
HAL Id: hal-01166012
https://hal.science/hal-01166012v1

Submitted on 21 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Photochemical Production and Behavior of
Hydroperoxyacids in Heterotrophic Bacteria Attached

to Senescent Phytoplanktonic Cells
Morgan Petit, Richard Sempere, Frédéric Vaultier, Jean-Francois Rontani

To cite this version:
Morgan Petit, Richard Sempere, Frédéric Vaultier, Jean-Francois Rontani. Photochemical Pro-
duction and Behavior of Hydroperoxyacids in Heterotrophic Bacteria Attached to Senescent Phy-
toplanktonic Cells. International Journal of Molecular Sciences, 2013, 14 (6), pp.11795-11815.
�10.3390/ijms140611795�. �hal-01166012�

https://hal.science/hal-01166012v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

Int. J. Mol. Sci. 2013, 14, 11795-11815; doi:10.3390/ijms140611795 

 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Photochemical Production and Behavior of Hydroperoxyacids 

in Heterotrophic Bacteria Attached to Senescent 

Phytoplanktonic Cells 

Morgan Petit 
1,2,

*, Richard Sempéré 
1,2

, Frédéric Vaultier 
1,2

 and Jean-François Rontani 
1,2

 

1
 Mediterranean Institute of Oceanography (MIO), Aix Marseille Université, CNRS/INSU, IRD,  

UM 110, 13288 Marseille, France; E-Mails: richard.sempere@univ-amu.fr (R.S.); 

frederic.vaultier@univ-amu.fr (F.V.); jean-francois.rontani@univ-amu.fr (J.-F.R.) 
2
 Mediterranean Institute of Oceanography (MIO), Université de Toulon, CNRS/INSU, IRD,  

UM 110, 83957 La Garde, France  

* Author to whom correspondence should be addressed; E-Mail: morgan.petit@univ-amu.fr;  

Tel.: +33-4-9182-9050; Fax: +33-4-9182-9051. 

Received: 13 March 2013; in revised form: 17 May 2013 / Accepted: 24 May 2013 /  

Published: 3 June 2013 

 

Abstract: The photooxidation of cellular monounsaturated fatty acids was investigated in 

senescent phytoplanktonic cells (Emiliania huxleyi) and in their attached bacteria under 

laboratory controlled conditions. Our results indicated that UV-visible irradiation of 

phytodetritus induced the photooxidation of oleic (produced by phytoplankton and 

bacteria) and cis-vaccenic (specifically produced by bacteria) acids. These experiments 

confirmed the involvement of a substantial singlet oxygen transfer from senescent 

phytoplanktonic cells to attached bacteria, and revealed a significant correlation between 

the concentration of chlorophyll, a photosensitizer, in the phytodetritus and the 

photodegradation state of bacteria. Hydroperoxyacids (fatty acid photoproducts) appeared 

to be quickly degraded to ketoacids and hydroxyacids in bacteria and in phytoplanktonic 

cells. This degradation involves homolytic cleavage (most likely induced by UV and/or 

transition metal ions) and peroxygenase activity (yielding epoxy acids). 

Keywords: phytoplankton; photodegradation; attached heterotrophic bacteria; cis-vaccenic 

acid; singlet oxygen transfer 
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1. Introduction 

It is generally accepted that the majority of the marine particulate organic matter (POM) produced 

by phytoplankton (phytodetritus), in the oceanic euphotic layer, is recycled within the food web and 

microbial loop in surface water [1], and that only a small fraction of POM is exported by particles, 

sinking towards the deep ocean and seafloor [2]. POM may be considered as a critical intermediary 

between primary production and sediment preservation [3,4]. It is well known that, in the water 

column, phytodetritus could be decomposed by: (i) zooplankton grazing, and (ii) enzymatic 

degradation by attached and free living heterotrophic bacteria [5–8]. However, there is a lack of data 

concerning the photooxidation and autoxidation of these particles, although the importance of these 

processes in the marine environment has been previously demonstrated [9,10]. 

During the senescence of phototrophic organisms, visible light and UV-induced photosensitized 

degradation processes intensively act on numerous cellular components [11,12] due to the presence of 

a very efficient photosensitizer, chlorophyll [13,14]. When a chlorophyll molecule absorbs a quantum 

of light energy, an excited singlet state (
1
Chl) is formed. In healthy cells, the absorbed energy is 

primarily used during photosynthetic reactions [13], whereas a small proportion (less than 0.1%) of 
1
Chl may undergo intersystem crossing to form the longer lived triplet state (

3
Chl) [14]. 

3
Chl is not 

only potentially damaging by itself in type I reactions [14] but it may also generate toxic oxygen 

species, such as singlet oxygen (
1
O2) and, to a lesser extent, the superoxide anion (O2·

−
) by reaction 

with ground state oxygen (
3
O2) (type II photoprocesses). Oxidative damage to cells is usually limited 

by many photoprotective compounds (e.g., carotenoids, tocopherols, and ascorbic acid) and enzymes 

(e.g., superoxide dismutase) in chloroplasts [13,15]. In contrast, in senescent phototrophic organisms 

(in which photosynthetic reactions are not functional), an accelerated rate of 
3
Chl formation and toxic 

oxygen species, exceeding the quenching capacity of the photoprotective system, has been  

reported [16], which leads to the photodegradation of cellular components (photodynamic effect) [17]. 

