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SUMMARY

In this paper, a framework for computational homogenization of shell structures is proposed in the context
of small-strain elastostatics, with extensions to large displacements and large rotations. At the macroscopic
scale, heterogeneous thin structures are modeled using a homogenized shell model, based on a versatile
three-dimensional seven-parameter shell formulation, incorporating a through-thickness and pre-integrated
constitutive relationship. In the context of small strains, we show that the local solution on the elemen-
tary cell can be decomposed into six strains and six-strain gradient modes, associated with corresponding
boundary conditions. The heterogeneities can have arbitrary morphology but are assumed to be periodi-
cally distributed in the tangential direction of the shell. We then propose an extension of the small-strain
framework to geometrical nonlinearities. The procedure is purely sequential and does not involve coupling
between scales. The homogenization method is validated and illustrated through examples involving large
displacements and buckling of heterogeneous plates and shells.

KEY WORDS: computational homogenization; shells; thin structures; heterogeneous materials;
multiscale methods

1. INTRODUCTION

Heterogeneous thin plates and shells are widely used in modern applications that require unconven-
tional mechanical and thermal performances. Such structures include among others a wide range
of composite thin sheets and panels that are increasingly applied in aerospace and automotive
industries, where the need for enhanced lightness and strength is continuously growing. Model-
ing heterogeneous thin structures requires homogenized models, to avoid the costly computations
associated with an explicit description of all heterogeneities.

Theoretical research for treating laminated thin structures has been widely developed (e.g., [1-5]).
Depending on theories of laminated plates and shells, these methods are mainly valid for classical
multilayer structures and do not account for complex multiphase morphologies. For thin structures
composed of unconventional microstructures, many authors proposed homogenized models based
on investigation of the geometrical pattern of the core structure. This is the case in the work of
Abbes and Guo [6] and of Talbi [7]. Both of them focused on modeling thin-plate structures with
corrugated core geometries based on analytical analysis of the core pattern. A similar approach has

*Correspondence to: Yu Cong, Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, Université
de Lorraine, UMR CNRS 7239, Ile du Saulcy, F-57045 Metz Cedex 01, France. $E-mail: yyc@esi-group.com



been adopted in the work of Lebée and Sab [§—10] who proposed a thick-plate model for a special
kind of sandwich plate with periodic chevron folded core. Most of these techniques strongly rely on
analytical or semi-analytical analysis of the structure’s specific geometry pattern, thus may appear
limited for general applications involving arbitrary microstructures.

In the aim of developing a generalized multiscale framework that does not rely on the geometrical
specificity of the microstructure, most attention has been turned to developing computational multi-
scale approaches. In a series of works, Cartraud et al., focused on computational homogenization of
slender periodic structures based on asymptotic expansion methods, where beams with sinusoidal
microstructures (Cartraud and Messager [11]) and plates with corrugated cores (Buannic, Car-
traud, and Quesnel [12]) have been studied in the context of Kirchhoff-Love and Reinssler—Mindlin
plate models. Extending previous works on computational homogenization for bulk materials (e.g.,
[13—18] ), Coenen et al. proposed a homogenization framework for nonlinear thin structures [19],
involving a concurrent computational methodology where nonlinear computations are required at
all integration points of the macroscopic shell model. In this work, the authors proposed to describe
the thin structure’s macroscopic kinematics in terms of an in-plane deformation gradient tensor and
a curvature tensor. With an appropriate definition of the scale transition based on average of both the
resultant stress and moment, heterogeneous thin structures were homogenized towards a Kirchhoff—
Love plate model. In a recent work, Helfen and Diebels [20] introduced a general homogenization
framework based on a plate model allowing for thickness changes.

Several drawbacks are encountered in the mentioned works: (i) most of them are restricted to
plate theories and do not take into account thin structures with curved surfaces, which are of major
interest for industrial applications; (ii) the analytical methods are restricted to some specific classes
of microstructural patterns; (iii) the computational multiscale methods often rely on coupled calcu-
lations at both scales [19], which induce high computational costs; and (iv) the proposed numerical
techniques do not offer extended capability to deal with problems involving instabilities, such
as buckling.

In the present work, a computational homogenization procedure is developed in the context of
heterogeneous shells, able to take into account arbitrary microstructures periodically distributed in
the tangential directions to the shells, without coupled computations at both scales, and able to deal
with geometrical nonlinearities, thus allowing to study buckling phenomena.

The outline of the paper is as follows. In Section 2, the kinematic description of the seven-
parameter shell model is reviewed. In Section 3, the homogenization methodology is developed
in the context of small strains and extended in section 4 to geometrical nonlinearities. Finally, the
method is illustrated and validated through several examples in Section 5. To make the paper self-
contained, a review of practical finite element implementation of the shell model is provided in
Appendices A and B.

2. SHELL KINEMATICS AT SMALL STRAINS

2.1. Preliminary definitions

At the macroscopic scale, we consider a versatile seven-parameter shell model with enhanced
assumed strain enrichment (e.g., [21-24]). The associated kinematics in the context of small strains
are reviewed in the following. This shell formulation accounts for transverse normal and shear defor-
mations and does not have the thickness ‘locking’ issue, which consistently arises for classical shell
models when dealing with bending dominated kinematics.

