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Abstract. The magnetic structure of ultrathin films caused by dipolar 
interactions is studied analytically. A Taylor Maclaurin series 
expansion of dipolar interactions enables us to consider dipolar 
interactions as local interactions in function of the spin field and its 
space derivatives. This allows a fruitful comparison with liquid crystal 
phenomenological Hamiltonians. Dipolar anisotropy appears at lowest 
order in the expanded dipolar interaction. The next non zero term  
favours the appearance of vortices and hyperbolic points in finite 
ultrathin films while the next one, the fourth order term, controls the 
competition between vortices, hyperbolic points and other topological 
defects. The magnetic structure of an ultrathin film depends on the 
transversal sample size by means of higher order terms. For a very 
limited ultrathin dot, a structure with just one vortex is stable; for 
larger samples, networks of vortices, hyperbolic points and other 
topological defects have a lower energy than a single vortex. For 
larger and larger samples, more and more complex structures 
optimize a discrete screening of the dipolar interaction. The 
dynamical properties of magnetic vortices, hyperbolic points and 
other defects are also studied with evidence for different classes of 
eigen modes. 
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1. Introduction 
 
 During the last years surface science improvements such as surface 
tunnelling microscopy (STM) and magnetic force microscopy (MFM) have 
enabled physicists to produce numerous well controlled ultrathin films [1] 
and ultrathin dots [2, 3] of magnetic materials and to observe them. This led 
these authors to the observation of numerous magnetic vortices [4] and to the 
observation of related magnetic states such as hyperbolic points and magnetic 
leaves and flowers [5]. As a matter of fact Kerr optical observations which 
were used at such a very submicronic level have taken advantage of early 
numerical predictions showing evidence for magnetic vortices from Monte-
Carlo simulations [6, 7], or from micromagnetism computations [8-10] and 
more recently from Langevin equation [11] for identifying these vortices. So 
numerical simulations also demonstrated the evidence of such states [6-11] 
with vortices, hyperbolic defects and correlated patterns. Earlier polarized 
electron microscopy already evidenced the presence of magnetic vortices in 
thicker samples [12-14]. With the obvious recent large need of 
nanotechnology and nanomagnetism devices for miniaturized components 
and computers, the study of magnetic vortices, hyperbolic defects and other 
topological defects in ultrathin samples soon became a classical one 
experimentally [15] and numerically [16]. 
 These numerous observations and simulations of topological defects in 
ultrathin magnetic films reactivated the theoretical question of the existence 
and nature of 2D magnetism. Mermin and Wagner [17] demonstrated a long 
time ago the instability of 2D magnetism for short ranged interactions. More 
recently, at the light of Kosterlitz and Thouless’ 2D hexatic transitions [18], 
Yafet and Gyorgy showed that a non uniform magnetism could exist in 2 D 
[19] just because of the long ranged dipolar interaction. So magnetic vortices 
and magnetic hyperbolas have already a deep theoretical surrounding but 
their practical organization and dynamics remains still not obvious. 
 Since topological defects such as disclinations have also been largely 
observed in liquid crystals [20] where long molecules define a natural field of 
vector directions as spins define a vector field in magnetic materials, the 
comparison between liquid crystals and ultrathin magnetic films sounds very 
promising. Liquid crystals are mainly described by local phenomenological 
Hamiltonians [21]. So a first question brought by this tentative comparison 
consists in translating the dipolar Hamiltonian into a local Hamiltonian, in 
order to make clear the comparison between dipolar Hamiltonian and liquid 
crystals Hamiltonians. This defines a first goal of this paper. 
 Numerical computations as well as corresponding observations showed 
the large influence of the sample thickness on the magnetic structure, simply 
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because the dipolar field increases with the number of spins. Such a size 
effect appears for the orientation transition from perpendicular to in-plane 
magnetization, a transition which is observed for a thickness of a very few 
layers [22]. Similar calculations and observations demonstrated also the 
influence of the transversal sample size [23], even if such calculations are not 
easy to be achieved for very large sample sizes. In large samples, there is a 
weak or poor numerical convergence towards the ground state. This is 
usually observed about glassy states and called a critical slowing down [24]. 
Numerous observations of effective glassy magnetic properties of such 
miniaturized samples have been done when looking at low temperature 
magnetization with or without external magnetic field [25]. The experimental 
results confirm this glassy magnetic structure. So the transversal size effect 
upon the magnetic structure of ultrathin samples is highly probable even if 
not easily observed. One of the questions also brought by the transversal size 
effect is the magnetic organization in one vortex or several vortices and other 
topological defects. There is already a lot of experimental [1, 3, 15, 26] and 
numerical [7] evidence for systems of vortices and other topological defects, 
but there is no complete solution about their stability with a 2D vortex lattice 
for instance which could be a solution as observed in Abrikosov’s 
superconductor vortex networks  [27]. 
 Dynamical properties of these microscopic magnetic vortices have been 
already observed in various samples by means of different magnetic 
resonance experiments done at a very nanoscopic level [28-30] with the 
example of Brillouin spectra [31]. And experiments evidenced several such 
magnetic modes. The organization in systems of topological defects such as 
magnetic vortices brings up the question of the observation of independent 
vortex motions or not and the question of different modes linked with 
different topological defects. Of course, as usual in magnetism where 
numerous interactions are competing together, extrinsic causes such as 
impurities can be assumed to pin magnetic vortices [32] as well as they can 
pin domain walls or domain structures in thicker samples. This would lead to 
impurity vortex modes which would be due to the interaction between one 
impurity and one vortex. However the numerically proved stability of 
magnetic vortices [7] in finite ultrathin films already suggests the existence of 
a topological defect network ground state in pure samples. So, intrinsic 
vortex motions and deformations are suggested to exist in very pure ultrathin 
materials as well as topological defect motions and deformations. And these 
motions occur probably in a collective way including different parts of the 
sample. 
 So the goal of the present paper is first to obtain a local version of the 
dipolar interaction function of the spin derivative field by means of a Taylor 