Moreover, note that the lifetime of 
1
O2 produced from sensitizers in a lipid-rich hydrophobic 

environment, such as a cellular medium, could be longer, and its potential diffusive distance is greater, 

than in an aqueous solution [18]. Therefore, it is not surprising that photodegradation processes act on 

the majority of unsaturated lipid components of senescent phytoplankton, including sterols, unsaturated 

fatty acids, chlorophyll phytyl side chain, carotenoids, and alkenes (for reviews, see [11,19]). 

The effects of photooxidation, however, are not limited to chloroplasts. Indeed, during the 

senescence of higher plants 
1
O2 can migrate outside the chloroplasts and chemically react with 

unsaturated components of cuticular waxes [20]. In the case of senescent phytoplanktonic cells, 
1
O2 

can induce the degradation of the heterotrophic bacteria attached to particles [21]. Indeed, 

phytodetritus constitute hydrophobic microenvironments in which the lifetime and potential diffusive 

distance of 
1
O2 may be sufficiently long to allow its transfer to attached bacteria. Interestingly, the 

photooxidation of cis-vaccenic acid (a fatty acid typical of Gram negative bacteria [22,23]) has been 

observed after solar irradiation of non-axenic phytodetritus, whereas this compound appeared to be 

unaffected after the irradiation of isolated bacteria [24], which indicates an external origin for the 

oxidant species. Cellular damages resulting from the transfer of substantial amounts of 
1
O2 from 

phytoplanktonic cells to their attached bacteria may be significant due to the lack of efficient 

photoprotective and antioxidant systems in these microorganisms [25], and can affect their capability 
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in degrading particulate organic matter (POM). Such a transfer of 
1
O2, towards bacteria has also been 

observed in situ in several particulate organic matter samples [9,26–28], and may help to explain the 

relative recalcitrance of strongly abiotically degraded suspended POM towards biotic degradation [9].  

The deleterious effects of 
1
O2 towards bacteria are well-known. Indeed, the photodynamic killing of 

bacteria using light, in combination with 
1
O2-producing photosensitizers to induce a phototoxic 

reaction, has been intensively studied in the literature [22,26,27]. Various classes of chemical 

compounds, including phenothiazines, phthalocyanines, and porphyrins, which have photoactive 

properties, have been successfully tested as photo-inactivating agents against Gram-positive and 

Gram-negative bacteria [29–32]. The present study focuses on the effects of a natural source of 
1
O2 

(senescent phytoplanktonic cells) to their attached bacteria. These processes, which have been ignored 

in the literature until now, might strongly limit bacterial growth in the seawater column and, 

consequently, contribute to a better preservation of algal material toward biotic degradation during 

settling [33]. 

In this study, we intend to (i) confirm the role played by 
1
O2 in altering the bacteria attached to 

phytodetritus, (ii) correlate the photodegradation state of the bacteria with the evolution of the 

concentration of chlorophyll (sensitizer) in the phytodetritus, and (iii) compare the behavior of 

photochemically-produced hydroperoxides in bacteria and phytoplankton cells under PAR + UV 

irradiations. For this purpose, the photooxidation of oleic (produced by phytoplankton and bacteria) 

and cis-vaccenic (specifically produced by bacteria) acids in a non-axenic senescent culture of 

Emiliania huxleyi was investigated under laboratory controlled conditions. 

