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Abstract. In this work, a multi-agent network flow problem is addressed
where a set of transportation-agents can control the capacities of a set
of elementary routes A third-party agent, a customer, is interesting in
mazimizing the product flow transshipped from a source to a sink node
through the network and offers a reward that is proportional to the flow
value the transportation agents manage to provide. This problem can be
viewed as a Multi-Agent Minimum-Cost Maximum-Flow Problem where
the focus is put on finding stable strategies (i.e., Nash Equilibria) such
that no transportation-agent has any incentive to modify its behavior.
We show how such an equilibrium can be characterized by means of aug-
menting or decreasing paths in a reduced network. We also discuss the
problem of finding a Nash Equilibrium that mazimizes the flow and prove
its NP-Hardness.

Keywords: Multi-Agent Network flow, Nash Equilibria, Complezity, Min-
Cost Max-Flow.

1 Introduction

Multi-agent network games have become a promising interdisciplinary research
area with important links to many application fields such as transportation net-
works, supply chain management, web services, production management, etc [1],
[2]. In these applicative areas, decision processes often involve several agents,
each one having its own autonomy, its own objectives and its own constraints.
These actors, often referred to as agents, need to cooperate together to fulfill
a global (social) goal, provided their own objective is also satisfied. This paper
stands at the crossroads of two disciplines, namely multi-agent systems and so-
cial networks. A network flow that involves a set of agents, each one being in
charge of a part of the network, is considered in this paper, where every agent is
able to control the capacities of its arcs at a given cost. We address the problem
of finding a Nash equilibrium that maximizes the flow transported through the
network. A lot of features used in this work are inspired by the Multi-Agent
Project Scheduling (MAPS), as presented in [3], especially the payment scheme:
the outcome of an agent depends on its own strategy and on the satisfaction of
a customer, which depends on the flow circulating in the network. This paper
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mainly discusses the complexity of finding a Nash Equilibrium that maximizes
the flow in the network.

To the best of our knowledge, the research presented here is an original way of
presenting a transportation problem using multi-agent network flow with con-
trollable arcs capacities. One important application is the expansion of trans-
portation network capacity (railway, roads, pipelines, etc.) to meet current peak
demand or to absorb future increase in the transportation demands. Therefore,
it is possible to increase the capacity of the network using two solutions: either
increase the capacity of one or many existing arcs or installing a new arc between
two nodes.

A natural problem in many network applications is where to increase arc ca-
pacities so that to increase the overall flow in the network at minimum cost.
There exists substantial research on capacity expansion (or capacity planning)
problems in different domains, such as manufacturing [4], electric utilities [5],
telecommunications [6], inventory management [7], and transportation [8], [9]
and [10].

As regards to social networks, the prediction of agents’ behavior is of interest.
Several papers focus on games associated with various forms of networks, see
[11] for an overview. In a recent work, Apt and Markakis (2011) studied the
complexity of finding a Nash Equilibrium for the multi-agent social networks
with multiple products, in which the agents, influenced by their neighbors, can
choose one out of several alternatives [12]. In [13], a cooperative network flow
game is considered, where an external party gives an additional payment to the
coalition, which may stabilize the game if the payment is sufficiently high. They
study the Cost of Stability (CoS) in threshold network flow games where each
agent controls an edge in the network.

A decade ago, some researchers have paid attention to a particular multi-agent
network problem: the Multi-Agent Project Scheduling problem (MAPS) that
describes a project scheduling environment in which the activities of the project
network are partitioned among a set of agents. In the seminal work of Evaristo
and Fenema (1999) [14], a special framework for distributed projects is proposed,
with costs and rewards shared among agents. In an earliest work [15], the au-
thors considered a MAPS problem where each agent can control the duration of
its activities at a given cost. The project activities and precedence constraints
are classically modeled with an activity-on-arc graph. A reward is offered to the
agents when they manage to finish the project earlier than expected, as proposed
in [16]. It has been demonstrated in [3] and [17] that finding a Nash equilibrium
minimizing the project makespan is NP-hard in the strong sense. Moreover, using
the concepts of an increasing and decreasing cut defined in [18] and the duality
between maximum flow and minimum cut problems, Briand et al. (2012b) pro-
posed an efficient integer linear program formulation for this problem [19].

