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Cautious label ranking with label-wise decomposition
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1. UMR CNRS 7253 Heudiasyc UTC, Compiègne, France.
2. Université de Picardie Jules Verne, Amiens, France.

Abstract

In this paper, we are interested in the label ranking problem. We are more
specifically interested in the recent trend consisting in predicting partial but
more accurate (i.e., making less incorrect statements) orders rather than com-
plete ones. To do so, we propose a ranking method based on label-wise decom-
position. We estimate an imprecise probabilistic model over each label rank
and we infer a partial order from it using optimisation techniques. This leads
to new results concerning a particular bilinear assignment problem. Finally, we
provide some experiments showing the feasibility of our method.

Keywords. Label ranking, label-wise decomposition, assignment problem, bi-
linear optimisation

1. Introduction

In recent years, machine learning problems with structured outputs received
an increasing interest. These problems appear in a variety of fields, including
biology [26], natural language treatment [4], image analysis [17], . . .

In this paper, we deal with the problem of label ranking, where one has to
learn a mapping from instances to rankings (complete orders) defined over a
finite number of labels. Various ways have been proposed to solve the prob-
lem, most of them intending to reduce the initial complexity of the problem.
Some approaches propose to fit a probabilistic ranking model with few param-
eters (Mallows [7], Placket-Luce [23]) using different approaches [24, 5]. Other
approaches tend to decompose the problem. Ranking by pairwise comparison
(RPC) [21] transforms the problem of label ranking into binary problems, com-
bining the results to obtain the final ranking. Constraint classification and
log-linear models [18, 14] learn, for each label, a (linear) utility function from
which the ranking is deduced. More recently, some authors [8] have proposed
to solve the problem by performing a label-wise (rather than a more classical
pairwise) decomposition.
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D

X1 X2 X3 X4 Y
107.1 25 Blue 60 λ1 � λ3 � λ2
−50 10 Red 40 λ2 � λ3 � λ1
200.6 30 Blue 58 λ2 � λ1 � λ3
107.1 5 Green 33 λ1 � λ2 � λ3
. . . . . . . . . . . . . . .

Figure 1: A label ranking data set D

Additionally, some authors [10] have discussed the interest, in preference
learning problems and in label ranking in particular, to predict partial orders
rather than complete rankings. Such an approach can be seen as an extension of
the reject option [2] or of the fact of making partial predictions [11]. Such cau-
tious predictions can prevent harmful decisions based on incorrect predictions.
In practice, current methods [10] exploit pairwise information and consist in
thresholding a pairwise comparison matrix containing probabilistic estimates.
It has been recently shown that such methods, when coupled with parametric
probabilistic models (Placket-Luce and Mallows), are particularly interesting,
as they are guaranteed to produce semi-orders, thus avoiding the presence of
cycles in predicted relations.

In this paper, we retain the recent ideas of label-wise decomposition, and
explore how partial predictions can be obtained from them. More precisely,
we propose to learn for each label an imprecise probabilistic model of its rank,
and use these models to infer a partial prediction, using robust optimisation
techniques. Note that imprecise probabilistic approaches are well tailored to
make partial predictions [11], as well as to deal with incomplete data [27].

Section 2 introduces the problem and our notations. Section 3 shows how
rank can be predicted from imprecise probabilistic models. Section 4 presents
the proposed inference method based on bilinear optimisation techniques. Fi-
nally, Section 5 shows some experiments on synthetic data sets.

2. Problem setting

The usual goal of classification problems is to associate an instance x com-
ing from an instance space X to a single (preferred) label of the space Λ =
{λ1, . . . , λk} of possible classes. Label ranking problems correspond to the case
where an instance x is no longer associated to a single label of Λ but to a total
order over the labels, that is a connected, transitive, and asymmetric relation
�x over Λ × Λ, that amounts to give a rank to each label λ1, . . . , λk. Hence,
the space of prediction is now the whole set L(Λ) of complete rankings of Λ
that contains |L(Λ)| = k! elements (i.e., the set of all permutations). Figure 1
illustrates a label ranking data set D with k = 3.

We can identify a ranking �x with a permutation σx on {1, . . . , k} such that
σx(i) < σx(j) iff λi �x λj , as they are in one-to-one correspondence. σx(i) is
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the rank of label λi in the ranking �x. In the label-wise decomposition method
introduced later on, we will often refer to the assignment matrix yx of ranking,
which is a k × k Boolean matrix (yx,ij ∈ {0, 1}) of elements yx,ij such that

k∑
i=1

yx,ij = 1, j = 1, . . . , k,

k∑
j=1

yx,ij = 1, i = 1, . . . , k. (1)

The value yx,ij = 1 means that label λi has rank j (σx(i) = j), and constraints
(1) ensure that each label has a different rank (hence defining a proper order).
We denote by Y the set of all possible assignment matrices. Note that there
is a one-to-one correspondence between assignment matrices, permutations and
complete rankings. In the following, we will use these terms (rankings, permu-
tations, assignment matrices) interchangeably.

Example 1. Consider the set Λ = {λ1, λ2, λ3} and the observation λ3 � λ1 �
λ2, then we have

σx(1) = 2, σx(2) = 3, σx(3) = 1

and the associated assignment matrix y is 0 1 0
0 0 1
1 0 0


The task in label ranking is the same as the task in usual classification: to

use the training instances D = {(xi, yi)|i = 1, . . . , n} to estimate the theoretical
conditional probability measure Px : 2L(Λ) → [0, 1] associated to an instance
x ∈ X . However, in label ranking problems the size of L(Λ) quickly increases,
even when k is small (for instance, |L(Λ)| ' 1012 for k = 15). This makes the
estimation of Px difficult and potentially quite inaccurate if only little data is
available, hence an increased interest in providing accurate yet possibly partial
predictions.

