems

Here, we followed the same manipulations conducted by Quintard and Whitaker (1993)
except that, in our upscaled equation, we have an extra reaction term for the solid phase. The
closure variables, defined in Eqs. (27a) and (27b), are introduced in Eqs. (24) and (25) and
for these equations to be satisfied at the leading order in terms of 〈Tm〉m ,

〈
T f

〉 f , ∇〈Tm〉m and

∇〈
T f

〉 f , they must satisfy the closure problems discussed below.
In the next step, we only need to determine these variables in some representative region

in order to evaluate the terms in macroscopic equations that contain the spatial deviation
variables. The first closure problem is associated with ∇〈Tm〉m and takes the following form.

km∇2bmm = ε−1
m Cmm in the solid (57)

bmm = b f m at A f m (58a)

nm f · km∇bmm = nm f · k f ∇b f m − nm f km at A f m (58b)

0 = k f ∇2b f m + ε−1
f Cmm in the fluid (59)

Periodicity: b f m (r + �i ) = b f m (r) , bmm (r + �i ) = bmm (r) , i = 1, 2, 3 (60a)

Average:
〈
b f m

〉 f = 0, 〈bmm〉m = 0 (60b)

Here, Cmm is the unknown integral represented by

Cmm = 1

V

∫

Am f

nm f · km∇bmmd A = 1

V

∫

Am f

nm f · k f ∇b f md A (61)

A detailed description of the evaluation of this unknown integral is given by Quintard
et al. (1997).

The term ∇〈
T f

〉 f is also a source in the closure problem for T̃m and T̃ f . The boundary

value problem associated with the closure variable for ∇〈
T f

〉 f is given by

km∇2bm f = ε−1
m Cm f in the solid (62)

bm f = b f f at A f m (63a)

nm f · km∇bm f = nm f · k f ∇b f f + nm f k f at A f m (63b)

0 = k f ∇2b f f + ε−1
f Cm f in the fluid (64)

Periodicity: b f f (r + �i ) = b f f (r) , bm f (r + �i ) = bm f (r) , i = 1, 2, 3 (65a)

Average:
〈
b f f

〉 f = 0,
〈
bm f

〉m = 0 (65b)



Here, Cm f is the unknown integral represented by

Cm f = 1

V

∫

Am f

nm f · km∇bm f d A = 1

V

∫

Am f

nm f · k f ∇b f f d A (66)

Moving on to the source represented by
〈
T f

〉 f − 〈Tm〉m in Eq. (26a), we construct the
following boundary problem for the closure scalars sm and s f .

0 = km∇2sm + ε−1
m h in the solid (67)

s f =sm + 1 at A f m (68a)

nm f · km∇sm =nm f · k f ∇s f at A f m (68b)

0 = k f ∇2s f − ε−1
f h in the fluid (69)

Periodicity: s f (r + �i ) = s f (r) , sm (r + �i ) = sm (r) , i = 1, 2, 3 (70a)

Average:
〈
s f

〉 f = 0, 〈sm〉m = 0 (70b)

In this closure problem, the undetermined constant is represented by

h = 1

V

∫

Am f

n f m · km∇smd A = 1

V

∫

Am f

n f m · k f ∇s f d A (71)

Appendix 2: Large Conductivity Ratio Behavior of the Closure Problems

In this appendix, we are interested in the behavior of the closure problems in the limit of
km/k f (or k f /km) going to infinity. The results are clear for the mapping variables and the
distribution coefficient as illustrated in Fig. 7.

For the closure problem involving the mapping variable sm and s f , we have by looking
at the limit of Eqs. (67) through (71) when km/k f → +∞:

sm = 0 (72)

and
hl2

f

k f
= constant (73)

Similarly, when k f /km → +∞, we have

s f = 0 (74)

and,
hl2

f

km
= constant (75)

This simply gives the obvious physical result that the heat transfer resistance is due to the
less conductive material in these limiting cases.



For the closure problems involving the bαβ mapping variables, we can develop the fol-
lowing estimates. Eqs. (57) through (61) lead to in the limit km/k f → +∞:

bmm = 0 in Vm (76)

nm f · k f ∇bmm = −nm f at A f m (77)

Periodicity: bmm (r + �i ) = bmm (r) , i = 1, 2, 3 (78a)

Average: 〈bmm〉m = 0 (78b)

which is the typical effective diffusion problem for the m-phase. Its solution gives for a
percolating m-phase, and in the isotropic case:

Kmm = εmkmI + km

V

∫

Am f

nm f bmmd A = εmkm

τm
I (79)

where τm is the tortuosity given by the solution of the closure problem over a representative
unit cell.

Similarly, in the case k f /km → +∞, we obtain by looking at Eqs. (62) through (66)

K f f = ε f k f I + k f

V

∫

Am f

nm f b f f d A = ε f k f

τ f
I (80)

where this time τ f is the calculated tortuosity of the percolating isotropic f -phase.