The paper is organized as follows: Section 2 defines formally the Multi-Agent
Minimum-Cost Maximum-Flow problem and introduces some important nota-
tions. Thereafter, Section 3 introduces the requirements for agents’ strategies
and presents some important properties. In Section 4, some useful particular
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cases are considered, namely the single agent, the general multi-agent and the
special multi-agent cases. Section 5 focuses on the complexity of some decision
problems. Finally, conclusions and future directions are drawn in Section 6.

2 Problem Statement and Notations

We focus on a Minimum-Cost Maximum-Flow problem in a Multi-Agent con-
text. This problem will be further referred to as MA-MCMF. In this work, a
major assumption is that arc capacities are controlled by some agents, called
transportation-agents, each arc being assigned to a specific agent.

As in [16], we assume that a customer-agent gives a reward proportional to the
flow that circulates inside the network. This reward is shared among transportation-
agents according to some ratios collectively agreed during the network design
phase [20]. Considering a network flow with limited arc capacities, this problem
consists in sending a maximum amount of products (for the customer) from a
source node to a sink node, at minimum cost (for the transportation-agents).

2.1 Problem Definition
The MA-MCMF problem is defined by a tuple < G, 4, Q,Q,C,w, W > where:

— G = (V,E) is a network flow. V is the set of nodes, s,t € V being the source
and the sink nodes of the network flow G, respectively. E is the set of arcs,
each one having its capacity and receiving a flow. An arc e from node i to
node j is denoted by e = (4, ).

— A is a set of m transportation-agents: A = {Ay,..., Ay,..., An}. Arcs are
distributed among the agents. An agent A, owns a set of m,, arcs, denoted
E,. Each arc (i,j) belongs to exactly one transportation-agent (i.e., £, N
E, = () for each agent’s pair (4,, A,) € A? such that u # v).

— @ (resp. Q) represents the vector of normal (resp. maximum) capacity for
each arc (Z,j) c FE: Q = (gz,j)(Z’J)EE and Q = (6z,])(Z,J)EE

— C = (¢i,5)(i,5)ek is the vector of costs where ¢; ; is the unitary cost incurred
by agent A,, for increasing ¢; ; by one unit. The vector C,, denotes the cost
vector incurred when augmenting the capacity of its arcs.

— m refers to the reward given by the final customer. This reward is proportional
to the flow that circulate from s to ¢.

— W = {w,} defines the sharing policy of rewards among the agents. The A,
reward for a gain of one unit of maximum flow equals w, X .

In such a network game, each transportation-agent has to determine its indi-
vidual strategy, i.e., the capacity ¢; ; of its own arcs, satisfying the constraints
a5 € g, j,qm.]. The individual strategy of A, is denoted Q., = (¢; 5), (¢,)) € Eu.

It represents the vector of capacities chosen by A, for its arcs, with @ < @, < Q.
A strategy S in the network flow is the vector of individual strategies of all agents:
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S=(Q1;---,Qm).
The price paid by transportation-agent A, for its individual strategy Q. equals:
PuQu)=Cux (Qu—-Q )= > cijx (g, —4;,) (1)

(i,J)€EEy

Given a strategy S, F'(S) denotes the mazimum flow that can circulate on the
network flow given the current values of capacities. For each arc (i,7), the cir-
culating flow f; ; is such that 4; < fi,j < ¢i,;- The maximum flow F(S) is
equal to the sum of flow circulating in the forward arcs of source node (i.e.,
F' =% jer [sj)- Let us remark that F'(S) can be computed in polynomial
time using the well-known Ford-Fulckerson algorithm ??Ford58]. We denote by
F the maximum flow when capacities g; ; are set to 4, for all transportation-

agents (in other words, the largest possible flow at zero cost) and by F the
maximum flow obtained when capacities ¢; ; are set to g, ;. Therefore, for any

strategy S, it holds that F < F(S) < F.

With respect to the above payment scheme, the total reward given by the
customer-agent for a circulating flow F'(S) under a strategy S is w x (F(S) — F).
The profit Z,(S) of transportation-agent A, under strategy S is equal to the
difference between its reward and spending:

Zu(8) = wy x X (F(5) = E) = Pu(Qu) (2)
Z(S) = (Z1(S),...,Zmn(S)) represents the overall profit vector.