This rapid increase of |L(Λ)| also means that estimating directly Px is in
general not doable, except for very small problems. The most usual means to
solve this issue is either to decompose the problem into many simpler ones or to
assume that Px follows some parametric law. In this paper, we shall focus on
a label-wise decomposition of the problem. To simplify notations, we will drop
the subscript x in the following when there is no possible ambiguity.

3. Label-wise decomposition with probability sets

This section explains how the original label-ranking problem can be reduced
to ordinal regression problems in a label-wise manner. Indeed, since in when an
observation is precise (i.e., corresponds to a complete ranking over all labels),
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D

X1 X2 X3 X4 Y
107.1 25 Blue 60 λ1 � λ3 � λ2
−50 10 Red 40 λ2 � λ3 � λ1
200.6 30 Blue 58 λ2 � λ1 � λ3
107.1 5 Green 33 λ1 � λ2 � λ3
. . . . . . . . . . . . . . .

D1

X1 . . . X4 Y
107.1 60 1
−50 40 3
200.6 58 2
107.1 33 1
. . . . . . . . .

D2

X1 . . . X4 Y
107.1 60 3
−50 40 1
200.6 58 1
107.1 33 2
. . . . . . . . .

D3

X1 . . . X4 Y
107.1 60 2
−50 40 2
200.6 58 3
107.1 33 3
. . . . . . . . .

Figure 2: Label-wise decomposition of rankings

each label can be associated to a unique rank, a natural idea is to learn a
probabilistic model pi : K → [0, 1] with K = {1, 2, . . . , k} and where pij = pi(j)
is interpreted as the probability P (σ(i) = j) that label λi has rank j.

A first step is to decompose the original data set D into k data sets Dj =
{(xi, σxi

(j))|i = 1, . . . , n}, j = 1, . . . , k. The decomposition procedure is illus-
trated by Figure 2. Estimating the probabilities pij for a given label λi then
comes down to solving an ordinal regression problem. A natural way to esti-
mate the expected cost cij of assigning label λi to rank j is then to consider a
distance D : K ×K → R between ranks and to compute

cij =

k∑
`=1

D(j, `)pi`. (2)

Common choices for the distances are the L1 and L2 norms, corresponding to

D1(j, `) = |j − `| (3)

and
D2(j, `) = (j − `)2. (4)

These distances are often used in label-ranking, since D1 is connected to Spear-
man’s footrule and D2 to Spearman’s rank correlation (Spearman’s ρ). In the
sequel, we focus on the D1 distance, yet all presented results extend to D2 in a
straightforward way. Note however that other distances or losses such as Kendall
tau that are not label-wise decomposable cannot fit the current framework.

Precise estimates for pi issued from the finite data set Dk may be unreliable,
especially if these estimates rely on little, unreliable or incomplete data (e.g., if
data are scarce around x). Rather than relying on precise estimates in all cases,
we propose to consider an imprecise probabilistic model, that is, to consider
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for each label λi a polytope (a convex set) Pi of possible probabilities. We
will denote by P = ×k

i=1Pi the Cartesian product of these polytopes. Under a
distance D, each set Pi then induces through Equation (2) a corresponding set
Ci of costs such that

Ci = {cij =

k∑
`=1

D(j, `)pi` | pi ∈ Pi}. (5)

Note that, as Pi is convex and as cij is a linear function of pik, Ci is also a
convex set. A common and simple way to define the set Pi is to provide bounds
over the individual values pij , obtaining the set

Pi = {p
ij
≤ pij ≤ pij ,

∑
j∈K

pij = 1}. (6)

This model is commonly called probability intervals [12], yet other learning
techniques may produce more complex sets, such as binary decomposition ap-
proaches [16] or the popular naive credal classifier [28].

Example 2. The following bounds give an example of models Pi on the set
Λ = {λ1, λ2, λ3}

P1

1 2 3
p1j 0.3 0.5 0.2
p

1j
0.3 0.5 0.2

P2

1 2 3
p2j 0.6 0 0.7
p

2j
0.3 0 0.4

P3

1 2 3
p3j 0.7 0.6 0.4
p

3j
0.3 0.2 0

.

These models indicate that we have precise information about λ1 and believe
its rank is 2, while knowledge about the two other labels are imprecise. We
nevertheless know that λ2 should not have rank 2, while there is much more
imprecision about λ3.

This approach requires to learn k different models, one for each label. This
is to be compared to the RPC [21] approach, in which k(k − 1)2 models (one for
each pair of labels) have to be learnt. There is therefore a clear computational
advantage for the current approach when k increases. It should also be noted
that the two approaches rely on different models: while the label-wise decompo-
sition uses learning methods issued from ordinal regression problems, the RPC
approach usually uses learning methods issued from binary classification.