Jean-Claude Serge Lévy  4

expansion of the dipole-dipole interaction as introduced before [33]. This 
local version is derived in a first part. Then, in a second part, the ground state 
is determined from the minimization of this Landau like energy, with a 
variation treatment. This variational treatment is restricted to a few families 
of test structures such as vortex and hyperbolic defect according to 
experimental and numerical evidence. This local dipolar interaction exhibits 
at its lowest order a basic dipolar anisotropy induced by lattice geometry 
[33]. At higher orders, the detailed discrete structure carried by lattice 
geometry can be more easily neglected but the transversal sample size effect 
remains important and is seen to determine the sample magnetic structure as 
shown here. The comparison with liquid crystals explains the observation of 
numerous disclinations as magnetic topological defects. These topological 
defects are shown to be essential in the discrete screening of the dipolar 
interaction. Finally in a third section, the local approach of the dipolar 
interaction is shown to be also useful in order to determine the vortex 
deformation modes as well as the modes of topological defect motions and 
deformations. Conclusions are reported in the same section. 
 
2. Dipolar interaction as a local interaction in the spin 
derivative field 
 

2.1. The local dipolar Hamiltonian  
 
 A discrete triangular or square 2D lattice of spins iS located at sites i of 
coordinates ),( ii yx  fills the plane, at least in the basic ultrathin film. This 2D 
lattice introduces the running vector ijrr  linking sites i and j. Then the spin field at 
site j reads as a function of the spin field at site i and of its partial derivatives: 
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 This expression written by means of Taylor expansion assumes an 
infinite derivability of this spin field and neglects the corrective term. With a 
one-atom cell as considered for square lattice or triangular lattice, all sites are 
equivalent. So it is convenient to obtain a site-independent Hamiltonian. Let 
us consider the usual non local version of the dipolar Hamiltonian [34]: 
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 This dipolar Hamiltonian reads as a function of the full spin field as a 
local energy, i.e. in a local way after introducing equations (1): 
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 This expression is deduced for an infinite lattice with translational 
invariance and the sign apostrophe means that site j is running over all sites 
but the observation site i. The corrective term of the Taylor expansion is still 
omitted. In the case of a finite sample such as a square or a rectangle cut in a 
square lattice or a hexagon cut in a triangular lattice, this expression can be 
easily applied to a lattice designed on a torus. That limits the effective 
coordinate variation. Two kinds of lattice sums appear in equation (3b) for 
such an infinite lattice, or for its restriction on a torus, namely the isotropic 
sums Ip,q and the anisotropic sums Jp,q,α,β, with: 
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 In these formulae, site i is an arbitrary 2 D lattice site while site j runs over all 
the other lattice sites. These origin independent sums depend up to some extent 
on the lattice symmetry. With these lattice sums, the local dipolar Hamiltonian 
reads as a sum of local Hamiltonians for site i, up to a corrective term: 
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 It must be noticed first that simple symmetry considerations on the 
infinite lattice reduce the number of non-zero lattice sums, and secondly that 
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only the lowest order lattice sums converge. This last consideration means 
that for large samples, the magnetic structure would be determined by highest 
order terms if still neglecting the corrective term which is also of highest 
order. A more complete discussion about the improvement of convergence by 
introducing a realistic screening of dipolar interaction is reported to another 
section. This remark on sample extension brings back the transversal size 
problem which corresponds to the introduction of a fictitious torus instead of 
an infinite 2D lattice. Such an artefact will enable us to deal with finite 
samples and size effects within the same calculation. 
 