Basic kinematics of the shell continuum is represented in Figure 1, in which trajectory of an
arbitrary material point can be described considering its position vectors X and x, respectively, in
the reference and current configurations. Although expressed in the global coordinate system, both
vectors can be located with the local curvilinear coordinates (6!, 82, 83), for which ! and 62 lie in
the mid-surface of the shell continuum and 63 in the transversal direction with respect to the mid-
surface. In the reference configuration, the position vector X of an arbitrary material point can be
defined as

X(0%,6%) = R(6%) + 62 a3(0%) , (1)
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Figure 1. Representation of 3D shell geometry and its kinematics.

where R(6%) (e = 1,2) refers to its projection point on the mid-surface (> = 0) and 03 indi-
cates its position following the thickness direction, where 03 € [—H /2, H/2] (H is the local shell
thickness). Partial derivatives of R(6%) define the covariant base vectors of the mid-surface :

IR(6%)
aﬁl = aea = R?O( ’

2

and a3 represents the director vector of the shell structure. Hence, at an arbitrary material point
belonging to the shell continuum, the covariant base vectors at the reference configuration are
given by

Gy =X, g=a4 + 9333,04’

3)
G3 = X,3 = as .

In a similar manner as compared with Equation (1), the position vector x of a material point in
the current configuration can be defined by the following expression:

x(6%,0%) =r(6%) + 6> a3(6%) , 4)

where r and aj3 refer, respectively, to the updated vectors of the previously defined R and a3 in the
current configuration. Similarly to Equation (2), we define the covariant base at the mid-surface for
the current configuration:

or(6%)
Ay = 59 =TI, .

Transporting X to x is based on definition of a translational vector v, acting on R at the mid-surface,
and of a difference vector w updating the director as:

&)

r=R+v , az=a3+w, (6)

where a3 is the director vector in the current configuration. Equation (6) together with position
vectors Equations (1) and (4) accounting, respectively, for the reference and current configuration
allow us to define the displacement vector u, which is associated with an arbitrary material point of
the shell body:

u(0%,0%) = x(0%.0%) —X(0,60%) = v(6%) + 6°w(6%) . )

In total, six degrees of freedom can be distinguished in Equation (7) to describe the shell kinematics:
we count three vector components v, v, v3 relative to translation of the mid-surface and other
three components w;, w,, w3 updating the director vector.



2.2. Formulation for linear seven-parameter shell

We derive in the following the shell displacement field within linear context in order to develop the
subsequent multiscale framework based on microscopic small strains. Hence,

1 Ju Ju

The superscript (-)* refers to compatible quantities derived from displacement. Then,

p—

Szlg == [(aa + 63 a3,0{) . (V,ﬁ + 03 W,ﬂ) + (aﬂ + 63 33,5) . (V’a + 03 W,a)] s
)

N —

ey =-[(ax + 0% a30) - WHaz-(vo +6°wy)].

u
£33 = A3 W.

Indices («, ) € (1,2). Expanding the strain tensor expression (9) gives terms of order 0, which
are independent of 3, and terms of order 1, which are linear with respect to #3. By neglecting the
terms associated with (63)2, we obtain
0 1

&y = 8:;-( )+ 938?]( ), (10)
In order to better understand the kinematic significance of each strain tensor component, we develop
in the following the detailed expressions of the components in (10). For reasons of clear illustration,
the reference configuration is set in a fixed Cartesian system. This assumption is made only for

demonstrative reasons and does not affect the generality of the proposed method. We adopt the
following notations:

a - -v=v; , a4 -W=w; , a3,a:0 . (11)
Then, components of 8:.;(0) are expressed as follows:
&0 =y,
1
511150) = 5(01,2 +v21) = Eggo),
u(0) 1 u(0)
& = —(w; +v =¢ s
13 2( 1 3,1) 31 (12)
u(0) _
Eyp " = V22,
1
5;_5,0) = E(U)z +v32) = eZ§°),
81;50) = Wws.
Similarly, the strain tensor 8:-‘].(1) can be written as
8'149) = Wy,1,
1
Eﬁl) = E(wl,z +wy) = SZ?),
u) 1 u(1)
£ = —W31 = Ex1 ',
13 ) 3,1 31 (13)
u(l) _
Eyp = W22,
1
A0 = duna = )

eggl) =0.



We then obtain by integration the generalized stress resultants, among which the membrane forces,
denoted by n:

n= / o (6%) do? , (14)
H
and the generalized moment, denoted by m:
m = / 0% 5(6%) d6® | (15)
H
where
o(x) =C(x):e(x) (16)

is the Cauchy stress and C is the fourth-order elastic modulus of the medium. In both expressions,
integration is performed along the shell thickness H .

3. SHELL HOMOGENIZATION FORMULATION WITHIN LINEAR FRAMEWORK

3.1. Localization problem and definition of effective quantities

We assume that the material is heterogeneous and can be characterized by a periodic microstructure,
which by duplicating itself along the tangential directions of the shell, constitutes the macroscale
heterogeneous shell, as depicted in Figure 2. The microstructure occupies a domain @ in R3, with
its external boundary noted by dw. The open domain associated with w is denoted by @. In what
follows, we assume that the elementary cell (RVE) is defined in Cartesian coordinates (x1, X2, X3)
associated with the local curvilinear coordinate system.