However, as for the RPC approach (and its cautious versions [10, 9, 15]),
the label-wise decomposition requires to aggregate all decomposed models into
a single (partial) prediction. Indeed, focusing only on decomposed models Pi,
nothing forbids to predict the same rank for multiple labels. In the next section,
we focus on how to describe a set of potentially optimal solutions given the
uncertain costs Ci. To do this, we introduce a new way to handle the well-
known assignment problem when costs are uncertain.
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4. Cautious inference by optimisation

When costs cij are precisely valued, i.e., when Pi is reduced to a single
probability pi for any i = 1, . . . , k, then finding an optimal ranking comes down
to finding the assignment matrix yij that minimizes the overall cost c. One can
easily see that this results in an assignment problem, which can be modelled
with binary optimization variables yij equal to 1 iff label i is assigned to position
j:

min
∑

i,j∈K
cijyij

(AP ) s.t.
∑
i∈K

yij = 1, j ∈ K∑
j∈K

yij = 1, i ∈ K

yij ∈ {0, 1}, i, j ∈ K. (7)

Solving the above optimisation problem can be done by using the well-known
Hungarian algorithm [22] which has complexity O(k3). However, in our case the
costs are uncertain and belong to polytope C = ×k

i=1Ci. A classical approach
for such problems, such as the one used in Robust Optimisation [3], would
seek minmax solutions of the problem [13], yet this would not give us a partial
prediction reflecting our lack of information about the costs. Also, recent works
suggest that minmax solutions are likely to be sub-optimal in Machine learning
problems [19].

Let us denote by Y the set of binary matrices that are feasible for (AP ) (the
set of possible assignment matrices). Given two binary matrices y and y′ feasible
for (AP ), we say that y dominates y′, which is denoted y � y′, if

∑
i,j cijyij <∑

i,j cijy
′
ij for all c ∈ C. This way of defining dominance is strongly connected to

the so-called maximality criterion used in imprecise probabilities [25]. Ideally,
we would want to retrieve the full Pareto set of non-dominated solutions

Y = {y ∈ Y | @y′ ∈ Y with y′ � y}

induced by this dominance criterion. Yet Y has the same size as L(Λ), and
computing or even approximating Y with theoretical guarantee can be very
difficult in practice. This is why we focus in what follows on finding outer
approximations of Y. We provide a means to infer a partial order on Λ whose
linear extensions form a superset of Y. The method comes down to assessing
for a given pair of labels λi1 , λi2 whether label λi1 is preferred to label λi2 for all
elements of Y. By doing this for every pair of labels, we then obtain a partial
order. Note that as all elements of Y are proper rankings, there is no risk of
inferring cyclical relations.

We first introduce some notations. Given i1, i2 ∈ K, let us define by

Yi1�i2 = {y ∈ Y | yi1j1 = yi2j2 = 1, j1 < j2}
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the set of all solutions where label λi1 is preferred to (has a lower rank/position
than) label λi2 . Then label λi1 is preferred over label λi2 , which is denoted
λi1 � λi2 , if Y ⊆ Yi1�i2 . This characterization is not practical, however, since
we are unable to compute the full Pareto set Y. Our objective below is to
provide a sufficient condition to assert whether label λi1 is preferred over label
λi2 . In other words, we compute a subset I ′ of the set I that contains the pairs
of labels for which a preference can be established, i.e.

I = {(i1, i2) ∈ K ×K | Y ⊆ Yi1�i2}. (8)

In this context, we introduce additional notation. For any y ∈ Yi1�i2 , we define

yi1‖i2 as the element in Yi2�i1 such that y
i1‖i2
ij = yij for i 6= i1, i2, and y

i1‖i2
i1j

=

yi2j and y
i1‖i2
i2j

= yi1j for all j ∈ K. That is, yi1‖i2 corresponds to the ranking y
where only the positions of the labels λi1 and λi2 have been swapped. The result
below provides a sufficient condition for λi1 � λi2 in the form of an optimization
problem, whose objective function has the advantage to focus only on the ranks
of labels λi1and λi2 . The proof is presented in Appendix A.

Proposition 1. Given i1, i2 ∈ K, a sufficient condition for λi1 � λi2 is that
the optimal solution cost of the optimization problem below is negative

z(i1, i2) = max
∑
j∈K

ci1j(yi1j − yi2j) + ci2j(yi2j − yi1j)

(WeakDomi1
i2

) s.t. c ∈ C
y ∈ Yi1�i2 (9)

Proposition 1 provides us with a first approach for finding relations between
pairs of labels. However, the result suffers from two drawbacks. First, it amounts
to solve a bilinear mixed-integer program, which isNP−hard to solve in general.
Second, the sufficient condition is too restrictive. Indeed, when probabilities are
precise (i.e., when C is reduced to a singleton), we would like that our approach
returns the full set I defined in (8), determining a unique optimal solution
(or a set of solutions with equal minimal costs, if the optimal solution is non-
unique). Unfortunately, Proposition 1 fails to include all relations in I, even
when probabilities are precise and when there is only one optimal solution.
Namely, let

Iz = {(i1, i2) ∈ K ×K | z(i1, i2) < 0}

be the set returned by Proposition 1. The example below shows that Proposi-
tion 1 can lead to a set Iz strictly included in I.

Example 3. Consider again the space Λ = {λ1, λ2, λ3} with the following pre-
cise cost matrix c (possibly derived from precise probabilities)

c =

 2 3 4
4 2 3
3 4 2

 .