The strategy profile S_,, denotes the strategies of the (m — 1) agents, but agent
Ay, that is S_y = (Q1,Q2, ., Qu—1, Qu+1,--» Qm). Therefore, a strategy where
only one agent A, modify its strategy is denoted by S = (Q.,S_.) and the
profit of agent A, resulting from such a strategy is denoted by Z,(Qu, S—u)-

Example of a MA-MCMF Problem Let us consider a customer-agent willing to
transport a flow of products from a given source node A to a given sink node
D. Two transportation-agents A; and A, are involved in the transportation
process. The customer-agent gives a reward m = 120 which is shared between
agents following the sharing policy wy; = wy = % Fig. 1 displays the network
topology. The set of arcs of each transportation-agent are F1 = {b = (A,C),c =
(B,C),d = (B,D)} and E3 = {a = (A, B),e = (C, D)}, which are represented
with plain and dotted arcs, respectively. Each arc in the graph of Fig. 3 is
valuated by the interval of normal and maximum capacities ([gi,j’qivj})’ and
by the cost of increasing arc capacities (c¢; ;). For instance, arc b of agent A;
is valuated by the interval of capacities [0,1] and the cost 30. Transportation-
agent A; can choose to open the route b from A to C' with capacity ga,c =1
and transportation-agent A, can choose to put the capacity of the route e from
C to D to capacity gc,p = 1. With this strategy, the maximum flow of product
than can be transported F(.S) is equal to 1 (from A to C' and from C to D).
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Fig. 1. Example of MA-MCMF problem

The total reward given by the customer-agent equals 120 and the rewards for
Aq and A, are equal to 60. The cost for A; to open the route b for one unit of
flow is 30 and the cost for As to open the route e for one unit of flow is 30 too.
Then, Z; = Z5 = 60 — 30 = 30, which means that this strategy is profitable for
both agents.

2.2 Mathematical Formulation

Each agent having the objective of maximizing its own profit, the problem can be
formalized as the following multi-objective mathematical program where Z,(5)
is computed according to equation (2):

Maz (F, Z1(S), Z3(5), . .., Zm(S))
s.t.
(@) fij <aiy, V0, j) €L
0Vi#s,t 3)
(i) Z(i,j)eE fig — Z(j,i)eg fia=q F,i=s
—F,i=t

(i#0) q,, <45 < Ty V00, 5) € B
fij =0,Y(i,j) € E
The mathematical formulation (5) aims at finding an overall strategy S that maxi-
mizes both the flow and the profit of all agents, each agent A, deciding the arc capacity
Gi,j, V(i,j) € E,. Constraints (¢) represent the capacity constraints. Constraints (i7)
impose the conservation of the flow.

3 Efficiency vs. Stability

A strategy is said efficient if it corresponds to a Pareto-optimal solution with respect
to the above multi-objective program (5). The notion of Pareto optimality is concerned
with social efficiency [21]. A Pareto strategy is preferred to any other strategy domi-
nated by it.

Definition 1. Pareto optimal strategy: A strategy S is Pareto-optimal if it is not dom-
inated by any other strategy S’. In other words, it does not exist any strategy S’ such
that Z,(S") > Z.(S) for all A,, with at least one inequality being strict.
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The set of Pareto optimal strategies is denoted by S¥.

On the other hand, a strategy is stable if there is no incentive for any agent to modify
its decision in order to improve its profit. The stability of a strategy ensures that
agents can trust each other. It is connected to the notion of a Nash equilibrium in
non-cooperative game (see [23], [24] and [25]).

Definition 2. Nash Equilibrium strategy: given a sharing reward policy w., a strategy
S = (Q1,-..,Qm) is a Nash Equilibrium if for any agent A, with strategy Q,, the
following equation holds:

Zu(Qus S—u) > Zu(Qu, S—u), VQu # Qu (4)

We refer to SV as the set of Nash equilibria. Ideally, agents should choose a strategy
which satisfy both Pareto optimality and Nash stability (i.e., S € SV (ST). Never-
theless, since SV ﬂSP can be empty, such a strategy does not always exist. In this
case, we are looking for a Nash equilibrium that is as efficient as possible with respect
to the customer viewpoint. A Nash equilibrium that maximizes the flow circulating is
indeed suitable both for maximizing the total reward and the customer satisfaction.
The aim of this study is to find a stable strategy profile S* (i.e., a Nash Equilibrium)
that maximizes the flow circulating. Let us also define the concept of a poor strategy.
This concept will be useful for characterizing properly Nash equilibria.