We first define the strain and stress in-plane averaged quantities:

8(x9) = fe(rr, 2,19} (x3) = fs e(x)dS. (17

where S refers to the in-plane section area (as indicated in Figure 2) of the elementary cell, dS =
dx1dx, in a Cartesian frame, and

N 1
§02) = (o2} (1) = 5 [ @GS, a8)
In the following, the macroscopic strain field is assumed to be identified with (10):

(e(X))g (x3) = &(x3) = &° + x38". (19)

Figure 2. (A) Fully detailed thin structure; (B) periodic unit cell associated with the microstructure.



In the preceding equation, ° and &' are the zeroth-order and first-order macroscopic strain
contributions, identified as (0 and e”’(l), respectively, in (10).
The localization problem is then to find &(x), given ° and &' and verifying

V-o(x)=0 in @, (20)

and where the strain tensor is assumed to satisfy (19). Equation (19) can be verified for appropriate
boundary conditions on the RVE, which will be specified in Section 3.2.

The weak form associated to Equation (20) is to find u(x) satisfying Dirichlet boundary conditions
and u(x) € H'!(w) such that

/ o(x):6e(x)d2 =0 21
for all fu € HO1 (w), where §e(x) = e(du(x)).

3.2. Microscopic boundary conditions

The macroscopic strain field can then be decomposed according to
£(x1.x2.X3) = &(x3) + &(x1. X2, X3). (22)

where &(x1, x2, x3) is a perturbation due to the presence of heterogeneities in both x;, x5, and
x3 directions. Condition (19) can be verified by prescribing boundary conditions as follows.
Considering (22), integration over the surface S for a fixed value of x3 gives

= 1 ~
(e(x1,x2,x3)) g (x3) = &(x3) + §/ &(x1,x2,x3)dS,
s
B ' (23)
=&(x3) + —f u®n-+nQ ud,
28 Jss
where 05 the boundary of the surface S (Figure 2) for a laminate at x3. Equation (23) is verified at
x3 if the surface integral vanishes, which holds if @ is periodic in the x; and x, directions over S,
orif a = 0 on dS, for a fixed value of x3. In the present work, we consider the first condition. From
(22), we obtain the following boundary conditions, which are applied on the lateral boundaries of
the RVE (along x; and x, directions; Figure 2):

u(x) = &(x3)x + u(x). (24)

Then, 12 elementary problems must be solved on the microscopic domain w, corresponding to the
following macroscopic strains:

—=(kl), _ —
é( )0(x3) — gkD.0 +x3e(kl),1 (25)
with
100 000 000
D0 _ 1 0po0|: 0= |010]: ®°=|000 |: (26)
000 000 001
0 1/20 01/2 0 0
120112 0 0|; ™®°=] 0 0 0 @0 =10 0 1/2|; 27)
0 00 1/20 0 01/2 0

gDl — x g®kDO =13, [=1,...,3. (28)



3.3. Effective constitutive relationships and macroscopic problem

Invoking the superposition principle, the microscopic strain field can be expressed in @ as
ex) =A'x) 2+ Al(x) : &', (29)
where A%(x) and A!(x) are fourth-order tensors such that
A% 0 = ef0), AL, (%) = el (x), (30)

where 8( D0

24), for e(kl) 0 = ; (ex ® e +¢; ®er) and €' = 0 and. Similarly, & Ej )1 (x) is the strain field
obtained by solving the problem (20)-(19) with boundary condition (24), with 2" =0ande*)-! =

% (ex ® e +e @ eg).
Then, using the constitutive law (16) and (29), we have

(x) is the strain field obtained by solvmg problems (20)—(19) with boundary conditions

o(x)=C(x):A’®) : g%+ C(x): Al(x): &'. (31)
Using (14), (18), and (31), we obtain
= —/ /a(x)deH— E/a(x)dQ. (32)
Similarly, using (15), (18) and (31), we obtain:
1
/ / x3 [0 (x)dS]d / x30 (X)d Q2. (33)
w
It yields, by using (32), (33), and (31), the following effective constitutive relationships:
—Cc'.e 4T e, (34)
=C":8%+C” 8", (35)
with
c' = E/ C(x): Ax)dQ, T’ = E/ Cx): Al(x)dQ, (36)
2 = 0 —22 1 1
x3Cx): A"(x)dQ, C = S x3C(x) : A" (x)dQ2. (37
w w

Let Q be a domain associated with the shell model and Q the associated open domain, the
equilibrium equations associated with the macroscopic problem are expressed by

V.-n=0 inQ, (38)

V-m=0 inQ, (39)

and are supplemented by boundary conditions on the boundary 02 of 2. The associated weak form
is given as follows.

Find u satisfying the boundary conditions associated with the macroscopic problem and u €
H'(Q) such that

/ﬁ:550d52+/ m:sgldsz:x/ F-5udr, (40)
Q Q

where F denotes prescribed traction on the Neumann boundary of the shell domain and A is a
scalar parameter describing the intensity of the load. By introducing Equations (34) and (35) into
Equation (40), we obtain the final form of the macroscopic problem to solve



[ (8'0:@“:8504—51:@12:850+E°:@21 :§el + 8! :@ZZ:SEI)sz)L F-dudQ.
Q 0QF
41

The problem (41) can be solved by applying the shell finite element discretization that is detailed in
Appendices A and B.