7



Solving the problem (AP ) gives y11 = 1, y22 = 1 and y33 = 1, hence the ranking
λ1 � λ2 � λ3 and the set I = {(1, 2), (2, 3), (1, 3)}. Now, consider the ranking
λ2 � λ3 � λ1, that is the matrix y with y13 = 1, y21 = 1 and y32 = 1, then the
value ∑

j∈K
c2j(y2j − y3j) + c3j(y3j − y2j) = (c21 − c31) + (c32 − c22)

= (4− 3) + (4− 2) = 3

is positive, indicating that the maximum of z(i1, i2) for i1 = 2 and i2 = 3 is
positive as well (as it is higher than 3). Hence, according to Proposition 1, we
have (2, 3) 6∈ Iz, while (2, 3) ∈ I.

The next proposition shows that in our setting, the general problem (WeakDomi1
i2

)
of Proposition 1 can be solved efficiently. This result will be instrumental to
solve a further optimisation problem resulting from a more stringent sufficient
condition.

Proposition 2. Assume that C = ×i∈KCi and let i1, i2 ∈ K be given. Then,
the value of z(i1, i2) is equal to the maximum of

max
c∈C

ci1j1 + ci2j2 − ci1j2 − ci2j1 (10)

taken over all pairs j1 < j2 such that (j1, j2) ∈ K ×K

The proof can be found in Appendix B. Interestingly, this result showing
that (WeakDomi1

i2
) can be solved in polynomial time relies on the fact that C is

the Cartesian product of Ci for i ∈ K, and therefore can be used thanks to the
label-wise decomposition we consider. More specifically, we show that z(i1, i2)
can be computed by solving O(K2) linear programs.

Example 4. Let us pursue Example 3 considering i1 = 2 and i2 = 3, then we
have:

• for j1 = 1, j2 = 2, c21 + c32 − c22 − c31 = 3

• for j1 = 1, j2 = 3, c21 + c33 − c23 − c31 = 0

• for j1 = 2, j2 = 3, c22 + c33 − c23 − c32 = −3

and the maximal value is 3, the one found in Example 3.

We must now deal with the second issue, the one of conservatism. We
can address this issue of Proposition 1 by restricting the number of elements
considered in constraint (9) to a relevant subset of Yi1�i2 . In this aim, we put
a filter on any y that is considered in (9), by imposing that either y or yi1‖i2 be
non-dominated by some y∗ ∈ Y. For instance, y∗ can be the minmax solution,
computable by dualizing the linear program [3], or more simply the solution of
(AP ) corresponding to sampled values of Pi. We obtain the sufficient condition
stated next, less conservative than Proposition 1, whose proof can be found in
Appendix C.
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Proposition 3. Let y∗ ∈ Y be given and consider i1, i2 ∈ K. A sufficient
condition for λi1 � λi2 is that the optimal solution cost of the optimization
problem below is negative

w(i1, i2) = max
∑
j∈K

ci1j(yi1j − yi2j) + ci2j(yi2j − yi1j)

(Domi1
i2

) s.t. c ∈ C
y ∈ Yi1�i2
y ⊀ y∗ OR yi1‖i2 ⊀ y∗ (11)

One readily sees that w(i1, i2) ≤ z(i1, i2) for all i1, i2 ∈ K, as constraints of
(Domi1

i2
) defines a set of feasible solutions strictly included in the one described

by the constraints of (WeakDomi1
i2

). Therefore, the sufficient condition from
Proposition 3 is less conservative than the condition from Proposition 1. In
particular, the result below shows that Proposition 3 never leads to the situation
witnessed in Example 3. Its proof is provided in Appendix D.

Proposition 4. Let C be a singleton and let Iw = {(i1, i2) ∈ K×K | w(i1, i2) <
0}. It holds that Iw = I.

Proposition 3 indicates how to get an outer-approximation that is likely to
not be too conservative, but does not solve the complexity issue. The next
result shows that we can use Proposition 2 in a slightly modified way to inte-
grate the constraint given by Equation (11), therefore keeping the complexity
of computing w(i1, i2) polynomial. Its proof can be found in Appendix E.

Proposition 5. Assume that C = ×i∈KCi and let i1, i2 ∈ K be given. Then,
the value of w(i1, i2) is equal to the maximum of

max
c∈C

ci1j1 + ci2j2 − ci1j2 − ci2j1 (12)

taken over all pairs j1 < j2 such that v(j1, j2) ≤ 0 or v(j2, j1) ≤ 0, where
v(j′, j′′) is the optimal solution cost of

min
∑

i,j∈K
c∗ijyij

s.t. y ∈ Y
yi1j′ = yi2j′′ = 1,

and c∗ij = min
ci∈Ci

cij − cij∗i for each i, j ∈ K, where j∗i is such that y∗ij∗i = 1.

Compared to Proposition 2, the only added step is to check which pair (j1, j2)
are such that v(j1, j2) ≤ 0 or v(j2, j1) ≤ 0, which can be done before solving (12).
Let us denote by S(y∗, i1, i2) the set that contains all pairs (j1, j2) such that j1 <
j2 and v(j1, j2) ≤ 0 or v(j2, j1) ≤ 0 for the element y∗. Algorithm 1 summarizes
the procedure to obtain a predicted partial ranking, given probability sets Pi.
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Example 5. Let us pursue Example 4 considering i1 = 2, i2 = 3, j1 = 1 and
j2 = 2. Let us now compute the values v(1, 2) and v(2, 1). The only possible y∗

is y∗11 = 1, y∗22 = 1, y∗33 = 1. We then have the matrix

c∗ =

 0 1 2
2 0 1
1 2 0

 .