Definition 3. Poor strategy: A strategy S = (Q1,...,Qm) with flow F(S) is a poor
strategy if and only if it exists an agent A, and an alternative strateqy Q. such that

Zu(S') > Zu(S) and F(S') = F(S), where S' = (Q’, S—u).

In other words, S is a poor strategy if and only if one agent is able to increase its
profit by changing unilaterally its strategy (modifying the capacity of some of its arcs),
without modifying the overall flow in the network, nor the profits of other agents. It is
obvious that for any poor strategy S, S ¢ SV |JST.

A poor strategy S = (Qu,S—u) can be easily transformed into a non-poor strategy
S = (Q4,...,Q) by proceeding to an adaptation of the strategy Q. of agent A,
while keeping strategy defined by S_, fixed for the m — 1 agents but agent A, such
that S_, = (Qh Q27 ce Qufla Qqul; RN Qm)

Given F(S) = F(S’) and S_,, a non-poor strategy S’ can be the solution of the fol-
lowing linear program:

Max ZAueA Zu(8") = EAueA [wy x 7 x (F(S') = F) = P.(Q%)]
s.t.
(1) Zu(S") > Zu(S), VA, € A
(i) F(S")=F(S) =3, [
0Vi#s,t (5)
(vi) Z(i,j)EE fig— E(j,i)EE fii=qF.i=s
—F,i=t
(“]) q. . S qg,j S qi,ﬁ V(’L,]) € Eu

fl,:J 2 Oa V(Zm]) € E

The mathematical program (5) is used both to verify if a strategy is poor and to
ameliorate the strategy in order to remedy to its poorness. For the former concern, if
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a solution to (5) exists and is different from S, then the strategy S is poor. For the
latter concern, the mathematical program (5) gives a non-poor strategy S’ since it aims
at maximizing the sum of profits of all the agents under the constraint that the flow
remains constant and the profit of every agent in S’ is at least greater or equal to the
profit in S (i.e., Zu(S") > Zu(S), VAu € A). Therefore the following proposition holds.

Proposition 1. Any solution of the mathematical program (5) is non poor solution.

4 Case analysis

For sake of simplicity, it is assumed throughout this section, that q, .= 0. Therefore,

>

the initial minimum circulating flow at zero cost is equal to ' = 0.

4.1 The Single-agent Case

This section presents or recalls some basic properties related to classical network flow
theory. In the single agent case (all the arcs belong to the same agent), a non-poor
strategy S for a given flow F'(S) is a strategy that minimizes the overall cost. Such mini-
mization problem is well-identified in the literature as the minimum-cost maximum-flow
problem [26].

Let us define, in the following section, how the total flow can be either increased or
decreased, at minimum cost, using augmenting or decreasing paths. These notions will
be used in section 4.2.

Increasing the Max-flow. Given a flow F'(S) for strategy S, we are interested in
increasing the flow value at minimum cost. For this purpose, we recall the well-known
notion of an augmenting path, based on the concept of a residual graph G;(.S), which
is defined below.

Definition 4. Residual graph: Given a network G = (V,E) and a flow F(S), the
corresponding residual graph Gy(S) = (V,E,) for a given strategy S is defined as
follows: each arc (i,j) € E, having a mazimum capacity g, ; and a flow fi; in G, is
replaced by two arcs (3, j) and (j,1) in the residual graph. The arc (i,7) has cost ¢; j and
residual capacity vi,; = G, ; — fi,; and the arc (j,1) has cost c;; = —c;; and residual
capacity v = fij.

Definition 5. Augmenting path: An augmenting path is a path P in G#(S) from the
source s to the sink t through which the flow can be increased.

We refer to P as the set of augmenting paths. The greatest flow augmentation that
can be achieved using P € P is 1, = min{ri; : (3,j) € P}.

An augmenting path in G(S) is made of forward arcs (having the same direction in
G) and backward arcs (having the opposite direction than the ones in G). The set of
forward and backward arcs are denoted P and P~ respectively.