4. EXTENSION OF THE APPROACH TO MACROSCOPIC
GEOMETRICAL NONLINEARITIES

Even though the assumption of small perturbations can be useful in some applications, many practi-
cal situations involving thin structures require considering finite displacements and rotations. More
specifically, these structures can be subjected to structural instabilities such as buckling, due to their
high aspect ratio. However, when choosing multiscale modeling strategies, the potential of sequen-
tial schemes based on elastic material homogenization is usually underestimated because they are
easily associated with application limitations within linear context. In fact, because of the intrinsic
properties of thin structures, an important number of problems based on shell structures showing
significant displacements and rotations do not necessarily lead to large, but infinitesimal local mate-
rial deformations. Examples exposed in the numerical test section (Sections 5.2 and 5.3; particularly
see Figures 16 and 17) will confirm this fact. Hence, the validity of effective material laws obtained
using the present homogenization scheme can be conveniently extended to macroscopic problems
subjected to geometrical nonlinearities. The aim of this section is to provide this extension, in order
to account for problems involving large displacements and rotations at the macroscopic level. In the
case of finite strains, the compatible Green—Lagrange strain tensor for the shell model is derived
from the displacement field [24]:

1
E?j=E(Gi-u,jJrGj'u,i+u,i'“,j)v (42)

where the last term (u; - u ;) accounts for the geometrical nonlinearity which was not taken into
account in previous sections. Similarly to Equation (10), the compatible strain field El'; can be
rearranged with respect to the order of 3 into a part of order 0 and a part of order 1. So we have

E* = E*© 4 g3g+(), (43)

where E© and E( can be expressed depending on the displacement field and the covariant base
vectors G; (Equation (3)) as

1
EZ/(;)) =3 (aav,p +agVe +Vavp),
1
Egg()) = E (agw + azvgy + V,aw) , (44)
Eg?fo) = aszw,
and for strains at order 1,
E”(l)—l(a +agWg +agwy +a + + )
af = B 3,aV.B oW B BW.a 3,aV,« V.aW g WaVg),
(45)

1
Eggl) = 5 (aB,aW +aswy + W,aW) s
1) _
EB”3 =0.
Here, E;‘gl) = 0 but is enhanced by the additional assumed strain term 533, which is introduced

by using the condition of orthogonality (Equation (A.6)) with respect to the stress field. Readers are
invited to refer to Appendix A for details.



In the context of finite strains, the localization problem is nonlinear, and the superposition prin-
ciple does not hold. We then propose an empirical effective model for the constitutive law as
follows, which relates linearly the generalized stress resultants with respect to the macroscopic
Green—Lagrange strains E® and E® :

N:@” 'Eo-i—@lz'ﬁl,

- E+CPE,

(46)

=l

in which @11, C*,C,and @22 are given by the homogenization procedures prescribed on the
unit cell by considering small strains (Equations (36) and (37)). The aforementioned model does not
result from a micromechanical analysis, but we can, however, note that when local strains are small,
the aforementioned model rigorously describes the effective model related to the homogenized shell
presented in small strain context. Then, the macroscopic equilibrium equations are given by

Vx-N=0, 47)
and
Vy -M=0, (48)

where Vx(.) denotes the divergence operator with respect to the reference configuration. The
associated weak form writes

/N:8E0d52+/ﬁ:8ﬁld9=/l F-§udl . (49)
Q Q QF

which gives by taking into account Equation (46)

/E“”:(C SEO+ED. T EO+ Q. ¢ vV 4BV . ¢ 58 Va = F.8udl.
Q

o
" (50)
5. NUMERICAL EXAMPLES

The purpose of this section is to evaluate the capability of the proposed multiscale technique to
model the response of heterogeneous structures, consisting here as multilayer composite materials
with or without fiber reinforcement. Different loading conditions are designed so as to investigate
various kinematics ranging from simple bending to large displacements and rotations. In all cases,
large displacements are taken into account, and the effective moduli of the homogenized shell model
have been obtained by the procedure described in Section 3 and used within the nonlinear framework
of Section 4. The reference solutions involving the fully meshed model or other reference models
have been obtained through ABAQUS [25] software (Abaqus Inc., Vélizy-Villacoublay, France).

5.1. Bending of a composite thin plate

The first numerical example deals with the bending of a heterogeneous thin plate. As depicted in
Figure 3, a five-layer composite rectangular thin plate with length Ly, = 30, width Ipy = 10,
and thickness Hps = 1 mm is considered. Reinforce fibers with elliptical section are horizontally
disposed in the central layer. Clamped on the left edge, the structure is submitted to the load force
F, which is uniformly distributed on its right edge.

The microstructure is chosen so as to completely capture the heterogeneities across the shell
thickness. The microstructure dimensions are L,, = [,, = H, = 1 mm, for which H,, = Hy
(Figure 4). In this example, the microstructure is composed of elastic linear materials. Material
properties for each phase are given in Figure 4.

The six problems at order O and at order 1 are solved numerically on the elementary cell by means
of the boundary conditions (24)—(27). The corresponding deformed configurations are depicted in
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Figure 4. Unit cell associated with the heterogeneous plate: geometry and material parameters for the
different phases.

22

=N
27

Figure 5. Deformed configurations associated with order 0 kinematic modes.

Figures 5 and 6 for illustration. Then, the effective constitutive tensors are computed according to
the procedure described in Section 3.3.