2.2. The lowest order lattice sums 
 
 In a previous paper [33], the lowest order lattice sums, i.e. I0,0 and  J0,0,1,1 
or J0,0,2,2,  were seen to converge on 2 D lattices. They were respectively 
calculated over a simple square lattice and a triangular lattice with the same 
density for both lattices, i.e. a convenient lattice parameter ratio 

4121 32/' −=aa for comparison between the two different geometries. And the 
results are different for the two lattices. 
 For a simple square lattice noted by the subscript ss, these lattice sums 
show a fourfold symmetry, i.e. a planar isotropy, with: 
 

2,2,0,01,1,0,0 ssss JJ =  
 
 And finally the zero-order Hamiltonian reads [33]: 
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 And such a fourfold symmetry, i.e. a square symmetry is observed in the 
domain patterning for films with fcc (100) surfaces [35] as well as for 
surfaces (110) [36]. It must be added that this dipolar induced anisotropy acts 
in the same way as magnetocrystalline anisotropy can do. So, according to 
the lattice symmetry, vortices are made of squares and rectangles, as 
observed numerically [6, 7] and experimentally [37].  
 As a matter of fact, for magnetic films with a strong perpendicular 
anisotropy, i.e. Ising-like materials as they are known for magnetic bubble 
materials [38], the local magnetization is nearly everywhere normal to the 
plane. This defines magnetic up and down domains which are differently 
observed by means of Kerr effect. Then in absence of other in-plane 
anisotropy terms such as magnetocrystalline anisotropy, the dipolar fourfold 
symmetry of equations (6) which is induced by the lattice symmetry determines 
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the easy axes for magnetization and so the directions of the 2D domain walls, 
i.e. domain lines of the labyrinthine structure as observed experimentally [39] 
and numerically [7, 40]. And magnetocrystalline anisotropy also acts usually in 
the same sense. The labyrinthine structure of these Ising spins interacting by 
dipolar forces just corresponds to the vortex network of XY spins interacting 
through dipolar forces [33] since these domain walls form a network. And these 
walls are observed numerically and experimentally to be parallel to the 
symmetry axes in agreement with this dipolar anisotropy. Such a rectangular 
labyrinthine structure deduced from Monte-Carlo simulation is reported in 
Figure 1. It must be noted that in the Hamiltonian which leads to this Figure, 
there is a nearest neighbour exchange, here characterized by D/J=1. The 
contribution of this exchange term is just to enlarge the stripe width as well 
known [7, 41]. This computational artefact, due to the long ranged dipolar 
interaction compared to the short ranged exchange, is used here and in the 
following Figures to obtain more macroscopic or more microscopic views 
according to the focussed point. For realistic samples this point explains the 
general similarity at different scales. 
 

 
 
Figure 1. Portion of 100x100 Ising spins at low temperature on square lattice. Black 
stripes, up spins; white stripes, down spins. D/J=0.75, kT/J=0.1.  
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 Quite similarly to this induced square anisotropy, a magnetic sixfold 
symmetry or hexagonal symmetry is obtained for a triangular or hexagonal 
lattice of which the Cartesian axis x is densely occupied while axis y is less 
dense. When the hexagonal structure is noted by a subscript h, the lattice 
sums fulfil the condition: 
 

2,2,0,01,1,0,0 hh JJ <  
 
And finally the lowest order part of the Hamiltonian reads:  
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So the last anisotropic term lifts the degeneracy between the axes and reads 
after numerical computation [33]: 
 

( )( ) ( )2
,

2
,3

2
,

2
,2,2,0,0,1,1,0,0,,,

723.1
2
3

yixiyixihhàhi SS
a

SSJJH −=−−−=∆
            

         (7a) 