The cost of augmenting the flow by one unit using the augmenting path P € P is
denoted cost(P). It is expressed as follows:

cost(P) = Z Cij — Z Ci,j (6)

(i,5)ePt (i,j)eP—
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Decreasing the Max-flow. When considering the problem of decreasing the flow
at minimum cost in the network, we introduce the new concept of a decreasing path.

Definition 6. Decreasing path: a decreasing path P is a path in G¢(S) from the sink
node t to the source node s through which the flow can be decreased.

We refer to P as the set of decreasing paths.

Similarly, a decreasing path in G(S) is made of forward arcs (having the opposite
direction than the one in Gf(S)) and backward arcs (having the same direction in
G¢(S)). The set of forward and backward arcs are denoted P and P, respectively.
The profit of decreasing the flow along P can be expressed as follows:

profit(P) = Z Cij — Z Cij (7)

(i,)€PT (4,)€P~

Example Consider the network flow G(V, E), displayed in Fig. 2, composed of seven
arcs E = {a,b,¢,d,e, f,g}. The set of vertex is V = {s,1,2,3,4,t}. Each arc in the
graph is valuated by the interval of normal and maximum capacities, and by the cost
of increasing arc capacities ([gi,j’qi7j]’ci’j)’ where [giyj,@-’j] = [1,20], VY(4,j) € E. For
instance, arc (s,1) from node s to node 1 is valuated by the capacity interval [1,20]
and the cost 100.

q3=1, fiz=1
_— >

—_—
G2a=1, foa=1
(a) Strategy So

Q1,3 =2, fiz=2
_— > 3

(10)
v

>

(10)
—_ >
2,4 =2, fou=2

(b) strategy Si

Fig. 2. Example of single-agent network flow
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The initial strategy So is described in Fig. 2(a) with flow equal to F'(So) = 3. The best
way to increase the flow in the network is to use the augmenting path having minimum
cost, (i.e., P=s—1—3—2—4—1t), to increase the flow on forward arcs by one
unit and decrease the flow on backward arcs by one unit. With the obtained strategy
S1 = (2,2,2,0,2,2,2) (see Figure 2(b)), the maximum flow of product that can be
transported F'(S1) is equal to 4 and the cost incurred by the flow increase throughout
the augmenting path P is equal to cost(P) = 5.

4.2 The Multi-agent Case

In the multi-agent context, any agent A, can decrease (or increase) unilaterally its
arc capacities to improve its profit Z,. In this context, we introduce the concept of
profitability of an augmenting or a decreasing path and provide a characterization of a
Nash equilibrium strategy for the MA-MCMF problem.

Increasing the Max-flow. Let us introduce the notion of a profitable augmenting
path. In the multi-agent context, an augmenting path is composed by a set of forward
and backward arcs P = {P*, P~} such that by simultaneously increasing ¢; ; increased
by one unit V(i,j) € P" and decreasing by one unit V(i,j) € P~, it is possible to
increase the overall flow by one unit.

The cost of an augmenting path for agent A, cost,(P) is expressed as follows:

costy(P) = Z Cij — Z Cij (8)

(4,5)€PTNE, (4,J)EP~NEy

Definition 7. Profitable augmenting path. An augmenting path P € P is said prof-
itable for all agents if, for every agent A, involved in P, costy(P) < wy X 7.

This means that through a profitable augmenting path, increasing the flow by one unit,
is profitable for all the agents owning the arcs of the path (i.e., the profit of an agent
A, for increasing the flow by one unit verify Z,(S) = wy, X ™ — cost,(P) > 0, where
costy (P) is the reduced cost).

Decreasing the Max-flow. Now, the notion of profitability is introduced. In the
multi-agent context, a decreasing path P = {?4’,?_} is composed of forward and
backward arcs. If g; ; is decreased by one unit, V(i,j) € FJr, and increased by one unit,
V(i,j) € P, the overall flow is decreased by one unit.

Considering an agent A, the profit profit,(P) generated by decreasing capacity by
one unit through a decreasing path is defined as follows:

profituP) = Y cy— > <y )
(1,))EPTNE, (i,))EP T NEy

Definition 8. Profitable decreasing path. A decreasing path P € P is profitable if there

is one agent A, such that profit,(P) > w, X .

In other words, through a profitable decreasing path, decreasing the flow by one unit
is profitable for one agent, to the detriments of the others.