In order to investigate the validity of the multiscale approach, the entire heterogeneous thin plate
is fully modeled so as to provide a reference solution. In this example, the full-scale mesh contains
347,000 degrees of freedom and is discretized with the six-node wedge solid element. As for the
macroscale boundary conditions, the full model and the homogenized 3D shell are clamped on
one edge, which requires suppressing all related DOF on this edge including displacements and
rotations. Then on the free edge, a force F in x3 direction is uniformly prescribed. The homogenized
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Figure 6. Deformed configurations associated with order 1 kinematic modes.
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Figure 7. Load-displacement diagram for the heterogeneous plate bending problem measured at the loaded
edge: comparison between the full-scale model and the homogenized shell model.

model is discretized with only 12 shell elements containing 318 DOF and is solved using Newton—
Raphson resolution strategy with arc-length control (Riks’ method [26, 27]), as well as for examples
5.2 and 5.3.

For both models on the right edge, we measure the displacement evolution in x3 direction ver-
sus the load force. Results from the two models are compared in Figure 7. We note a very good
agreement between the two results.

5.2. Lateral buckling of a heterogeneous slender beam

In this example, we consider a slender multilayer rectangular sheet, with length Lj; = 100, width
{3y = 10, and thickness Hps = 1 mm. The sample is submitted to a concentrated load at the point
C and is clamped at its left edge. Loading conditions are depicted in Figure 8. As the load increases,
instabilities may occur with occurrence of a tiny perturbation. This perturbation is introduced to the
system via a small force f, which is applied in the transverse direction. In this example, its intensity
remains 1/1000 of the load force AF.
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Figure 9. Unit cell associated with the heterogeneous plate under deflection: geometry and material

parameters.
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Figure 10. Load-displacement diagram for the heterogeneous plate bending problem: comparison between
the full-scale model and the homogenized shell model: x> and x3 components of the displacements at point
C.

The considered thin plate represents a three-layer microstructure in the transverse direction. Mate-
rial properties for each phase are considered linear elastic. Similar to the previous example, we
model the microstructure such that the thin plate’s structural details along the thickness direction
are fully accounted for, as depicted in Figure 9.

The homogenized model (discretized with 12 elements including 318 DOF) is validated by com-
paring with a reference solution obtained with Abaqus. However, correctly modeling the present
problem using full-scale solid elements, as it has been done in the first example, represents huge
numerical difficulty for this case, due to the severe instabilities that the structure would suffer under
the defined loading conditions. An alternative solution consists in using the multilayer shell elements
that Abaqus provides, by explicitly defining the material properties for each shell layer.

We report in Figure 10 the results for the homogenized model in comparison with the Abaqus ref-
erence model. Displacement response in both the vertical direction —x, and the transverse direction
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Figure 11. Element strain evolution of the macroscopic model. Strain values are set in local orthonormal
material coordinates and expressed in per cent. The red curve refers to the equivalent strain.
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Figure 12. Element strain evolution of the macroscopic model. Strain values are set in local orthonormal
material coordinates and expressed in per cent. The red curve refers to the equivalent strain.

X3 are investigated as function of the increasing load. This example demonstrates the capability of
the present multiscale framework in treating thin structures involving severe instabilities, especially
when full-scale modeling using solid elements becomes difficult.

As to the question why the proposed sequential multiscale framework, based on elastic material
homogenization can deal with severe macroscopic instabilities, we note that throughout the loading
process, strains computed on the equivalent macroscopic model remain globally small (Figure 11).
In severely deformed areas, a few elements present strain values close to 4% (Figure 12). However,
these elements are situated near the boundary of the model, where modeling through multiscale
methods is presumably difficult by nature. In fact, the most reliable way to model the boundary
area would be using a full scale model which presents the most precise and the richest information.
These models can then be coupled to the multiscale model by having recourse to model coupling
techniques, for instance the Arlequin method [28]. Nevertheless, the multiscale model in the present
case offered satisfactory accuracy.

5.3. Snap-through buckling of a heterogeneous thin roof

To fully illustrate the present procedure in the context of curved thin structures, we consider in this
example the buckling behavior of a slightly curved thin roof composed of a five-layer material.
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Figure 13. Curved thin heterogeneous roof problem: geometry and boundary conditions.
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Figure 14. Unit cell associated with the curved thin heterogeneous roof : geometry and material parameters.
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The geometry of the structure is shown in Figure 13. Both the left and right edges are clamped. A
concentrated force is applied at point C situated at the center of the roof. Because of the curved
geometry, the roof buckles as the load increases.

Similar to the previous case, the same thickness as the roof is retained for the microstructure
which is modeled taking into account the five-layer microstructure. Material for each layer is linear
elastic. The parameters of the different layers are provided in Figure 14.

For the sake of simplicity, only one quarter of the roof geometry is modeled because of the
problem symmetry. Therefore, we used only nine shell elements (containing 240 DOF) to construct
the homogenized model while the reference model is elaborated using Abaqus multilayer shell with
the same number of elements. Displacement response in the transverse direction versus the loading
force is computed both at the loading point C and on a point B situated on one of the roof’s edges.