We then have, for example, v(1, 2) = c∗13 +c∗21 +c∗32 = 6 which is indeed positive.
Note that as matrix c∗ is positive, the only case for which we have v(j1, j2) = 0
is when j1 = 2 and j2 = 3, which do correspond to the unique optimal solution.

Algorithm 1: Algorithm to obtain Pareto set approximation Iw with one
filter y∗

Input: Uncertainty models Pi, element y∗

Output: Iw
Iw = ∅ ;
for every (i1, i2) ∈ K2 do

w(i1, i2) = −∞ ;
S(y∗, i1, i2) = {(j1, j2) ∈ K2 | j1 < j2} ;
for each (j1, j2) ∈ K2 do

Compute v(j1, j2) and v(j2, j1);
if v(j1, j2) > 0 and v(j2, j1) > 0 then
S(y∗, i1, i2) = S(y∗, i1, i2) \ (j1, j2)

for each (j1, j2) ∈ S∗(i1, i2) do
wcur=Eq. (12) solution ;
if w(i1, i2) < wcur then w(i1, i2) = wcur

if w(i1, i2) ≤ 0 then Iw = Iw ∪ (i1, i2)

return Iw

Interestingly enough, we can notice that picking multiple elements y∗1 , . . . , y∗m

and adding the constraints

y ⊀ y∗j OR yi1‖i2 ⊀ y∗j

for j ∈ {1, . . . ,m} to (Domi1
i2

) simply comes down to considering the pairs
(j1, j2) within the intersection ∩mj=1S(y∗j , i1, i2). We will denote by S∗(i1, i2) =
∩mj=1S(y∗j , i1, i2) this intersection. Computing S∗(i1, i2) can then even be done
iteratively, as the pairs eliminated for S(y∗j , i1, i2) do not have to be checked
for S(y∗j+1 , i1, i2), . . . , S(y∗m , i1, i2). The slightly more complex procedure to
obtain Iw with multiple filtering solutions y∗j is summarized in Algorithm 2.

Note that when the costs

cij =
∑
`∈K

|`− j|pi`, (13)
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Algorithm 2: Algorithm to obtain Pareto set approximation Iw with
multiple filters

Input: Uncertainty models Pi, elements y∗1 , . . . , y∗m

Output: Iw
Iw = ∅ ;
for every (i1, i2) ∈ K2 do

w(i1, i2) = −∞ ;
S∗(i1, i2) = {(j1, j2) ∈ K2 | j1 < j2} ;
for ` = 1, . . . ,m do

for each (j1, j2) ∈ S∗(i1, i2) do
y∗ = y∗` ;
Compute v(j1, j2) and v(j2, j1);
if v(j1, j2) > 0 and v(j2, j1) > 0 then
S∗(i1, i2) = S∗(i1, i2) \ (j1, j2)

for each (j1, j2) ∈ S∗(i1, i2) do
wcur=Eq. (12) solution ;
if w(i1, i2) < wcur then w(i1, i2) = wcur

if w(i1, i2) ≤ 0 then Iw = Iw ∪ (i1, i2)

return Iw

are derived using D1 distance, problem (12) can be rewritten as a linear program
on variables p rather than c:

max
p∈P

∑
`∈K

|`− j1|pi1` +
∑
`∈K

|`− j2|pi2` −
∑
`∈K

|`− j2|pi1` −
∑
`∈K

|`− j1|pi2`

= max
p∈P

∑
`∈K

(|`− j1| − |`− j2|)pi1` + (|`− j2| − |`− j1|)pi2`. (14)

Alternatively, Eq. (14) can be rewritten

max
pi1∈Pi1

∑
`∈K

(|`− j1| − |`− j2|)pi1` + max
pi2∈Pi2

(|`− j2| − |`− j1|)pi2` =

− min
pi1
∈Pi1

∑
`∈K

(|`− j2| − |`− j1|)pi1` − min
pi2
∈Pi2

(|`− j1| − |`− j2|)pi2` =

− Ei1
(D1(j2, ·)−D1(j1, ·))− Ei2

(D1(j1, ·)−D1(j2, ·))

where Ei1
(resp. Ei2

) is a lower expectation under Pi1 (resp. Pi2). Said in other
words, λi1 � λi2 if

Ei1
(D1(j2, ·)−D1(j1, ·)) + Ei2

(D1(j1, ·)−D1(j2, ·)) (15)

is positive for every (j1, j2) ∈ S∗(i1, i2). Expression (15) has a nice interpre-
tation, as it says that λi1 � λi2 if the expected cost of swapping i1 from rank
j2 to j1 (D1(j2, ·) − D1(j1, ·)) and swapping i2 from rank j1 to j2 is positive.
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This, again, emphasizes the strong links this approach has with the notion of
maximality [25].

Furthermore, when probability sets Pi correspond to probability intervals
(see Equation (6)) and when the costs are derived using the D1 distance (Equa-
tion (3)), we can solve problem (14) by using two sorting algorithms. We denote
ak = |k−j1|−|k−j2| and bk = |k−j2|−|k−j1| for each k ∈ K, reorder variables
pi1k (resp. pi2k) according to the decreasing values of ak (resp. bk), and define
a0 = 1 and b0 = 1. Then, the solution of problem (14) is obtained by fixing pi11

to a∗ = min(pi11, a0) (resp. pi21 to b∗ = min(pi21, b0)), subtracting a∗ from a0

(resp. b∗ from b0), and repeating the operation with the second element of the
list until a0 and b0 are equal to 0. This corresponds to applying the so-called
Choquet integral to obtain lower expectations.