Appendix 3: Normalization of Governing Equations

In this appendix, the microscale and macroscale governing equations for both homogeneous
and heterogeneous reactions presented in this paper are normalized. Firstly, the dimensionless
governing equations for homogeneous reaction are written as:

∂T ∗
m

∂t∗
= ∇2T ∗

m + Da

E/RTin
e
− E

RTin

(
1

T ∗
m

−1
)

(81)

and
∂T ∗

f

∂t∗

(
ρcp

)
f /k f

(
ρcp

)
m /km

= ∇2T ∗
f (82)

The interfacial boundary condition is expressed by

T ∗
m = T ∗

f (83a)

nm f · km

k f
∇T ∗

m = nm f · ∇T ∗
f (83b)

where

T ∗
m = Tm/Tin, T ∗

f = T f /Tin, t∗ = t
(
km/

(
ρcp

)
m

)
/L2

ref (84a)

Da = Hr xn

(ρcp)m

E

RT 2
in

A0e−E/RTin L2
ref

km/(ρcp)m
(84b)



The corresponding dimensionless macroscopic governing equations based on Eqs. (28)
and (29) are written as:

εm
∂

〈
T ∗

m

〉m

∂t∗
= ∇ ·

(
K∗

mm · ∇〈
T ∗

m

〉m + K∗
m f · ∇

〈
T ∗

f

〉 f
)

+ u∗
mm · ∇〈

T ∗
m

〉m

+ u∗
m f · ∇

〈
T ∗

f

〉 f − h∗
(

〈
T ∗

m

〉m −
〈
T ∗

f

〉 f
)

+ εm
Da

E/RTin
e
− E

RTin

(
1

〈T ∗
m 〉m −1

)

(85)

ε f

(
ρcp

)
f /k f

(
ρcp

)
m /km

∂
〈
T ∗

f

〉 f

∂t∗
= ∇ ·

(
K∗

f f · ∇
〈
T ∗

f

〉 f + K∗
f m · ∇〈

T ∗
m

〉m
)

+ u∗
f m · ∇〈

T ∗
m

〉m + u∗
f f · ∇

〈
T ∗

f

〉 f + h∗ km

k f

(
〈
T ∗

m

〉m −
〈
T ∗

f

〉 f
)

(86)

where

〈
T ∗

m

〉m = 〈Tm〉m/Tin,
〈
T ∗

f

〉 f = 〈
T f

〉 f
/Tin, K∗

mm = Kmm/km (87a)

K∗
m f = Km f /km, K∗

f f = K f f /k f , K∗
f m = K f m/k f (87b)

u∗
mm = umm L ref/km, u∗

m f = um f L ref/km, u∗
f m = u f m L ref/k f (87c)

u∗
f f = u f f L ref/k f , h∗ = hL2

ref/km (87d)

Based on the parameters given in Eq. (84a), the dimensionless microscopic governing
equations for heterogeneous reaction are obtained as follows:

∂T ∗
m

∂t∗
= ∇2T ∗

m in Vm (88)

and
∂T ∗

f

∂t∗

(
ρcp

)
f /k f

(
ρcp

)
m /km

= ∇2T ∗
f in V f (89)

The adapted boundary conditions are written as

T ∗
m = T ∗

f at A f m (90a)

n f m · k f

km
∇T ∗

f = n f m · ∇T ∗
m + Da

Hr xn(
ρcp

)
m Tin

e
− E

RTin

(
1

T ∗
m

−1
)

at A f m (90b)

where the Damköhler number for heterogeneous reaction in this paper is different with
Eq. (84b) and defined as below

Da = A0e−E/RTin L ref

km/(ρcp)m
(91)



Moreover, we can use Eqs. (87a)–(87d) to normalize Eqs. (55) and (56) and obtain the
following dimensionless macroscopic governing equations:

εm
∂

〈
T ∗

m

〉m

∂t∗
= ∇ ·

(
K∗

mm · ∇〈
T ∗

m

〉m + K∗
m f · ∇

〈
T ∗

f

〉 f
)

+ u∗
mm · ∇〈

T ∗
m

〉m

+ u∗
m f · ∇

〈
T ∗

f

〉 f − h∗
(

〈
T ∗

m

〉m −
〈
T ∗

f

〉 f
)

+ aV L refξm

(

1 + w∗ E

RTin
(〈

T ∗
m

〉m)2

)

Da
Hr xn(

ρcp
)

m Tin
e
− E

RTin

(
1

〈T ∗
m 〉m −1

)

(92)

ε f

(
ρcp

)
f /k f

(
ρcp

)
m /km

∂
〈
T ∗

f

〉 f

∂t∗
= ∇ ·

(
K∗

f f · ∇
〈
T ∗

f

〉 f + K∗
f m · ∇〈

T ∗
m

〉m
)

+ u∗
f m · ∇〈

T ∗
m

〉m + u∗
f f · ∇

〈
T ∗

f

〉 f + h∗ km

k f

(
〈
T ∗

m

〉m −
〈
T ∗

f

〉 f
)

+ aV L refξ f

(

1 + w∗ E

RTin
(〈

T ∗
m

〉m)2

)

Da
Hr xn(

ρcp
)

m Tin
e
− E

RTin

(
1

〈T ∗
m 〉m −1

)

(93)

where the spatial deviation dimensionless temperature of solid phase at the interface is given
by

w∗ = w/Tin

=

E

RTin

(〈
T ∗

f

〉 f
)2 e

E

RTin

〈
T ∗

f

〉 f
(〈

T ∗
m

〉m −
〈
T ∗

f

〉 f
)

−
⎛

⎝e
E

RTin〈T ∗
m 〉m − e

E

RTin

〈
T ∗

f

〉 f

⎞

⎠

E

RTin(〈T ∗
m〉m

)
2 e

E
RTin〈T ∗

m 〉m − E

RTin

(〈
T ∗

f

〉 f
)2 e

E

RTin

〈
T ∗

f

〉 f

(94)
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