Results from the homogenized model are compared with those obtained from the reference model
(Figure 15). Very good agreement can be noticed for displacements observed at both points B and
C. This example further confirms the robustness of the proposed multiscale scheme in dealing with
buckling problems for shell structures, which cannot be easily captured by full-scale solid element
models, not to mention the computational cost it will induce.

Despite the large displacement involved in the macroscopic model, the macroscopic strains only
evolve on a very low level. As depicted in Figures 16 and 17, strain values remain small throughout
the loading process. This again explains why the proposed approach based on microscopic elastic
homogenization is sufficient in spite of the complex macroscopic problem setting.

For the last two examples 5.2 and 5.3, we considered heterogeneous shells with simple multilayer
microstructures. This choice has been made to facilitate modeling of the reference problem: on one
hand, it is difficult to capture buckling behaviors of thin structures based on full-scale models with
solid element; and on the other, Abaqus offers advanced possibility for modeling multilayer shells.
However, as demonstrated in example 5.1, the present methodology is by no means restricted to
multilayer microstructures and can be used for arbitrary microstructural geometries.
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Figure 15. Load-displacement diagram for the roof buckling problem measured at point B and C:
comparison between the reference model using Abaqus multilayer shell and the homogenized model.
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Figure 16. Element strain evolution of the macroscopic model. Strain values are set in local orthonormal
material coordinates and expressed in per cent. The red curve refers to the equivalent strain.
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6. CONCLUSION AND DISCUSSION

In this work, a computational homogenization approach has been elaborated to deal with shell struc-
tures composed of multiphase elastic materials. Scale transition is achieved by solving a set of 12
boundary value problems prescribed on an elementary cell, where through thickness heterogeneities
are modeled in details. At the macroscopic scale, a seven-parameter shell model is employed, with
strain enrichment in the transverse direction. A numerical procedure has been defined to compute the
different operators associated with the constitutive behavior at the macroscopic scale. The homog-
enization framework is first presented in the small strain context, and a simple extension to finite
displacements and geometrical nonlinearities is then proposed, where a linear material behavior is
chosen, based on the operators obtained from the small strain context but in a fully geometrical non-
linear context. The method has been validated through several examples involving heterogeneous
plates and shells in large displacement with possible buckling, and very good agreement has been
found between the homogenized model and reference solutions based on fully meshed structures
where all heterogeneities are explicitly described. It should be noted, however, that validation of
the presented approach has been carried out by comparing global variables such as displacements.
If readers require accurately investigating local variables such as stresses, or studying microstruc-
tures composed of nonlinear materials under large deformation, a fully coupled concurrent type of
homogenization scheme should be considered. Another possibility consists in prescribing full mod-
els in regions involving large strains and multiscale model in the remaining area, then coupling the
two models using model coupling techniques, such as Arlequin method.

APPENDIX A

A.l. Formulation of the seven-parameter shell element with enhanced assumed strain

According to the shell kinematics assumptions provided in Section 2, deriving the displacement field
leadsto E ;‘_,fl) = 0. However, this condition is not compatible with respect to three-dimensional con-
tinuum constitutive relations. In fact, for problems involving significant out-of-plane deformations,
in-plane stretches and compressions such as £ ;‘1(1), Egz(l) induce by the Poisson effect a spurious
strain term which is distributed linearly in the shell thickness direction:

C ..
ESTor = _c;:; 0> ELD with (i, j) # (3.3) . (A1)

This spurious strain E55°" leads to significant error when it comes to bending dominated cases,

which is commonly referred to as ‘the Poisson thickness locking phenomenon’. To remedy this
problem, we adopted in this work a versatile seven-parameter shell element incorporating enhanced
assumed strain [29]. Proposed by Biichter and Ramm [22], the element is based on a multi-field
formulation, for which the compatible strain field E” is supplemented with a linear strain component
E acting across the shell thickness direction. The additional strain balances E$5°" and subsequently
clears the locking issue. Incorporation of the additional strain is realized based on the three-field
variational functional Hu—Washizu, which is function of the second Piola—Kirchhoff stress S, the
Green-Lagrange strain E and displacement u. According to Hu—Washizu, total energy density of a
system 18

Dygw@,E,S) = / %E :C:E—-S:(E—E")dQ —AP(u), (A.2)
Q

in which P indicates the energy density due to external load, which is calibrated by a load parameter
A. P is defined by

P(u):/f-udsz+/ T-udl, (A.3)
Q aQ



with f the volume force applied on the body €2 and T the surface force acting on the body boundary
0€2. In Equation (A.2), E denotes the total strain, which is composed on one hand by the compatible
strain E¥ and on the other hand by the supplemented assumed strain E:

E=E‘+E. (A.4)

E describes linear variation of the shell thickness stretch (or compression) and is expressed with
respect to the local transversal coordinates 63:

E=0%E;G* G with Es; = Es3(6',6%). (A.5)

Additionally, E satisfies the condition of orthogonality with respect to the stress field S, which
renders the following condition:

/ S:EdQ =0. (A.6)
Q

Relations Equations (A.4) and (A.6) allows reformulating the Hu—Washizu functional
Equation (A.2):

Mg (u,E) = /Q %’(E" +E):C: (E* +E)dQ — AP(u). (A7)

From Equations (A.7) and (A.6), we obtain the variational definition of the problem, which is
composed of an equilibrium equation and a compatibility condition:

/ S:S6E¥dQ — AP(Su) =0

@ (A.8)
/ S:SEdAQ =0,

Q

where P (§u) (coming from Equation (A.3)) represents energy density due to conservative external
load, satisfying

P(8u)=/f-8ud§2+/ T-Sudl. (A9)
Q R
In Equation (A.8), because the compatible strain E¥ derives from the displacement field u
1 1
EY = S(Vu+ V) + S Vu- Vi, (A.10)
then its variational form written with respect to du is
1
SEY = §(V5u +V7T8u) + Vu-V7su. (A.11)

Let us adopt the operator E}'( - ) to denote %[V( ) +'V(-)],and E¥ (x , ) to denote %V( %) -
'V( ) . Then the variational definition of the problem writes

/ S : [E!(Su) + 2 E¥,(u, 5u) | dQ = AP (Su)
Q

/ S:SEdQ =0 (A.12)
Q

S=C:[E'(u) +E¥@uu) +E],

which can be readily implemented using the discretization technique that we present in the
next section.



A.2. Finite element discretization

We introduce the discretization technique for the seven-parameter shell formulation with enhanced
assumed strain. An eight-node quadrilateral element with reduced integration is utilized for which
nodal displacements are contained in vector q = *{v¥, vk, v& wk wk wk ...x8} (k =1,....8)
and interpolated to integration points with the help of shape functions N , leading to element
displacement vector u = “{vy, va, v3, w1, Wa, W3}

k
A\ v
uz{w}=N~q=N{wk (A.13)

}(k=1,...,8) .

. Ui,j . G1 Uk
ow = =] {oef (A14)

in which /[ Gy, G, ] is denoted as G and called gradient matrix. Expressions of G and G, are
given by Equations (A.30) and (A.31) in Appendix B. _
Both E© (u) and E( (u) are composed of the linear E;’) (i = 1,2) and the nonlinear Efl’), which

means E¢¥) = Egi) + ESI) . They are expressed as function of the covariant base vectors a; and

displacement gradient vector 6(u):

Its derivative writes

©)
E,={ ' V=R-0(u), (A.15)
o)
I

in which R refers to the matrix given by Equation (A.32) in Appendix B. Similarly, vector E,;; can
be calculated by

(0)
Enl 1
E, = = - A-0(u), (A.16)
BV [ 2

n

in which A is the matrix given by Equation (A.33) in Appendix B. Now with E; (Equation (A.15))
and E,; (Equation (A.16)) discretized, the compatible strain E¥ can be calculated by

1
EY=E, +E, = (R+§A)0(u). (A.17)

We can verify that the variational form of E* writes
SEY =(R+A)0(w) = R+A)Géq, (A.18)

where G denotes the gradient matrix defined in Equation (A.14), and dq the variational form of
nodal displacements. We introduce B to denote the matrix (R 4+ A) G, then

SE* =B dq. (A.19)

Like in the work of Bischoff [24], the proposed shell can be formulated using generalized stress
measures, composed of n and m. They are energetically conjugated to their strain counterparts E(®)
and E(V and are computed by integrating the stress and moment through the shell thickness. Both
n and m are arranged in vector S = *{’n, ‘m}, in which

n="{n"" n?2 0% n'2 '3 n2)

22 33 12 13 23}

A.20)
m=’{m“,m m>3 o m?2 m3 m (



A.2.1. Discretization of the enhanced assumed strain E. The present shell model is conceived on
the basis of a multifield strain formulation. The compatible strain field derived from displacements
is extended by a linear term which acts in the shell transversal direction, leading to the seventh
degree of freedom. This linear strain field E, namely assumed strain, is discretized on element level.
It does not require interelement continuity, neither contribute to the total number of nodal degrees
of freedom. Equation (A.5) defines the linear assumed strain, which here is discretized by the
bi-linear form

Ess = a1 + 0201 + a36> + 04016, (A.21)
or in the following form:
E =B, «, (A.22)

where By, is given by Equation (A.35) in Appendix B. Here, By is constructed with local curvilinear
coordinates (81, 62) of the current integration point. So E is determined (Equation (A.22)) based
on a, which is an internal variable evolving independently within each element. We detail in the
following the determination of &, thus the assumed strain E.

A.2.2. Discretization and resolution of the problem governing equations. Let us recall the shell
problem definition (Equation (A.12)). By using previously defined B, (Equation (A.22)) and B
(Equation (A.19)), governing equations of the problem (Equation (A.12)) can be written as

/ "B.SdQ — A Fey (Su)} = 0
S (A.23)
/ By -SdAQ2 =0.

We identify in the first equation of Equation (A.23) the elementary internal force Fj,, and
from second equation of Equation (A.23) the relative residual with respect to the compatibility
condition. Hence,

Fi =/ ‘B.SdQ
Qe

(A.24)
Re:/ B, -SdQ .
Its variational form writes
OFin = Ky 6q + Ky - S
(A.25)
6Re =Ky, -8q + Ky - S,
where the matrices involved refer to
Ko =/ (G-M-G+'B-C-B)dQ,
Qe
Keu = / By - C-BdS,
d (A.26)