5. Experiments

This section shows results of some experiments done on several synthetic
data sets. In particular, our goal was to compare our proposed approach with
the construction of an inner approximation of the Pareto front, obtained by
sampling precise distributions within sets Pi.

5.1. Data sets and classifiers
The data sets we used in the experiment are presented in [21]. There are

two types of data sets [20]:

• synthetic data sets consisting in multiclass data sets issued from the UCI
machine learning repository [1] that have been transformed into label rank-
ing data by a procedure proposed in [21]. To obtain this transformation, a
naive Bayes classifier is first trained on the entire data set. Then, for each
instance, the labels are ordered according to the predicted class probabil-
ities;

• real-world data sets issued from the bioinformatics fields where the outputs
are qualitative profiles of yeast gene expressions. More details can be found
in [21].

All these data sets are described in Table 1.
As explained in Section 2, the problem of label ranking is decomposed in a

label-wise manner into k ordinal regression problems. Logistic regression is used
as a base learner. For each classifier, and thus for each label λi, B bootstrap
replicates of the learning set are used to provide B precise estimates of pi.
Polytope Pi is obtained as a set of simultaneous confidence intervals [p

ij
; pij ]

j = 1, k, determined so as to contain the α % most central values of pi, where
α is a given level of confidence.

The results of our method are compared to those obtained with a Monte-
Carlo (MC) approach. This one consists in computing several solutions (linear
orders) of (AP ) using precise costs computed from randomly sampled distribu-
tions within Pi. Note that this procedure provides a set of complete orders that
form an inner approximation of Y (a subset of Y).
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Table 1: Data sets description for label ranking

data set #features #labels #instances
iris 4 3 150

glass 9 6 214
vehicle 18 4 846

segment 18 7 2310
authorship 70 4 841

dtt 24 4 2465
cold 24 4 2465
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Figure 3: Distribution of differences of cardinalities between Y and the approximations
(left:MC approach; right: cautious approach).

5.2. Approximation quality

In a first experiment, we compare the approximation quality of the two
methods using the Vehicle data set. The number of labels in this case is limited
(four labels) so that the enumeration of all possible rankings remains possible
(24 possible rankings). The exact Pareto set Y of non dominated solutions
can thus be determined and compared with the approximations given by both
methods. For this experiment, half of the data set has been used for training,
the other part being kept for the test. Parameter α was set to 95%. The number
of bootstrap replicates was fixed to 100 and we used 100 random samplings in
the MC approach. The distributions of the deviations between the cardinality
of the exact set Y and the cardinality of the approximate ones are shown in
Figure 3 for both methods.

It can be seen that the approximation quality is generally good for both
methods. The difference of cardinalities for the MC approach seems to be
slightly smaller than for the cautious approach, but the MC approach, even
with a high number of random samplings, provides no guarantees that the result
will be exact (in fact, there are a few experiments in which the MC approach
underestimate significantly the size of Y). On the contrary, the cautious ap-
proach guarantees that the result is a superset of Y. It should also be noted
that these good results are obtained using Algorithm 1 and only one filtering
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element y∗ obtained by random sampling. From this, it appears that adding
further filtering elements is unnecessary in most cases, yet adding some further
filtering elements when producing very partial rankings may help to improve
the approximation quality.

5.3. Performances on label ranking problems

In this section, we illustrate the behaviour of the MC and the cautious ap-
proaches using the five data sets described in Table 1. The result of each method
being a partial order, we use two specific measures proposed in [10] to evaluate
the performances of the methods. The first one, correctness, quantifies how the
predicted (partial) ranking matches the true ranking, whereas the second one is
intended to measure the degree of completeness of the relation. A good method
predicting partial orders should see its correctness increase as the completeness
decrease, and there is usually a trade-off to be found between the two criteria.
They can be formally defined as follows. Let Dj = {(xi, σxi(j))|i = 1, . . . , n},
j = 1, . . . , k denote the test sets used in the experiments. Let Ixi

denote the
approximation of I for instance xi found either by Algorithm 1 or by a MC
approach. Then, for each xi, a pair of labels {λk, λl} is said to be concordant
if:

(k, l) ∈ Ixi and σxi(k) < σxi(l) or (l, k) ∈ Ixi and σxi(l) < σxi(k).

It is said to be discordant if:

(k, l) ∈ Ixi and σxi(l) < σxi(k) or (l, k) ∈ Ixi and σxi(k) < σxi(l).

Let ci and di denote the number of concordant and discordant pairs of labels
for instance xi, respectively. The correctness measure for the whole test set is
defined as:

Correctness =
1

n

n∑
i=1

ci − di
ci + di

,

whereas the completeness is defined by:

Completeness =
1

n

n∑
i=1

ci + di
n(n− 1)/2

.

Note that the correctness measure can be considered as a generalization for
partial rankings of the Kendall tau, classically used for evaluating the correlation
of complete rankings.

In the experiments, we used the following settings to obtain the probability
sets Pi: we produced 100 Bootstrap samples from the initial training data sets,
resulting in 100 estimations pi of the rank probabilities for each label λi. To
get confidence intervals of increasing size (and thus sets Pi of increasing sizes),
we varied the value from 0 to 0.95. Note that, by convention, when α is set to
zero, only the most central value of the 100 pi is kept, so that precise costs are
used and the completeness is equal to one.
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Figure 4: Experimental results on synthetic data sets.