2. Results and Discussion 

2.1. 
1
O2 Transfer 

The results (Figure 1) revealed that during the first 10 h of light exposure, the concentration of  

cis-vaccenic acid (bacterial tracer) decreased from 309 to 258 μg·L
−1

 (linear regression, n = 5,  

r
2
 = 0.83, p-value < 0.05, slope −5.4) while the concentration of the products from the oxidation of  

cis-vaccenic acid (hydroperoxides, hydroxyacids and ketoacids) increased from 18 to 64 µg·L
−1

 (linear 

regression, n = 5, r
2
 = 0.83, p-value < 0.05, slope 4.8). Furthermore, the sum of the cis-vaccenic acid 

concentration and the oxidation products concentration stayed approximately constant  

(321.6 ± 13.3 µg·L
−1

) during the first 10 h (Table 1), showing that this degradation could be considered 

as a conservative reaction. Due to experimental requirement (size of the solar simulator limiting the 

number of samples), we were unable to do replicate, so the reproducibility of this experiment was 

tested on three different strains of E. huxleyi (TW1 from the Roscoff marine station, CS814 and CS57 

from the CSIRO) with the same experimental conditions. Assuming a first order reaction, reaction rate 

constants (k) of photoproducts formation were calculated during the light period (Table 2) and showed 

an average k value of 0.153 ± 0.018 h
−1

. Singlet oxygen-mediated photooxidation of monounsaturated 

fatty acids leads to the formation of hydroperoxides at each carbon of the original double bond [34]. 

Thus, photooxidation of vaccenic acid produces a mixture of 11- and 12-hydroperoxides with an allylic 

trans-double bond [35], affording 13-trans and 10-trans hydroperoxides respectively, after 

stereoselective radical allylic rearrangement [36]. In contrast, free radical oxidation processes 
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primarily involve allylic hydrogen abstraction processes and yield mixtures of six cis and trans 

isomeric allylic hydroperoxides [35,36]. Therefore, based on the dominance of  

11-hydroxyoctadec-trans-12-enoic and 12-hydroxyoctadec-trans-10-enoic acids among the cis-vaccenic 

degradation products (photooxidation and autoxidation products) observed in our experiment (Figures 

2 and 3), its degradation was mainly attributed to 
1
O2 transfer from the phytodetritus to the attached 

bacteria during the exposure to light [21]. As the 
1
O2 lifetime is more important in D2O than in H2O 

(65 and 3.1 μs, respectively) [37], the increase of cis-vaccenic acid oxidation products (ranging from 

2.5% to 76.5% relative to the experiment carried out in pure H2O) observed when the D2O 

concentration increased from 25% to 100% (Table 3) reinforces the idea of the involvement of 
1
O2 

during cis-vaccenic oxidation. The nonlinear increase of the percentage of cis-vaccenic photooxidation 

products with the percentage of D2O observed (Table 3) was attributed to the involvement of 

competitive heterolytic cleavage of hydroperoxides induced by the augmentation of pH [38]. Indeed, 

the pH of D2O (7.43 at 25 °C) is higher than this H2O (6.99 at 25 °C). Moreover, it is very important to 

note that we failed to detect cis-vaccenic photoproducts after irradiation of the isolated bacterial 

community for 7.5 h (Table 4). 

Table 1. Sum of the cis-vaccenic acid concentration and the oxidation products 

concentration during the first irradiation of senescent culture of a non-axenic culture of  

E. huxleyi. 

Cis-vaccenic acid  

concentration (μg·L
−1

) 

Cis-vaccenic acid oxidation  

products concentration (μg·L
−1

) 
Sum (μg·L

−1
) 

308.7 18.0 326.7 

292.7 40.0 323.7 

260.8 38.2 299.0 

258.7 69.8 328.6 

257.9 63.4 321.2 

  Average: 321.6 ± 13.3 

Table 2. Reaction rate constants (k) of cis-vaccenic photoproducts formation (h
−1

) 

observed during irradiation of senescent culture of different non-axenic strains of E. huxleyi. 

E. huxleyi strain 
Reaction rate constants (k) of cis-vaccenic  

photoproducts formation (h
−1

) 

TW1 0.152 

CS814 0.138 

CS57 0.173 

 Average : 0.153 ± 0.018 
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Figure 1. Cis-vaccenic acid and cis-vaccenic acid photoproducts concentration during the 

photodegradation of non-axenic E. huxleyi strain TW1 with a solar simulator. 

 

Figure 2. Hydroperoxides from autoxidation and 
1
O2-mediated photoprocesses of  

octadec-11-enoic acid. 
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Figure 3. Mass chromatograms of m/z 199, 357, 213, and 371, revealing the presence of 

hydroxyacids derived from octadec-11-enoic acid. The asterisk (*) indicates that the 

numbers refer to the oxygenated carbon atoms and not to the olefinic centers whose 

configuration is indicated. 
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Table 3. Increase of cis-vaccenic acid photooxidation products (relative to the pure H2O 

sample) observed after irradiation of non-axenic senescent E. huxleyi cells in different 

mixtures of D2O and H2O. 

Percentage of D2O 
Increase of cis-vaccenic photooxidation products  

relative to the pure H2O sample (%) 

0 0 

25 2.5 

50 76.5 

75 50.2 

100 70.4 

Table 4. Percentage of cis-vaccenic acid photooxidation products relative to the residual 

parent compound, observed after irradiation of non-axenic E. huxleyi cells and isolated 

bacterial community. 