 
This anisotropic term favours a magnetization normal to the dense axis of the 
triangular lattice.             
 Such a hexagonal symmetry is observed in the domain patterning for 
films with a fcc (111) surface as well as for a bcc (111) surface [42]. And 
vortices are made of successive hexagons, as observed numerically [7] and 
experimentally [15]. Here too, magnetocrystalline anisotropy acts in the same 
direction. Such a magnetic structure deduced by Monte-Carlo simulation for 
a system with both exchange and dipolar interaction is reported in Figure 2. 
As noticed before the choice of the exchange-dipolar ratio is useful to focus 
on main details within the Figure. In this Figure two sorts of chiral vortices 
are observed with spins mainly oriented along one of the six equivalent 
directions. Of course between adjacent vortices of different chirality which 
are made of parts which are nearly uniform magnetic domains, other 
topological defects appear. This is the case of hyperbolic defects for instance 
as seen on Figure 2 in the central part, between vortices.  
 Such hyperbolic defects are also observed experimentally, in magnetic 
ultrathin films as well as in liquid crystal emulsions [43]. As a matter of fact, this 
observation in crystal liquids is also due to dipolar interactions [43]. Moreover, 
other topological defects can be observed on Figure 2, as discussed later on in this 
paper when considering the ground state. The location of these defects could be  
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Figure 2. Fragment of a pattern with 10192 spins on a triangular lattice for a disk 
shaped sample. The dipole to exchange ratio is D/Ja3=1. The result is obtained at low 
temperature by Monte-Carlo simulation. All spins lie within the plane, most of them 
are aligned with one of the three dense lattice directions. Vortices of different chirality 
appear as well as hyperbolic defects and higher order defects between. 
 
observed directly on the same graph when introducing the local measure of a 
discrete rotational operator, as done in another paper [7]. Quite similar 
fingerprint textures have been observed in liquid crystals where the sixfold 
symmetry also appears [44, 45]. 
 Such defects belong to the class of disclinations in liquid crystals [20], a 
class of defects proposed by Frank and frequently observed since that time by 
means of curves of molecular alignments [46] which are made of circular 
arcs. The defect similarity between liquid crystals and magnetic order in 
ultrathin films well justifies the comparison. 
 As a matter of fact, for magnetic materials with a strong perpendicular 
anisotropy, as bubble materials [38], this dipolar hexagonal symmetry shown 
in equations (7) and induced by lattice symmetry determines the direction of 
the 2D domain walls of the labyrinthine structure as observed both 
experimentally and numerically [47]. These walls are perpendicular to the 
dense axes of the film, i.e. parallel to the magnetization which is itself 
parallel to the easy magnetic axis. Such labyrinthine structures are reported in 
Figures 3a and 3b. The details observed in Figure 3a well evidence the three 
dominant directions while the large scale structure observed in Figure 3b 
confirms these dominant directions and shows the formation of parallel 
chevrons and of rather simple labyrinths in Monte-Carlo simulations at           
low temperature [7]. The large scale effect of Fig. 3b is once more due to the 
choice of a large dipole versus exchange ratio as explained before. Moreover 
a  temperature  increase  induces a more complex labyrinthine structure as  



Jean-Claude Serge Lévy  10

   
 

3a 
 

 
 

3b 
 

Figure 3. Portions of Ising spin structures on triangular lattices. Black stripes, up 
spins; white stripes, down spins. (a) 100x100 spins D/Ja3=0.75 and kT/J=0.1; (b) 
200x200 spins J=0 and kT/D=0.05. In each Figure stripes occur along three directions.  
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already reported [7, 47]. Once more the close similarity between magnetic 
textures and liquid crystal textures must be noticed [48]. 
 
2.3. Higher order lattice sums 
 
 For these terms, lattice sums diverge. So these sums must be computed 
over finite samples and main contributions come from external layers. For 
such external parts, the lattice symmetry effect is quite lowered since in large 
rings a large number of sites act practically as in a continuum network. So an 
integral treatment of these sums is convenient, with the following results 
where radial and angular contributions are easily separated [33]: 
 

 qpqpqp BAI ,,, =  
qpqpqp BAJ ,2,1,1,, +=                                                                                           (8) 

1,,1,2,,2,1,, +== qpqpqpqp BAJJ  
2,,2,2,, += qpqpqp BAJ  

 

In the case of integration over a circular ring limited by an external circle of 
radius L and an internal circle of radius a, just one sort of radial integral A 
and one sort of angular integral B appear when describing all lattice sums I 
and J, they are: 
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Equation (9a) well shows divergence when p+q>1, and logarithmic 
divergence for p+q=1. So the strength of the corrective term when p+q>1 is 
well evidenced. Equation (9b) gives classical trigonometric integrals of 
which the first ones are reported in a short table in ref. 28. Finally these 
calculated integrals enable us to rewrite the dipolar Hamiltonian as a sum of 
local contributions of the spin field and its derivatives. Then the ground state 
determination is easily studied in a local Landau picture. 
 