KW=/ ‘B-C-B, dQ = 'Ky,

e

Kaa=/ By -C By dQ .
Q

e



Matrix form of M in the first equation of Equation (A.26) is defined with respect to the initial state
of stress. For exact form of M, please refer to Equation (A.34) in Appendix B. We then prescribe
based on Equations (A.24) and (A.25) an iterative procedure to solve the shell problem, so

nElm
/\ (Fim + Ky - 5(1 + Kyg - 80t — Feyy — SFint)e =0

e=1
(A.27)
nElm

/\ Re+Kqy -5q+ Ky - S), =0,

e=1

where /\Zﬂm refers to classical finite element assembly operator, adding elementary force or stiff-
ness contributions into their global vector or matrix counterparts. Condensation of the two equations
in Equation (A.27) eliminates de, leading to the following iterative tangent problem written as
function of displacements:

Kr éq = Fr, (A.28)
in which Kt and Fr denote
nElm
I<T = /\ (Kuu - Ku(x . K;olt . Kau)e
=1
¢ (A.29)
nElm
Fr = /\ (Feu —Fin + Kuo - K3 - Re), .
e=1
APPENDIX B

B.1. Matrix representations used in the shell element

We provide here in detail the matrices used in the shell element discretization presented in
Appendix A.

The gradient operator G writes * [ Gy, Gy | in which G can be found in the following matrix
expression:

NE 0 0 0 0 O | 1
v
NE O 0 0 0 0| !
V1,1 ’ | vy
V12 0 0 0 N0 0| .
v
w1 o N0 0 0 0 ;
V2.1 ’ | wllc
{vij}=quv2a2p=| 0 NS 0 0 0 0 [--x8 [ (A.30)
w
w2 0 0 0 0 NK O | 2
V3,1 | wl3‘
V32 0 0N O 0 0]
s 0 0Nk O 0 0 I |
X
L 0 0 0 0 0 NF| )




and for G,,

000Nk 0 0 |
000Nk 0 0 | "
wi,1 ’ | vk
W1 0000 0 0 |
) k
v
.2 000 0 Nk 0 I :
2,1 ’ w
{wij}=qw22p={000 0 N5 0 |..x8 Ilc . (A.31)
w
W23 0000 0 0| ’
w3,1 | w’3‘
w32 000 0 0 Nk
w3 3 k| :
000 0 0 N 8
(0000 0 0 | i

Then, R is found in the following matrix expression:

fal 0 0 a2 0 04} 0 O
0ay 0 0430 04d30
0 0aly 0 0a% 0 0 a3

ayal 0 d3a? 0 dda} 0
ay 0 al a3 0 a?d} 0 a3
5O 0 ala) 0 d3d2 0 a3 a3
L1l 000000000 V1.1
E(o) V1,2
122 000000000 W
£©
133 000000000 V2,1
V2,2
2E(7), 000000000 o
2E, 000000000 V3,1
U3,2
© :
260 | _ L0 00000000 o )
EN, 0 000 000 0 07 |w
wi,2
EW, 0 000 000 0 0 |y]
£ 0 000 00 0 0 0f [w
133 wy o
0O 000 000 00 ’
&) w
2E; 2,3
o 0 000 000 0 0 |ws
2E
1(1)3 O 000 O0O0O0O 00 W3,2
1 w3, 3
2E; 2 240 0 0242 0 024} 0 0
0 %a}0 0 %430 0 Za3o0
0O 000 000 00
2} Zal 0 2a3 243 0 34} Fai 0
Zal 0 0Z%242 0 0%a3 0 O
0 #al0 0 a0 0 Zalo]




And A writes in the following form:

B V1,1 0 0 V2.1 0 0 V3,1 0
0 V1,2 0 0 V2,2 0 0 V32
0 0 w1 0 0 wo 0 0
Uiz UL, 0 V2o V2 0 V32 U3
w1 0 V1,1 1105 0 V2.1 w3 0
0 w1 V1,2 0 Wo V2.2 0 w3
EY 2 2 2
nl 11 FW1,1 0 0 FW2,1 0 0 7 W31 0
(0)
Enl 22 0 %wl,z 0 0 %U)Lz 0 0 %U)3,2
0
Ex)ss 0 0 0 0 0 0 0 0
0
2E,(,1)12 %wl,z %wl,l 0 %wz,z %wz,l 0 %ws,z %w3,1
2E9 0 0 Zwyg 0 0 Zwy; 00
2 2
2E£?)23 | 0 0 7 W12 0 0 7 W2,2 0 0
EY O 0 0 0 0 0 0 0 07
E(})zz 0 0O 0 O 0O 0 O 0O o0
n
EW 0 0o 0 O 0O 0 O 0 0
nl 33
) 0 0O 0 O 0O 0 O 0 o0
2Enl 12
M 0 0O 0 O 0O 0 O 0O o0
2Enl 13
o 0 0O 0 O 0O 0 O 0 o0
2Enl 23 2 2 2
ﬁl}],] 0 0 ﬁvz’l 0 0 ﬁv3,1 0 0
0 EUI,Z 0 0 %Uzgz 0 0 %U3,2 0
0 0O 0 O 0O 0 O 0 o0
Zv12 7011 0 Fv2p FV21 0 Fvan Hv31 0
Zw; 0 0 Zw, 0 0 Zws 0 0
0 Zw; 0 0 Zw, 0 0 Zw; 0

U31

V3,2

2
7 W3,1

2
7 W32

V1,1

V1,2

V2,1
V2,2
Ww»
V3,1

U3,2

(A.33)



M is found in the following:
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