Irradiation  

time (h) 

Non-axenic senescent cells of  

E. huxleyi 

Bacterial community isolated from  

E. huxleyi cells 

0 5.8 0 

7.5 27.0 0 

31.5 9.9 0.6 

Similarly, during the irradiation period, the concentration of chlorophyll a in the senescent cells of 

E. huxleyi strongly decreased (from 210 to 33 µg·L
−1

) (Figure 4). The highly significant (n = 5,  

r
2
 = 0.99, p-value < 0.001) correlation observed (Figure 5) between the amounts of degraded 

chlorophyll and produced cis-vaccenic acid photoproducts, and the lack of cis-vaccenic photoproducts 

in the bacterial control strongly suggest that the photooxidation of cis-vaccenic acid in bacteria is 

associated with the photosensitizing properties of chlorophyll a in senescent E. huxleyi cells. 

Figure 4. Concentration of chlorophyll a during the photodegradation of non-axenic  

E. huxleyi cells with a solar simulator. 
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Figure 5. Plot of the correlation between the amount of degraded chlorophyll a and 

produced cis-vaccenic acid photoproducts during the photodegradation (first light period, 

five hours) of non-axenic E. huxleyi cells with a solar simulator. 

 

During the dark period (from 10 to 24 h), the photosensitized degradation processes (
1
O2 transfer) 

logically decreased (Figure 1), the formation of cis-vaccenic acid oxidation photoproducts slightly 

increased (from 63.4 to 84.2 µg·L
−1

), this is most likely due to the involvement of autoxidation (free 

radical-mediated oxidation) processes. Indeed, the reaction of 
1
O2 with unsaturated components of the 

outer lipopolysaccharide membrane of Gram-negative bacteria leads to the formation of reactive 

secondary products, such as peroxyl radicals, which may subsequently accentuate cell damages [39]. 

This assumption is well supported by the slight increase (not-shown) in the proportion of  

13-hydroxyoctadec-cis-11-enoic and 10-hydroxyoctadec-cis-11-enoic acids (which are specific tracers 

of autoxidative processes [26]) observed during the incubation in darkness. The important increase of 

the cis-vaccenic acid (bacterial marker) concentration, from 220 to 308 µg·L
−1

 between 15 and 20 h, 

was attributed to the bacterial growth of free and attached bacteria. A similar result was observed in 

the dark control where the concentration reached 404 µg·L
−1

 after 34 h of incubation. It may be noted 

that the photooxidation of senescent phytoplankton cells during the light period should induce the 

release of dissolved organic carbon, thus permitting an effective growth of bacterial community during 

the dark period. Those results confirmed that, during irradiation, bacterial growth seems to be limited 

by the photooxidation process and in a less proportion way by the autoxidation process. 

Interestingly, exposure to light after a dark period induced a strong decrease of cis-vaccenic acid 

(Figure 1), this degradation was attributed to the slight increase of chlorophyll a concentration 

(resulting from a slight phytoplanktonic growth) observed after 25 h of experiment (Figure 4), 

allowing production of 
1
O2 and, thus, photooxidation of the cis-vaccenic acid. The faster degradation 

rate observed during the second light period is probably due to bacterial cell damage, induced during 

the first light period, favouring the migration of 
1
O2 in membranes. The increase of cis-vaccenic acid 

observed, between 28 and 32 h (i.e., when chlorophyll has totally disappeared) (Figure 4), confirms 

that the degradation of this acid is linked to the involvement of chlorophyll-induced type II 

photoprocesses. At the return to light conditions, we also noted a substantial decrease in the 

concentration of the cis-vaccenic acid photoproducts (Figure 1). While during the first light period, the 

formation of cis-vaccenic photoproducts by singlet oxygen was faster than their degradation by UV or 
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metal ions (Figure 6), during the second light period, due to the strong degradation of the 

photosensitizer, the formation of cis-vaccenic photoproducts slows down and degradation processes 

become dominant. Indeed, hydroperoxides absorb in the UVR range [40], and redox-active metal ions 

may play a very important role in the homolysis of these compounds because they are ubiquitous, 

active in many forms, and trace quantities are sufficient for effective catalysis [41]. Only metals 

undergoing one-electron transfers appear to be active catalysts; these metals include cobalt, iron, 

copper, manganese, magnesium, and vanadium.  