In the multi-agent context, it is important to characterize strategies in which some
agents can decrease or increase the overall flow. Therefore, it is important to find
profitable augmenting paths in order to increase flow without generating decreasing
paths that are profitable for some agent, hence preserving stability.
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Proposition 2. Nash Equilibrium.
For a given non-poor strategy profile S, S is a Nash Equilibrium if and only if:

— VA, € A, VP € P such that(i,j) € E,

costy(P) > wy X m (10)
- VA, € A, VPeP

profity(P) < wy X m (11)

Proof. Consider a strategy S and a transportation-agent A,. If S is poor, then S is not
a Nash equilibrium. If S is non poor, A, can only improve its situation by increasing
or decreasing the flow. In the former case, for an additional unit of flow, A, receives
wy, X 7. Such a flow increase is profitable to A, if and only if there is an augmenting
path P such that cost,(P) < w, X 7, which contradicts equation (10). In the latter
case, vice-versa, decreasing the flow by one unit is profitable if and only if there exists
a decreasing path P such that profit,(P) > w, x 7, which contradicts equation (11).
Therefore, if and only if for no agent any of those conditions holds, no agent A, can
individually improve its profit, and S is a Nash equilibrium. O

Example Let us come back to the first example (cf. section 2.1) to illustrate the
notions of augmenting and decreasing path in the multi-agent case.

) q, ) q,

\Q\x\ﬁ.-’ oy, \03\15 vy,
Lo V2 ) M A SRS
-~"‘q1>>6 @ /o‘ /) q‘%ﬁ' @ /o‘ g

A a\= a\=
%4, W\ 07 Moy %4, W\ o 2>
5, N7 °2\2 oVl b, S7 0\2 o
’ 30) ewK ’ 30) ew&
(a) Strategy Si (b) Strategy S

Fig. 3. Example of multi-agent network flow

Consider an initial low on the network equal to its minimum value F' = 0 correspond-
ing to an initial strategy So. Increasing the flow is possible throughout the profitable
augmenting path P = (A — C — D), which leads to the strategy Si = (0,1,0,0,1)
(see Figure 3(a)) with F(S1) = 1 and Z1(S1) = Z2(S1) = 60 — 30 = 30 where the
part of shared reward is w, X m = 60 and the cost of the path P is cost,(P) = 30
for both agents. From this strategy, the flow can be increased along the profitable
augmenting path P'(= A — B — D), leading to the strategy S2 = (1,1,0,1,1) (see
Figure 3(b)) with F(S2) = 2. The cost of the augmenting path for every agent is
equal to cost,(P') = 50 and the part of the shared reward for the additional unit
of flow is equal to w, X m = 60. Therefore, the profit of both agents is equal to
Zy(S2) = Zu(S1) + (60 — 50) = 30 + 10 = 40.

Note that, for the strategy Ss, there exists a profitable decreasing path P” = (D —
B — C — A) from sink node D to source node A which is profitable for agent Aj;.
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In fact, A1 can improve its own profit, by decreasing back the flow on b and d by
one unit and increasing the flow on arc ¢ by one unit. This leads to the strategy
S3 =(1,0,1,0,1) (see Figure 4) with F'(S3) = 1 and profits Z1(S3) = 60— 10 = 50 and
Z3(S3) = 60 — (50 + 30) = —20, which is obviously bad for A,. Therefore, although
the strategy S corresponds to a Pareto Optimum, which leads to a maximization of
agent’s profits, it is not a stable strategy. Strategy Si is a Nash Equilibrium but not
Pareto Optimum. Therefore, in our example there is no a strategy which is both in S~
and ST. The motivation of this paper is to search for a Nash-stable solution which is
as efficient as possible, i.e., which maximizes F(.5).