3. Ground state determination 
 

3.1. Cartesian ground state equations 
 
 The local dipolar Hamiltonian is parted according to the level of 
derivation: 
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Of course only the first terms are effectively relevant because of the 
corrective term. The first term Hi,0 is associated with anisotropy as seen 
before. The next non zero term is the second one because of symmetry 
consideration. More generally there are only even values of n always because 
of symmetry. The second term reads when introducing the explicit values of 
the angular lattice sums: 
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Here A2,0 is positive as noticed from eq (9). By means of integration by parts 
this energy density reads as a quadratic function of the first order spin 
derivatives, when neglecting boundary terms: 
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This expression can be compared with the corresponding square of the 
magnetization gradient obtained for exchange [41] and shows the very 
anisotropic nature of dipolar interaction. This quadratic form of the energy 
density reads in matrix notation: 
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This term can be compared with the Oseen-Zöcher-Frank phenomenological 
equations for nematic liquid crystals [21]. It has four eigenvalues 
(11,−1,−3,−3). This also induces anisotropy.  
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 The fourth term of the Hamiltonian is obtained from a similar calculation 
and reads up to a numerical factor: 
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           (13) 
 
Here too this expression could be read as a quadratic function of partial 
derivatives of order two of the spin field, up to boundary terms, by means of 
integration by parts. 
 Because of the previous remark done on the anisotropic properties of               
H0, for a system driven only by dipolar interactions the ground state                 
local magnetization lies in the plane. So this local magnetization is 
characterized at each site by the angle θ that the local spin makes with               
axis xx' : )0,sin,(cos θθ=S . So the ground state research is just the search           
for the optimal angular function ( )yx,θ . And the constraints of the               
level-two local Hamiltonian, i.e. of the level-two energy density, are for this 
function: 
 

( ) ( )2222
2 2cos42sin62cos62sin4 22 xxyxxxxyyxH θθθθθθθθθθθθθ −++++−−≈

                    (14) 
 
This expression is obviously non linear. The original dipolar interaction is 
bilinear and non local [34]. So when translated into a local interaction, 
equation (14) means it becomes a non linear local interaction.  
 And at level four these constraints are, after an easy but tedious 
calculation: 
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           (15) 
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 Again a strong non linearity makes the ground state resolution so 
complex. Of course a complete resolution would determine this function 
( )yx,θ  from boundary conditions. It would be a quite uneasy task. Here we 

will just compare solutions which are suggested by experimental observation 
as realistic ones. And for vortex as well as hyperbolic solutions as observed 
numerically and experimentally a polar representation is quite useful. 
 
3.2. Polar ground state equations at order 2 
 Central vortices appear in numerical simulations [7] and well agree with 
experimental observations [2, 4]. They are easily described in polar 
coordinates ( )ϕ,r  according to their chirality by: 
 

( )ππϕθ 2   
2

±=
    

                                                   (16) 

 
 Quite similarly hyperbolic topological defects with two sorts of chirality 
appear numerically and experimentally. They are defined by: 
  

( )ππϕθ 2   
2

±−=
                     

                                        (17)
 

 
 These topological defects are characterized from their field lines with: 
 

( )ϕθ
ϕ

−= cot
rd
dr

 
 

 In this case these field lines are either circles around the origin or 
hyperbolas such as Cr =ϕ2cos . 
 Figure 4 exhibits vortices and a hyperbolic topological defect. In these 
expressions the choice of the free sign corresponds to the choice of the vortex 
or hyperbolic defect chirality. Of course the interest in such structures starts 
from their natural observation in low temperature simulations as noticed in 
Figure 2 where both defects appear. It must be noticed that the nearest 
neighbours of a vortex are hyperbolic defects or higher order defects and 
reciprocally, with shorter minimal distances for vortex-hyperbola than for 
vortex-vortex or for hyperbola-hyperbola. These defects also appear in the 
experimental observation in 2D magnets [15, 39] as well as in liquid crystals 
[43-45]. The part of these defects appears in the level two Hamiltonian 
expressed in polar coordinates while higher order defects appear in further 
expansion steps. So this gives rise to a natural classification of topological 
defects according to the level of appearance in the local dipolar Hamiltonian.  
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a 

b 
c

    
 
Figure 4. Principle of topological defects: (a) vortex with positive chirality; (b) vortex 
with negative chirality; (c) hyperbolic defect with negative chirality. 
 