9,10- and 11,12-epoxyoctadecanoic acids (concentrations ranging from 0.7 to 2.1 µg·L
−1

) could be 

detected during all the experiment. Such compounds can be formed by the adding of a peroxyl radical 

to a double bond [42], followed by a fast intramolecular homolytic substitution [43]. In the case of 

monounsaturated fatty acids (such as cis-vaccenic acid), such a formation is very unlikely. Indeed, this 

addition only becomes competitive (relative to the abstraction of an allylic hydrogen atom) in the case 

of conjugated, terminal, or tri-substituted double bonds [41]. The formation of these epoxy acids was 

attributed to the involvement of peroxygenases (hydroperoxide-dependent oxygenases) during the 

abiotic degradation of phytoplankton and the attached bacteria. These enzymes, which play a 

protective role against the deleterious effects of hydroperoxides in vivo [44], catalyze the epoxidation 

of unsaturated fatty acids in the presence of alkyl hydroperoxides as co-substrates (Figure 2). 

2.2. Degradation of Hydroperoxides 

An additional photodegradation experiment was conducted to investigate how hydroperoxides are 

degraded into hydroxyl acids and ketoacids within bacteria and phytoplanktonic cells, respectively. 

During the first five hours of the illumination period, a strong production of oleic and vaccenic 

hydroperoxyacids was observed (from 12.4 to 31.2 µg·L
−1

 and 2.3 to 9.4 µg·L
−1

, respectively)  

(Figures 7 and 8). During this period, the corresponding hydroxyacids and ketoacids were produced. 

This production was attributed to the homolytic cleavage of hydroperoxides (most likely induced by 

UV irradiation [40]). Indeed, as summarized in Figure 6, allylic hydroperoxides may undergo  

(i) reduction by peroxygenase activity [44]; (ii) heterolytic cleavage catalyzed by protons [34];  

(iii) homolytic cleavage induced by transition metal ions [45,46] or UVR [40]; and (v) photosensitized  

cis-trans isomerization [12]. Homolytic cleavage of hydroperoxides (catalyzed by metal ions) leads to 

the formation of allylic peroxyl or alkoxyl radicals. The resulting alkoxyl radicals can subsequently  

(i) lead to the formation of volatile products after β-cleavage; (ii) lose a hydrogen atom to produce 

ketoacids, or (iii) react with another molecule and abstract a hydrogen atom to yield hydroxyacids. 

Note that hydroxyacids and ketoacids may also result from the disproportionation of two alkoxyl 

radicals. Allylic ketoacids resulting from the degradation of hydroperoxides may be excited to a triplet 

state by absorption in the UVR range. This triplet state can then (i) induce type I photosensitized 

reactions; (ii) lead to volatile products by direct photodegradative processes; or (iii) induce cis-trans 

stereomutation of double bonds [40,47]. Allylic keto groups can also react with water to form β-ketols, 

which can subsequently be cleaved to volatile compounds by retroaldolisation (Figure 6). 
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Figure 6. Proposed pathways for the degradation of allylic hydroperoxyacids in senescent 

phytoplanktonic cells and attached heterotrophic bacteria (modified from [12]). 

R

O

R'

O

R

O

R'

UVR

RH

R

R

O

OH

R'

R

O

R'

R

O

R'

R

O

R'

OH

R

O

OH

R'

UVR

R

H
+

RH

R

OH

R'

O

Heterolytic

   cleavage

Allylic  rearrangement

Homolytic

  cleavage

Transition 

 metal ions

Volatile products

-cleavage

Direct degradative

    photoprocesses

Volatile products

Type I photosensitized                        

reactions

3
*

Photosensitized

stereomutation

+ H2O

Volatile products

Retroaldolisation

Peroxygenase

Disproportionation

UVR

 



Int. J. Mol. Sci. 2013, 14 11805 

 

 

Figure 7. Concentrations of oleic acid degradation photoproducts and chlorophyll a during 

the photodegradation of non-axenic E. huxleyi strain TW1 with a solar simulator. 

 

Figure 8. Concentrations of cis-vaccenic acid degradation photoproducts and chlorophyll a 

during the photodegradation of non-axenic E. huxleyi strain TW1 with a solar simulator. 
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After five hours of irradiation, the concentrations of hydroperoxyacids decreased due to the 

observed decrease of 
1
O2 transfer resulting from the strong degradation of chlorophyll (sensitizer). 

During the dark period (from 8.5 to 33.5 h), the production of oleic and vaccenic hydroperoxyacids 

logically stopped and their concentration decreased by 74% and 79% for oleic and vaccenic acids, 

respectively. This degradation can be attributed to: (i) homolytic cleavage catalyzed by transition metal 

ions [45,46] (resulting in the formation of hydroxyacids and ketoacids) and (ii) reduction by 

peroxygenase activity [44] (resulting in the formation of hydroxyacids and epoxyacids) (Figure 6). The 

fact that the concentration of the oleic and vaccenic ketoacids remained practically constant during the 

dark period, whereas the concentrations of hydroxyacids continued to increase strongly, suggests the 

additional involvement of peroxygenase [44] or hydroperoxide reductase [48]. These two types of 

enzymes catalyze the reduction of hydroperoxides to their corresponding alcohols. Although the 

involvement of hydroperoxide reductase (using NADPH to reduce hydroperoxides) cannot be totally 

excluded, we favor the involvement of peroxygenases based on the strong increase (120%) of the total 

epoxyacids concentration (i.e., oleic + vaccenic epoxyacids) observed during the incubation period.  