Fig. 4. Strategy S3

4.3 The Special Case |E,| =1, VA,

In this section, we consider the special multi-agent case where each arc is managed by
a specific agent. For this case, we show that finding a Nash equilibrium that maximizes
the flow can be done in polynomial time. For sake of simplicity, we denote by w the
unique arc of the agent A,. In this context, increasing the flow by one unit brings to
the agent A, the reward w, x 7 and since an agent manages only a single arc u then
it is easy to compare the reward with the cost of increasing arc’s capacity ¢, of arc u.
It is possible to divide the set of agents A into two subsets A" and A~ as follows:

A+:{Au,1§u§m,/cu<wu><7r}

A" ={Au, 1 <u<m, [cu > wy X 7}

Signification of each group of agents:

On the one hand, for any agent belonging to the group A7, it is profitable to increase
the capacity of its arc (i.e., wy X T—cy, > 0) if it increases the overall flow in the network
(i-e., its arcs belong to an augmenting path). On the other hand, it is not profitable
for any agent belonging to A~ to increase its arc capacity since w, X ™ — ¢, < 0.
Consider the initial strategy S = (Q1,...,Qm) defined by:

Qu = (qu)7 VAL € AT

Qu=(g,), VAu € A~
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We highlight that the strategy S can be poor since some arcs of the agents belonging
to AT can have an opened capacity greater than the value of the flow traversing them
(ie., fi,;(S) < qi,;(S)). Nevertheless, using LP formulation (5), finding a non-poor

strategy S starting from S is easy. This leads to a non-poor strategy S with the same
value of flow F(S) = F(S).
Notice that S may not be unique, since different non-poor strategies can be obtained.

We are going to prove now the following property:

Proposition 3. Strategy S is a Nash FEquilibrium, and there is no Nash Equilibrium
with greatest flow.

Proof. This proof is organized in two parts:

— Proof that S is a Nash Equilibrium:
Let us consider the arcs of A, € A~ . Since their capacities are at their minimum
value, F' (S* ) can be increased only by increasing the capacities throughout an aug-
menting path. Since for agents in A™, ¢, > wy X 7, then no agent in A~ has any
incentive to increase its arc capacity.
Now let consider the agents A, € A*. If, in S, ¢u = g, then A, can improve its
situation only by decreasing its arc capacity throughout a decreasing path. Since
for agents in A", ¢, < w, X 7, no agent A, can take profit from decreasing back
its arc capacity. If in S , ¢u < @,, one agent A, might increase its arc capacity
throughout an augmenting path such that all forward arcs belong to him (else it is
not possible to increase the value of the flow). Since each agent owns exactly one
arc, such a situation cannot occur.
Finally, since no agent is able to improve its situation by itself, S is a Nash equi-
librium.
— Proof that S is the best Nash Equilibrium:

Suppose that there is a strategy S’ such that F(S’) > F(S‘) This strategy requires
that the capacity of at least one arc of A, € A~ has to be increased with respect
to strategy 9. But since ¢, > wy x T, VA, € A~, S is not a Nash Equilibrium
(see proposition (2)).

O

5 Problem Complexity

In this section, we discuss the complexity of finding a Nash equilibrium that maximizes
the flow in the network.

5.1 Finding a feasible solution

Firstly, let us discuss the complexity of a simplified version of the considered problem
in which we substitute the Nash Equilibrium constraint by a looser constraint stating
that the profit of all agents has to be non-negative, i.e., Z,(S) > 0, VA, € A.

Proposition 4. The multi-agent Min-Cost Maz-Flow problem which aims at mazi-
mizing F(S) under the constraints that agents have non-negative profits Z,(S) > 0,
with ¢;,; € R, can be solved in polynomial time.



Nash Equilibria for multi-agent network flow with controllable capacities 13

Proof. This problem can be solved by the following linear mathematical problem where
constraints (iii) impose that the profit of all agents has to be positive or null:

Maz F=3% icp fs
s.t.
(i) fii <aqiy, V(i,j) €EE
0Vi#s,t
() Xujperfii —2apepfin= F i=s
_F,i=t
(i66) wu x 7T x (F'—=F) =32 iep, ¢ * (@ij 7%,]‘) >0,VA, € A
q..<¢i; <9; V(i,j) € E

=1

oy > 0,9(i,§) € B

Therefore, this problem can be solved using linear programming in polynomial time.
O

5.2 Finding a Nash Equilibrium with Bounded Flow

We now consider the decision problem to determine if there exists a strategy which is a
Nash equilibrium, with a flow greater than a given value. This problem can be defined
as follows:

Nash-Equilibrium Bounded Flow (NEBF).
Given a tuple < G, A,Q,Q,C,m,W > as defined in section 2 and an integer ¢, is it
possible to find a Nash Equilibrium strategy profile S such that F(S) > ¢?

Proposition 5. Problem NEBF is strongly NP-complete.