 As obvious from Figure 4 polar coordinates are introduced. This is done by 
the use of the transformation of the function ( )yx,θ  which becomes a function 
( )ϕθ ,r  of polar coordinates. Derivatives at all order follow with at first order: 
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      (18) 

 
 The other derivatives are easily deduced. It enables us to rewrite the 
previous energy density at different levels as functions of ( )ϕθ ,r  and its 
derivatives. 
 The energy density at level two reads: 
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           (19) 
 
 This expression evidences the part of vortices and hyperbolic defects as 
described by equations (16). This evidence fully justifies the introduction of 
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polar coordinates. When testing the validity of a vortex or hyperbolic defect 
solution, the only non zero derivative is obviously: 
 

1±=ϕθ  
 

Using this remark the energy density at level two becomes: 
 

( )[ ] ( )[ ]{ }θϕθϕ
θϕ −−+−≈ 2cos72cos2
2 2

2

0,2

2

rA
H

            
                                   (19) 

 
This energy density shows a modulated maximum for the vortices described 

by ( )ππϕθ 2   
2

±=  and a positive modulated local minimum for the 

hyperbolic defects described by ( )ππϕθ 2   
2

±−= . Since the energy density 

of this modulated minimum is positive, it is higher than that of a simple 
ferromagnetic state .const=θ  So these vortices states would be metastable if 
there was no corrective term in the energy density. But, as noticed before, the 
energy density corrective terms are of the same order as the energy density at 
level two, so vortices can be stable.   
 The first conclusions which come from this calculation are: 
 
- There is evidence for vortices and hyperbolic defects as well defined 

states as seen in Eqs (18) and (19). 
- The stability of vortex and other defects arrangements must be studied 

carefully from a Hamiltonian which does not describe dipole-dipole 
interaction but deals with effective vortex-dipole interactions or 
hyperbolic defect-dipole interactions or vortex-vortex interactions since 
multipolar interactions are obviously more screened than simple dipole-
dipole interactions. These multipole-dipole or multipole-multipole 
interactions are more localized, being driven by a larger radial exponent. 
Thus lattice sums show a better convergence in that case than for dipole-
dipole interaction. The total moment of a vortex or of a hyperbolic defect 
is zero, so the first non zero terms are due to higher cumulants than for 
dipole-dipole interaction. This shift of the effective interaction towards 
higher order terms increases the convergence of multipole interaction 
lattice sums. So these effective interactions involve more numerous 
convergent lattice sums and thus lead to a better optimization process. 

 
 These effective defect-defect interactions will allow us to calculate the 
energy density at level two at least, with the possibility of neglecting the 
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corrective term, i.e. in a safe condition, but at the price of the introduction of 
numerous new interactions according to the defect natures and sizes.  
 These convergence problems can be further optimized in several ways 
and steps as noticed quite earlier by Ewald [49] when using Fourier 
transforms about infinite dipole lattice sums. A second step of the interaction 
screening consists in introducing pairs of vortices or pairs of hyperbolic 
defects of opposite chirality, or mixed pairs of defects. As a result it will 
introduce more convergent lattice sums. And so the spatial extension of 
vortices and hyperbolic defects could be optimized. 
 However, pairs of vortices of opposite chirality or pairs of defects 
introduce anisotropy as defining the starting point of a line of vortex or of 
defects, as it occurs in a Von Karman alley in hydrodynamics. So a third step 
in improving the magnetic screening of the dipolar interaction consists in 
introducing a real two dimensional problem. There are at least two ways of 
introducing dimensionality two:  
 
- introducing two orthogonal pairs of vortices, a vortex square,  
- or introducing three pairs of vortex, a vortex hexagon.  
 