These results demonstrate that oleic and vaccenic hydroperoxyacids are rapidly degraded in 

phytodetritus and bacteria. This degradation primarily yields hydroxyacids and ketoacids during 

irradiation and hydroxyacids under darkness. Assuming first order kinetic no difference was observed 

between the reaction rate constant (k) of oleic hydroperoxyacid degradation (k = 0.042 h
−1

) and 

vaccenic hydroperoxyacid degradation (k = 0.045 h
−1

). 

3. Experimental Section 

3.1. Algal and Bacterial Material Production 

For each experiment, E. huxleyi strain TW1 from the Roscoff marine station culture collection was 

grown in 500 mL of f/2 medium under non-axenic conditions at 17 °C, in a constant  

environmental-controlled cabinet under an irradiance of 36 W·m
−2

 (Osram, Fluora, 12:12 h light:dark 

cycle), until a stationary phase was obtained. 

A bacterial community previously isolated from a culture of E. huxleyi was grown in a mixture of 

synthetic seawater, pyruvate, and acetate at 20 °C. 

3.2. Photodegradation Experiments 

E. huxleyi cells, in the stationary phase, were transferred (after centrifugation, 3500 rpm for 5 min) 

into 500 mL of old natural seawater and incubated under darkness, for 4 days, to induce senescence. 

The ease of bleaching of the resulting cells during the subsequent irradiation attested to their senescent 

state. These cells were distributed into 60 mL Pyrex flasks (all glassware was sterilized (autoclaved 

110 °C, 20 min) before use in the experiments) (Figure 9) and irradiated for 10 h by artificial light with 

an Atlas Suntest solar simulator under an irradiance of 500 W·m
−2

 in the wavelength range  

280–700 nm. After irradiation, the cells were placed in darkness for 14 h and finally irradiated for  

10 h. Exposure for 12 h at this intensity from the solar simulator corresponds to a natural daily dose 

measured at the surface of the sea in the north-western Mediterranean region in the summer [24]. The 

flasks were maintained at 17 °C by submersion in a water bath connected to a cryothermostat. One 
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flask was also maintained in darkness at 17 °C as a control over the time course of the experiment. 

Bacteria control was performed on a bacterial community isolated from a culture of E. huxleyi [49]. 

The cells were transferred, after centrifugation (5000 rpm for 20 min), into 100 mL of filtered (0.2 µm) 

natural seawater, distributed in a 60 mL Pyrex flask and then irradiated as described above. To confirm 

that singlet oxygen is involved in the formation of hydroperoxide, senescent E. huxleyi cells were 

centrifuged (3500 rpm for 5 min), transferred into 5 mixtures of deuterium water (D2O, Sigma, 

151882, St. Louis, MO, USA) and MQ water (from 0% to 100% of D2O, salinity adjusted to 37‰) and 

then irradiated for 4 h as described above. 

Figure 9. Singlet oxygen transfer and hydroperoxyacid degradation experiments. 
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To monitor the degradation of hydroperoxides, E. huxleyi cells were transferred to old seawater and 

the algal and bacterial growths were stopped by adding HgCl2 (final concentration 0.005 M). This 

poison was employed in order to avoid bacterial consumption of photoproducts in darkness. The dead 

non-axenic phytoplanktonic culture was subsequently transferred to a 250 mL Pyrex bottle covered 

with aluminium foil (Figure 9) and closed by a stopper equipped with a full sun spectral filter  

(λ > 280 nm). Irradiation of the contents of the flask was performed at 17 °C, using the solar simulator 

under an irradiance of 500 W·m
−2

. The contents of the flask were irradiated for 8.5 h and then 

incubated in darkness for 25 h to monitor the degradation of photochemically-produced hydroperoxides. 

One flask was also incubated in darkness at 17 °C during all the experiments as a control.  