15



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Confidence level

C
o

rr
e

c
tn

e
s
s

Cold

 

 

cautious

Monte−Carlo

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Confidence level

C
o

m
p

le
te

n
e

s
s

Cold

 

 

cautious

Monte−Carlo

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Confidence level

C
o

rr
e

c
tn

e
s
s

Dtt

 

 

cautious

Monte−Carlo

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Confidence level

C
o

m
p

le
te

n
e

s
s

Dtt

 

 

cautious

Monte−Carlo

Figure 5: Experimental results on real-world data sets.

The results of the experiments are displayed in Figures 4 and 5, and are mean
values computed over five repetitions of a 5-fold cross-validation procedure. In
the Monte Carlo approach, the final partial order from which correctness and
completeness are computed is obtained by keeping the pairwise preference rela-
tions common to all orders resulting from the sampling. From these experiments,
the following conclusions may be drawn:

1. As expected, for both methods, an increase of α leads to a greater absten-
tion but to a significant improvement of the correctness. The abstention is
thus done on poorly reliable predictions. This shows the interest of the use
of imprecise probabilities when solving a label ranking problem through a
label-wise approach.

2. The performances of the two methods are very similar when the num-
ber of labels is small (iris, authorship, vehicle) but show some qualitative
differences when the number of classes, and thus the number of possible
rankings, grows. The cautious approach allows to reach a better correct-
ness while keeping the completeness at a reasonable level. Beyond the
theoretical guarantees it gives of being cautious, this confirms the interest
of our approach.

Finally, let us note that the closeness of the results again indicate that using
Algorithm 1 and only one filtering element y∗ was sufficient for the considered
data sets. We can conjecture that adding further filtering elements will become
more interesting as the number of labels grows, yet it should be noted that in
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the label ranking setting, the number of labels is typically limited (compared to,
e.g., instance ranking or object ranking problems, where considering millions of
items to rank is not unusual).

6. Conclusion

Label ranking is a hard learning problem with structured outputs where
making cautious (partial) and reliable predictions may be preferable to making
complete yet partially unreliable ones. To reduce the complexity of the prob-
lem, we consider a label-wise decomposition, while we consider using sets of
probabilities to make cautious predictions about the label ranks.

This leads us to consider an assignment problem with imprecise costs from
which we want to extract a Pareto front (i.e., the set of undominated rankings).
Such a problem is in general NP − hard to solve, however for the specific case
of label-wise decomposition, we provide a new (to our knowledge), elegant and
efficient (polynomial) solution to the problem, that provides an outer approxi-
mation of the Pareto front.

Our experiments on benchmark data sets show that the approach is sound,
and does not provide overly conservative predictions, something we may fear
with outer-approximation. In fact, most of the time it will provide exact so-
lutions. Experiments also seems to indicate that the interest of the approach
increases with the number of labels to rank. In future experiments, we also
plan to integrate missing data, since though label-wise decomposition tends
to perform better than pairwise decomposition when no data are missing, it
is also more sensible to missing data than pairwise approaches [6]. Yet there
are different ways into which missing data can be considered within imprecise
probabilistic inferences [29], hence considering them is beyond the scope of this
paper.

As a perspective to this work, we plan to work on developing efficient meth-
ods to find other outer-approximations. As an example, we may search to tell
which rank each label can take within Y. Such an approximation would be able
to express some situations that pairwise comparisons cannot, for example it is
possible to perfectly represent the Pareto set Y = {λ1 � λ2 � λ3, λ3 � λ2 � λ1}
by giving the possible rank of each label, while it is impossible to exactly rep-
resent it with pairwise comparisons. Note that the converse is also true, as
there are Pareto sets that can be exactly represented by pairwise comparisons,
but cannot be represented exactly by giving the set of ranks a label can assume.
Also, finding efficiently which rank a label can assume in Y is a trickier problem,
as it becomes difficult to exploit the ordinal structure of ranks.

Acknowledgements

This work was carried out in the framework of the Labex MS2T, which
was funded by the French Government, through the program ”Investments for
the future” managed by the National Agency for Research (Reference ANR-11-
IDEX-0004-02).

17



Appendix A. Proof of Proposition 1

Proof. We must show that z(i1, i2) < 0 implies that Y ⊆ Yi1�i2 . Notice that
since Y = Yi1�i2 ∪ Yi2�i1 , any y ∈ Y belongs either to Yi1�i2 or to Yi2�i1 . We
show next that z(i1, i2) < 0 implies that Yi2�i1 ∩Y = ∅, which proves the result.

Let y be any element in Yi2�i1 and let us compare the cost of y with the
cost of yi1‖i2 (notice that yi1‖i2 ∈ Yi1�i2) for any c ∈ C:∑
i,j∈K

cijy
i1‖i2
ij −

∑
i,j∈K

cijyij =
∑
j∈K

(
(ci1jy

i1‖i2
i1j

+ ci2jy
i1‖i2
i2j

)− (ci1jyi1j + ci2jyi2j)
)

(A.1)

=
∑
j∈K

ci1j(y
i1‖i2
i1j

− yi1‖i2i2j
) + ci2j(y

i1‖i2
i2j

− yi1‖i2i1j
)

(A.2)

≤ z(i1, i2), (A.3)

where (A.1) holds because y and yi1‖i2 are equal for all rows different from

i1 and i2, (A.2) follows from yi1 = y
i1‖i2
i2

and yi2 = y
i1‖i2
i1

, and (A.3) follows

from the definition of z(i1, i2). Hence, z(i1, i2) < 0 implies that
∑

i,j cijy
i1‖i2
ij <∑

i,j cijyij for all c ∈ C, and therefore, yi1‖i2 � y. Thus, y /∈ Y.