 And a vortex square introduces a hyperbolic defect in its centre while a 
vortex hexagon introduces higher order defects in its centre. 
 Clearly these considerations introduce a multipolar screening which will 
enable us to derive the full stability picture at the price of heavy work. For 
instance a next crown of vortex around the square or hexagon can be chosen 
in order to increase the screening, with the introduction of square or 
triangular symmetry for comparison. In this case other topological defects 
such as hyperbolic ones are also implied as seen on Figure 2. So discrete 
screening is a very difficult problem. Moreover there is no theoretical 
evidence for a simple final configuration as well as there is no general 
experimental evidence for that. Of course the occurrence of boundary 
conditions and impurities increases this complexity. 
 
3.3. Polar ground state equations at order 4 
 
 The calculation of the energy density at level four is instructive           
since it reveals once more the nature of these terms, even if this analysis 
remains here rather academic because of non negligible corrective term. So 
we just write the contribution to the energy density at level four which 
depends only on the partial first order angular derivative ϕθ  and its powers, 
in order to observe the effect on vortices and other topological defects with 
radial invariance: 
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 This result well exhibits the part of the two defects vortex and hyperbolic 
defects, and it introduces other topological defects as well as a quartic 
modulation. The new topological defects are: 
 

)(   2 πϕθ =                   (21a) 
 

)(   
2

2 ππϕθ +=
       

(21b) 

 
)(   2 πϕθ −=         (21c) 

 

)(   
2

2 ππϕθ +−=
      

(21d) 

 
 They define four field lines parallel to the magnetization 

( )ϕθ
ϕ

−= cot
rd
dr , respectively a double circle and a sextic curve 

3/1
0 3cos ϕrr =  with sixfold symmetry and six asymptots. Such a double 

circle is observed in micromagnetic simulations [50] and parts of the sextic 
curve are present in Figure 2. Figure 5 shows the double circle 
 

 

 
 

Figure 5. The field line of a second order defect: the double circle. 
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 Quite obviously the next step will introduce new defects and a modulation of 
order six. These new defects are characterized by the equations: 
 

( )πϕθ 2  3±=                              (22) 
 
And in Cartesian coordinates, the quartic curves: 
 

( ) ( ) 0222222 =−−+ yxayx                          (22a) 
06 44224 =−+− ayyxx                             (22b) 

 
And extrapolation to next orders gives a complete series of defects with 
 

( )πϕθ 2  n±=          (23) 
 
In polar coordinates, there are algebraic curves 
 

( )[ ] ( )πϕ 2    1cos1
0

1 −= −− nrr nn
      (23a) 

( )[ ] ( )πϕ 2    1cos1
0

1 += −−−− nrr nn
 

 
One recognizes here Frank’s disclinations in liquid crystals with integer values of 
n [44], while for liquid crystals half integer values of n are admitted. This 
specificity of liquid crystals is due to the lower symmetry of liquid crystals where 
the order parameter is just a direction, while for magnetic materials, the order 
parameter is the spin, a real vector. So the number of magnetic topological 
defects is reduced in front of the number of liquid crystals topological defects. 
There is already evidence for such a series of such 2D topological defects with 
numerous asymptotic branches in magnetic simulations [7], in experiments [47] 
as well in observation of liquid crystals [39].  
  
3.4. The first four topological defects and their effective potentials 
 
 As already introduced in equations (16) and (17) and in Figure 4, the first 
topological defects to appear are two vortices and two hyperbolas. The 
simplest view of these defects is reported in Figure 6 on a square lattice. 
 These defects are known as classical signs. The two vortices are usually 
called swastika from early Indian language. The two hyperbolas can be 
deduced from each other by a 90° rotation and appear as a mouth, or a frank 
ax when rotated by 45°. Their interaction potential with a spin are easily 
calculated when their centres are at the origin. They are for a lattice 
parameter a and a unit value of the spin, at first non negligible order: 



Jean-Claude Serge Lévy  20

V1 V2 H1 H2  
 
Figure 6. The four basic topological defects: vortex1 (V1), vortex2 (V2), hyperbolic 
defect 1 (H1) and hyperbolic defect 2 (H2). 
 

For V1:  ( ) ( )zxyV sOM
R

aysxs
R

aU ∧=−= 551
66                             (24) 

 

For H1:  ( ) ( )[ ]2222
71 996 yxysyxxs

R
aU xyH +−+−=      (25) 

 
 These interactions are of higher order than the dipole-dipole interaction since 
the sum of these interacting dipoles is zero. The vortex dipole interaction 
evidences a chiral effect while the hyperbola-spin interaction is a little bit more 
complex. Since vortices 1 and 2 have opposite interactions as well as hyperbolas 
1 and 2, the association of two vortex of opposite chirality as well as the 
association of orthogonal hyperbolas leads to a higher order interaction. The 
association vortex-hyperbola does not increase the interaction level. 
 