3.3. Lipid Analyses 

After irradiation, a known volume of the irradiated culture was filtered on GF/F (Whatman, 

Maidstone, UK) filter for lipid analysis. Lipid biomarkers and their oxidation products were obtained 

after reduction with NaBH4 and subsequent saponification. All post-irradiation manipulations were 

conducted using foil-covered glassware to avoid photochemical artifacts. It is well known that metal 

ions can induce homolytic cleavage of hydroperoxides, and consequently promote free radical 

oxidation during procedures involving hot saponification [45]. The preliminary reduction of the 

hydroperoxides ensured that such free radical oxidation artifacts were avoided during the alkaline 

hydrolysis step. Due to the use of NaBH4-reduction during the treatment, it was not possible to 

distinguish hydroperoxides from their ketonic and alcoholic degradation products.  

Note that cis-vaccenic and oleic acid oxidation products were obtained from the measurement of 

two groups of six isomeric hydroxyacids that resulted from the NaBH4 reduction of the corresponding 

hydroperoxyacids, i.e., 11-hydroxyoctadec-trans-12-enoic, 12-hydroxyoctadec-trans-10-enoic,  

13-hydroxyoctadec-trans-11-enoic, 13-hydroxyoctadec-cis-11-enoic, 10-hydroxyoctadec-trans-11-enoic, 

and 10-hydroxyoctadec-cis-11-enoic acids for cis-vaccenic acid (Figures 2 and 3) and  

9-hydroxyoctadec-trans-10-enoic, 10-hydroxyoctadec-trans-8-enoic, 11-hydroxyoctadec-trans-9-enoic, 

11-hydroxyoctadec-cis-9-enoic, 8-hydroxyoctadec-trans-9-enoic, and 8-hydroxyoctadec-cis-9-enoic 

acids for oleic acid [26]. 

A different extraction method was employed to analyze the hydroperoxide degradation products 

(Figure 10). Samples (30 mL) were ultrasonically extracted (15 min) with chloroform: methanol: water 

(1:2:0.8, v/v/v [50]), then Milli-Q water was added to the extract to yield a final chloroform: methanol: 

water ratio of 1:2:2.3 (v/v/v) to initiate phase separation. Lipids were recovered in the lower 

chloroform phase, which was dried over anhydrous Na2SO4, filtered, and concentrated by rotary 

evaporation at 40 °C. The residue was then dissolved in 4 mL of dichloromethane and separated into 

two equal subsamples. Degradation products were obtained for the first subsample after acetylation 

and saponification, and they were obtained for the second one after reduction with NaBD4 and 

saponification (Figure 10). 
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Figure 10. Sample chemical treatments for alcohol, ketone, and hydroperoxide quantification. 
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3.3.1. Reduction 

The hydroperoxides were reduced to alcohols in methanol (25 mL) by adding excess NaBH4 or 

NaBD4 (10 mg per sample) using manual stirring (30 min at 20 °C) [51]. During this treatment, 

ketones are also reduced to their corresponding alcohols and the possibility of some ester cleavage 

cannot be totally excluded.  

3.3.2. Acetylation 

The residues obtained after evaporation were taken up in 300 mL of a mixture of pyridine and 

acetic anhydride (2:1, v/v), allowed to react at 50 °C overnight, and then evaporated to dryness  

under nitrogen. Under these conditions, hydroperoxides are quantitatively transformed into their 

corresponding ketones [52]. 

3.3.3. Alkaline Hydrolysis 

Saponification was performed on the reduced samples and on the acetylated samples (taken in  

25 mL of methanol) [26,27]. Twenty-five milliliters of water and 2.8 g of potassium hydroxide were 

added and the mixture was directly saponified by refluxing for 2 h. The aqueous phase was then 

acidifed with hydrochloric acid (pH 1) and subsequently extracted three times with dichloromethane. 

The combined dichloromethane extracts were dried over anhydrous Na2SO4, filtered, and concentrated 

by rotary evaporation at 40 °C to obtain the saponified fraction. 

3.3.4. Derivatization 

The residues were taken up in 300 μL of a pyridine and bis(trimethylsilyl)trifluoroacetamide 

(BSTFA, Supelco, Bellefonte, PA, USA) mixture (2:1, v/v) and silylated at 50 °C for 1 h [53]. After 

evaporation to dryness under nitrogen, the residues were taken up in a suitable volume of a mixture 

(1:1, v/v) of ethyl acetate and BSTFA (to avoid desilylation of easily silylated compounds) and 

analyzed by gas chromatography-electron impact mass spectrometry (GC-EIMS). 