Proof. The NP-completeness of this problem can be proved using a reduction from
the well-known 3-partition problem, which is known to be NP-complete in the strong
sense [27]. First, MA-MCMF is in NP since, given a strategy S, F'(S) can be determined
ﬂ?%rﬁfb&ﬁép%iﬁigaﬁgiﬂgnc%%k’éﬁlnmin—cost max-flow algorithms. Let us recall the

3-partition. Given a set ¢ = {ao,...,ax—1} of K = 3k positive integers, such that
figl a; = k x B and a; €]B/4, B/2], is it possible to partition ¢ into k subsets so
that the sum of integers in each subset is equal to B?
An instance of the MA-MCMF problem with controllable capacities can be generated from
an arbitrary instance of the 3-partition problem as follows.
From the 3-partition problem instance, we build up a network G with k x K arcs and
K + 1 nodes where the first one is source node Vy = s and the last one is the sink node
Vk =t. An agent A, € A= {A1,..., A} owns K arcs.
The tail of an arc e; is Viaiv Kk, its head is V(,-diVK)H. Between nodes V;g4iv k¥ and
Vi aiv K +1, there are k parallel arcs, indexed from i to (i + K) step k, each of them be-
longing to a specific agent: arc e; belongs to A; aiv k. The cost of arc e; is ce; = @i modk -
In other words, to any positive integer a; € ( is associated k parallel arcs with, same
head and tail, maximum capacity g,, = 1 and cost a;. The total reward is set to
m = (B + ¢)k, € being an arbitrary small positive value. The sharing policy is defined
by w. = 1/k. Therefore, agent’s unit reward is w,m = B + ¢, identical for all agents.
The objective is to determine whether it exists a Nash strategy such that F'(S) > 0?7
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For illustration, the resulting network flow obtained from the 3-partition instance de-
fined by k = 3, ¢ = {7,8,7,7,7,8,9,10,9} and B = 24. We have k = 3 agents and
K x k = 27 arcs is displayed in Figure 5. Between nodes ¢ and 7 + 1, we find k = 3
arcs with cost a;41. The problem is to find, whether it exists, a Nash strategy such
that the flow is strictly greater than 0. In that example, using the augmenting path
with bold arcs allows to obtain a one-unit total flow, which is a Nash equilibrium since
every agent does not pay more than its part of reward (w,m = B+¢ = 24+ ¢). But we
remark that, any equivalent stable path is also a solution to the original 3-Partition
problem.

Let us prove this last property in a general way. Consider the strategy S where all arcs
have normal capacity, ¢;,; = 0. The resulting flow obviously equals to F(S) = 0. With
respect to S, we observe that an agent can increase the flow by the amount 6 €]0, 1],
increasing the capacities of all its arcs by the same amount §. However, doing so, the
agent pays kB¢ and only gains (B + €)d. Hence, the new strategy is not profitable and
cannot be a Nash equilibrium. In order to obtain a Nash equilibrium, the total cost
incurred by each agent for increasing its arc capacities must not exceed B, otherwise
at least one agent will be interested in decreasing back its capacities (i.e., the residual
graph cotains a profitable decreasing path).

Due to the topology of the network, in order to increase the flow, exactly K = 3k arcs
must be involved in an augmenting path. In any Nash equilibrium strategy with flow
strictly greater than 0, the augmenting path having to be profitable for every agent,
it must be made of exactly three arcs per agent. The total cost for every agent equals
exactly B. O

(& 7) €8 (&7 (. 7) (.7 (&8 (6:9)  (&,10) (6.9)

€s7)  (8:8) (86:9)

Al —> .y > A3 - - >

Fig. 5. Reduction from 3-PARTITION problem with £ =3

6 Conclusions

This paper presents a new game theory framework for a multi-agent network flow
problem with controllable capacities. We consider that a final customer gives a reward,
shared among agent, for any additional unit of flow circulating in the network. Each
agent has the possibility to modify the capacities of its arcs at a given cost. We partic-
ularly point out the notions of efficiency and stability of a strategy and we introduce
the notion of profitable augmenting or decreasing paths. We also prove that finding a
Nash Equilibrium strategy with maximum flow is NP-hard in the strong sense.
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Further works are ongoing to propose a linear mathematical model to find a Nash Equi-
librium. Distributed heuristic able to find a Nash equilibrium are also under study.
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