3.5. The main second topological defects 
 
 As just written the main second topological defects are the associations 
of opposite topological defects, i.e. V1V2 or H1H2. Of course there are 
different geometrical associations, and there are just two simplest                     
such defects up to rotations, namely the double circle and the sextic curve 
already introduced. This is shown in Figure 7 where such associations are 
reported. 
 Of course, the order of associated defects as well as the direction defined 
by associated defects can be changed so finally eight distinct second order 
topological defects are introduced. As noticed before, they appear in the 
Hamiltonian and are observed in micromagnetism calculations. The effective 
interaction created by two vortices of opposite chirality and distant from 2d 
on the axis x’x is, with a left anticlockwise vortex and a right clockwise 
vortex, more localized interaction than vortex-spin interaction, as expected. 
Its symmetry is well noticed. So the fields created by a square of vortices and 
by a hexagon of vortices can be easily deduced.   
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DC HH 

2 2

 
 

Figure 7. The two second order topological defects: DC the double circle and HH the 
sextic curve. 
 
 Of course higher order defects can be added and they evidence the 
progressive screening of the dipolar interaction. 
 
4. Defect dynamics and conclusions 
 
 The previous determination of the local dipolar Hamiltonian is quite 
useful to classify intrinsic defect dynamics from this energy landscape, even 
if the inertial part which can be calculated as a Döring’s mass [51] is less 
obvious. A first natural motion comes from the defect centre motion. This is 
not a simple motion since it must compete with other defect motions within 
the sample. A second mode corresponds to the radial “breathing” mode 
which consists in an increase and decrease of the defect size. Of course such 
magnetic breathing and shrinking modes must also be conjugated over 
several defects for a given sample. From equation (20) and its quartic 
modulation, quartic deformations of these topological defects also occur. This 
defines a third series of modes. The extrapolation to higher order of the local 
Hamiltonian shows other modulations of higher symmetry such as sixfold, 
eightfold and so on. Moreover these extrapolations show the appearance of 
new topological defects as double circle and sextic defect which can be 
created or annihilated, a fourth series of modes. Since the spatial extension of 
such defects is quite low as observed in Figure 2, their creation or 
annihilation must have a rather low eigen frequency, and these modes are 
expected to be rather independent from the rest of the sample.  So many new 
modes appear. Because of their different symmetry they are submitted to 
different selection rules which can be used to select them in resonance 
experiments. Since these numerous modes are more or less localized, their 
interaction with external fields can also be distinguished. These two points 
suggest a lot of different experimental observations of these modes. 
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 The general analysis of defect stability can be easily derived from the 
transposition of equations (19) and (20) to the case of a screened interaction, 
where screening is due to a more complex structure at the origin. Then the 
resulting energy density for this defect reads because of the competition 
between successive even orders in the interaction, when omitting extra 
modulations: 
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 In equations (19) and (20) the parameter values A and B are positive, and 
we admit this here. 
 So a natural defect length appears: ( )[ ] 212 BnnA −=λ . If this natural 
defect length λ  is larger than the inner integration radius a of lattice sums, 
then the defect is stable as compared with the ferromagnetic arrangement 
when the lateral sample radius L is smaller than the value L1 which satisfies 
the equation: 
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      (28) 

  
 If the sample is larger than this disk of radius L1, the one defect situation 
is no longer stable in front of the ferromagnetic arrangement. So, probably 
different defects of different species appear simultaneously in the sample in 
order to obtain a stable solution as observed in large samples [38]. 
 If the natural defect length λ is smaller than the inner integration radius 
a, then the defect is never stable. This situation seems to be never observed. 
 So the practical conclusion is that a one vortex configuration is stable up 
to some limiting sample lateral size. For larger samples more complex 
configurations are expected. This well agrees with observation at a larger 
scale [36, 47]. 
 About defect dynamics, the previous remarks show the abundance of 
excitation modes which can be selected according to selection rules when 
using convenient excitation fields, i.e. magnetic fields with convenient 
symmetry. 

Finally this hierarchy of more and more localized defects called 
disclinations for liquid crystals and the induced hierarchy of their well 
defined excitation modes could be used to introduce highly localized memory 
units with a well controlled production and reading [36]. 
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