3.4. Identification and Quantification of Lipid Biomarkers and Their Degradation Products by Gas 

Chromatography—Electron Impact Mass Spectrometry 

The compounds were identified by comparing their retention times and mass spectra with those of 

standards (when available) and quantified (calibration with external standards) by GC-EIMS (Agilent 

5975C mass spectrometer connected to a 6850 gas chromatograph, Santa Clara, CA, USA). For low 

concentrations, or in the case of co-elutions, quantification was achieved using selected ion monitoring 

(SIM). The following operating conditions were employed: 30 m × 0.25 mm (i.d.) fused silica capillary 

column coated with HP-5MS (Agilent; film thickness: 0.25 μm); oven temperature programmed from 

70 to 130 °C at 20 °C·min
−1

, from 130 to 250 °C at 5 °C·min
−1

, and then from 250 to 300 °C at  

3 °C·min
−1

; carrier gas (He), 1.0 bar; injector (pulsed splitless) temperature, 250 °C; electron energy, 

70 eV; source temperature, 230 °C; and cycle time, 0.2 s. Standard products from the oxidation of 

oleic and vaccenic acids were obtained according to previously described procedures [26]. The 
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products resulting from the degradation of the epoxy acids during the treatment (chlorohydrins, 

methoxyhydrins and diols) were quantified using a standard of 9,10-dihydroxyoctadecanoic acid 

produced after oxidation of oleic acid with OsO4. 

3.5. Chlorophyll a Analyses 

Five milliliters of samples were filtered through GF/F filters (previously cleaned by refluxing in 

CH2Cl2/MeOH 2:1 overnight) and then the filters were transferred into a glass tube and stored at  

−20 °C. After adding 5 mL of pure methanol (Fisher Scientific, Loughborough, UK), the tube was 

closed and the extraction was performed in darkness at 4 °C for 30 min. The sample fluorescence was 

directly measured with a Turner Designs fluorimeter equipped with a F4T5 Blue lamp, a 5–60  

(450 nm) excitation filter and a 2–64 (660 nm) high-pass emission filter. The fluorimeter was 

calibrated with pure chlorophyll a (Sigma C5753, St. Louis, MO, USA) dissolved in methanol (96%). 

The concentration of this solution was determined by spectrophotometry using the specific absorption 

coefficient of 77 L g
−1

·cm
−1

 at 663 nm [54]. Correcting for phaeopigment interferences was performed 

using the acidification method [55], which required a second fluorescence measurement after adding of 

50 µL of hydrochloric acid (0.5 N) to the extract. 

4. Conclusions  

Photodegradation processes were investigated in non-axenic senescent cultures of the haptophyte  

E. huxleyi. Specific attention was devoted to the transfer of singlet oxygen from the phytodetritus to 

the attached bacteria. Oleic acid (component of phytoplanktonic and bacterial cells) and cis-vaccenic 

acid (specific component of Gram-negative bacteria) were employed to compare the effects of the 

photodegradation processes in these two types of organisms.  

The first experiment confirmed some previous results concerning the transfer of singlet oxygen 

from senescent phytoplanktonic cells to attached bacteria [12,21,51] and revealed a significant 

correlation between the concentration of degraded chlorophyll a (sensitizer) in the phytodetritus, and 

the photodegradation state of the attached bacteria (concentration of cis-vaccenic photoproducts).  

The behavior of the photochemically-produced hydroperoxyacids in bacteria and phytoplanktonic 

cells was investigated during PAR + UV irradiation and in darkness. In both organisms, homolytic 

cleavage of hydroperoxides induced by UV irradiations and/or metal ions, resulted in the production of 

similar proportions of ketoacids and hydroxyacids. In darkness, the additional involvement of 

peroxygenases (enzymes catalyzing the transfer of an oxygen atom from the hydroperoxide group of 

hydroperoxyacids to the double bonds of unsaturated fatty acids) [44] resulted in the simultaneous 

production of hydroxyacids and epoxyacids. These enzymes play an important protective role against 

the deleterious effects of fatty acid hydroperoxides in bacteria and phytoplankton [44]. Indeed, organic 

hydroperoxides can initiate lipid peroxidation chain reactions leading to DNA and membrane  

damage [56]; their elimination is therefore particularly important for living cells.  

It is generally accepted that marine bacteria colonize phytoplankton-derived particles, and 

significantly contribute to the degradation of these aggregates during their sedimentation. In this paper, 

we could demonstrate that phytodetritus can also participate in the degradation of attached bacteria 

during their stay within the euphotic layer. Singlet oxygen transfer from the phytodetritus to attached 
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heterotrophic bacteria could induce strong oxidative damage in these organisms (not only on 

unsaturated fatty acids but also on proteins and nucleic acids [57,58]), which has the potential to limit 

their growth and therefore contribute to a better preservation of algal organic matter during the 

sedimentation. Note that the surprising recalcitrance of phytodetritus towards biodegradation processes 

observed during the Arctic midnight sun period was recently attributed to the strong photodegradation 

state of heterotrophic bacteria associated with this material [33], which likely resulted from the efficient 

transfer of singlet oxygen from the photodegraded phytoplanktonic cells to the attached bacteria. 
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