Appendix B. Proof of Proposition 2

Proof. In view of the objective function of (WeakDomi1
i2

), the only relevant
components of y are yi1j and yi2j for all j ∈ K. Projecting set Yi1�i2 over these
components yields the finite set below

∑̀
m=1

yi1m ≥
∑̀
m=1

yi2m, ` ∈ K (B.1)∑
j∈K

yij = 1, i ∈ {i1, i2} (B.2)

yij ∈ {0, 1}, j ∈ K, i ∈ {i1, i2}. (B.3)

Constraint (B.1) ensures that the rank given to i1 is lower than the rank given
to i2. Hence, we can compute z(i1, i2) by enumerating the K(K−1)/2 solutions
to (B.1)–(B.3).

Appendix C. Proof of Proposition 3

Proof. The proof is similar to the proof of Proposition 1, with y any element in
Yi2�i1 such that both y and yi1‖i2 are not dominated by y∗. Indeed, if y ≺ y∗

and yi1‖i2 ≺ y∗, it means that neither y nor yi1‖i2 are in Y, therefore we do not
need to consider them in the previous proof.
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It is tempting to replace constraint (11) by the stronger constraint

y ⊀ y∗,

yet in this case we could have disregarded a matrix y′ ∈ Yi1�i2 such that y′i1‖i2 ∈
Y, and hence, we could have concluded falsely that λi1 � λi2 . Indeed, that
y ⊀ y∗ tells us nothing about whether yi1‖i2 ∈ Y. For this reason, constraint
(11) mentions that we must also check matrices y that are dominated by y∗

whenever yi1‖i2 is not dominated by y∗.

Appendix D. Proof of Proposition 4

Proof. The inclusion Iw ⊆ I follows from Proposition 3. To prove the reverse
inclusion, consider any pair of labels (i1, i2) ∈ I, and suppose that (i1, i2) /∈ Iw.
Hence, there exists y ∈ Yi1�i2 such that

w(i1, i2) =
∑
j∈K

ci1j(yi1j − yi2j) + ci2j(yi2j − yi1j) ≥ 0. (D.1)

Two cases may occur, depending on whether yi1‖i2 ⊀ y∗ or y ⊀ y∗.

• If yi1‖i2 ⊀ y∗, then yi1‖i2 ∈ Y because when C is a singleton, � is a
complete pre-order, and any matrix is in Y as soon as it is not dominated
by a single element of Y. This leads to a contradiction because yi1‖i2 ∈
Yi2�i1 , and thus, Y * Yi1�i2 .

• If y ⊀ y∗, then constraint (D.1) implies that yi1‖i2 ⊀ y, and thus, yi1‖i2 ∈
Y, which again leads to a contradiction.

Appendix E. Proof of Proposition 5

Proof. If we forget about constraint (11) that filters dominated solutions, then
we get back (WeakDomi1

i2
) and can use the proof of Appendix B. However, we

do not want to compute z(i1, i2), but w(i1, i2).
In fact not all solutions to (B.1)–(B.3) must be considered in the computation

of w(i1, i2). We need to check which of these enumerated solutions satisfy (11).
From the definition of dominance, we must check that there exists c ∈ C such
that cT (y − y∗) ≤ 0 or such that cT (yi1‖i2 − y∗) ≤ 0, where cT denotes the
transpose of c. This amounts to show that v(j1, j2) ≤ 0 or v(j2, j1) ≤ 0 where
v(j′, j′′) is the optimal solution cost of the following optimization problem:

min
∑

i,j∈K
cij(yij − y∗ij)

(K1) s.t. c ∈ C
y ∈ Y
yi1j′ = yi2j′′ = 1.
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We show next that the optimal solution cost of (K1) is equal to the optimal
solution cost of

min
∑

i,j∈K
c∗ijyij

(K2) s.t. y ∈ Y
yi1j′ = yi2j′′ .

Remark first that the set of binary matrices y feasible for (K1) and (K2) are
equal. Let y be any binary vector feasible for (K1), and for each i ∈ K, let
ji ∈ K be such that yiji = 1 and yij = 0 for j 6= ji. The optimal value of c
associated to vector y is computed as

min
c∈C

∑
i,j∈K

cij(yij − y∗ij) = min
c∈C

∑
i∈K

(ciji − cij∗i )

=
∑
i∈K

min
ci∈Ci

(ciji − cij∗i ) (E.1)

=
∑
i∈K

c∗
iji
, (E.2)

where (E.1) follows from the assumption C = ×i∈KCi and (E.2) follows from the
definition of c∗. Hence, choosing y = y in (K2) provides a feasible solution for
(K2) with the same value as the solution of (K1). Since the argument is valid
for all y feasible for (K1) and (K2), the optimal solution costs of both problems
are equal.

Hence, checking whether (j1, j2) ∈ S(y∗, i1, i2) can be done by solving prob-
lem (K2) where costs c∗ have been computed in a pre-processing phase.
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