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Introduction

Let G be a connected compact Lie group, and π : G -→ GL(V ) a continuous representation of G on a finite dimensional complex vector space V . The map We are especially interested here with the group G = USp 2g of symplectic unitary matrices of order 2g, with π equal to the identity representation in V = C 4 . With the help of Weyl's integration formula, one establishes that the distribution µ τ has a density f τ , that is, a positive continuous function such that dµ τ (x) = f τ (x)dx. Our main purpose is the study of f τ , especially in the case g = 2 and g = 3. For instance, for g = 2, we have Another representation of the distribution of the trace, following a program of Kohel, is realized by the Viète map, which is the polynomial mapping s(t) = (s 1 (t), . . . , s g (t)), t = (t 1 , . . . , t g ), where s n (t) is the elementary symmetric polynomial of degree n. Let I g = [-2, 2] g . The symmetric alcove is the set Σ g = s(I g ) ⊂ R g , which is homeomorphic to the g-dimensional simplex. By a change of variables in Weyl's integration formula, one obtains a measure α x on the hyperplane section

m → τ (m) = Trace π(m)
f τ (x) = 1 4π 1 - x 2 16 4 2 F 1 3 2 , 5 
V x = {s ∈ Σ g | s 1 = x} such that, if |x| < 2g, f τ (x) = Vx α x (s).
As a motivation for the study of these distributions, it is worthwhile to recall that they provide an answer to the following question: Can one predict the number of points of a curve of given genus over a finite field? When a curve C runs over the set M g (F q ) of F q -isomorphism classes of (nonsingular, absolutely irreducible) curves of genus g over F q , the number |C(F q )| seems to vary at random. According to Weil's inequality, an accurate approximation to this number is close to q + 1, with a normalized "error" term τ (C) such that |C(F q )| = q + 1 -q 1/2 τ (C), |τ (C)| ≤ 2g.

The random matrix model developed by Katz and Sarnak gives many informations on the behaviour of the distribution of τ (C) on the set M g (F q ). For instance, according to their theory, and letting g be fixed, for every x ∈ R, we have, as q → ∞ (cf. Corollary 4.3):

|{C ∈ M g (F q ) | τ (C) ≤ x}| |M g (F q )| = x -∞ f τ (s)ds + O q -1/2 .
Hence, the knowledge of f τ provides a precise information on the behaviour of the distribution of the number of points of curves. The outline of this paper is as follows. After Section 2, devoted to notation, we recall in Section 3 the Weyl's integration formula, expressed firstly in terms of the angles (θ 1 . . . , θ g ) defining a conjugacy class, and secondly in terms of the coefficients t j = 2 cos θ j . We discuss equidistribution results for a family of curves or abelian varieties over a finite field in Section 4. In Section 5 we obtain four explicit formulas for the trace distribution if g = 2, respectively in terms of hypergeometric series, of Legendre functions, of elliptic integrals, and of Meijer G-functions. We also give the distribution of the trace for the representation of the group SU 2 × SU 2 in USp 4 .

In the second part of the paper, we take on a different point of view by using elementary symmetric polynomials, and obtain a new expression of Weyl's integration formula. Section 6 defines the Viète map, asssociating to a sequence of coordinates the coefficients of the polynomial admitting as roots the elements of this sequence, and Section 7 describes the symmetric alcove, that is, the image of the set of "normalized real Weil polynomials" by the Viète map. By a change of variables using the Viète map, we obtain in Section 8 a new integration formula, which leads to another expression for the distribution of the trace on the conjugacy classes, in the cases g = 2 and g = 3. If g = 2, we compute also the trace of ∧ 2 π. Finally, we include an appendix on the character ring of USp 2g , including a formula on the exterior powers of the identity representation.

I would like to thank David Kohel for fruitful conversations. Also, I warmly thank the anonymous referee for carefully reading this work and for its suggestions, especially regarding the appendix.

The unitary symplectic group

The unitary symplectic group G = USp 2g of order 2g is the real Lie group of complex symplectic matrices

G = m ∈ GL 2g (C) | t m.J.m = J and t m. m = I 2g , with J = 0 I g -I g 0 .
Alternately, the elements of G are the matrices

m = a - b b ā ∈ SU 2g , a, b ∈ M g (C).
The torus

T g = (R/2πZ) g is embedded into G by the homomorphism (2.1) θ = (θ 1 , . . . , θ g ) → h(θ) =         e iθ1 . . . 0 . . . . . . . . . 0 . . . e iθg 0 0 e -iθ1 . . . 0 . . . . . . . . . 0 . . . e -iθg        
whose image T is a maximal torus in G. The Weyl group W of (G, T ) is the semidirect product of the symmetric group S g in g letters, operating by permutations on the θ j , and of the group N of order 2 g generated by the involutions θ j → -θ j . Since every element of USp 2g has eigenvalues consisting of g pairs of complex conjugate numbers of absolute value one, the quotient T /W can be identified with the set Cl G of conjugacy classes of G, leading to a homeomorphism

T g /W ∼ ----→ T /W ∼ ----→ Cl G Remark 2.1.
Here is a simple description of the set Cl G. Let Φ 2g be the subset of monic polynomials p ∈ R[u] of degree 2g, with p(0) = 1, with roots consisting of g pairs of complex conjugate numbers of absolute value one. If θ ∈ T g , let

p θ (u) = g j=1 (u -e iθj )(u -e -iθj ).
The map θ → p θ is a bijection from T g /W to Φ 2g . Renumbering, we may assume that 0

≤ θ g ≤ θ g-1 ≤ • • • < θ 1 ≤ π. The map m → cp m (u) = det(u. I -m) induces a homeomorphism Cl G ∼ ----→ Φ 2g with cp m = p θ if and only if m is conjugate to h(θ). The polynomial p θ is palin- dromic, that is, if p θ (u) = 2g n=0 (-1) n a n (θ)u n , then a 2g-n (θ) = a n (θ) for 0 ≤ n ≤ g.

Weyl's integration formula

The box X g = [0, π] g is a fundamental domain for N in T g and the map F → F •h defines an isomorphism

(3.1) C (G) • ∼ ----→ C (X g ) sym
from the vector space C (G) • = C (Cl G) of complex central continuous functions on G to the space C (X g ) sym of complex symmetric continuous functions on X g . Notice that the isomorphism (3.1) has an algebraic analog, namely the isomorphism (A.1) in the appendix. Let dm be the Haar measure of volume 1 on G.

If F ∈ C (G) • , then Cl G F( ṁ) d ṁ = G F(m) dm,
where d ṁ is the image measure on Cl G of the measure dm. The following result is classical [4, Ch. 9, § 6, Th. 1, p. 337], [10, 5.0.4, p. 107].

Theorem 3.1 (Weyl integration formula, I).

If F ∈ C (G) • , then G F(m) dm = Xg F • h(θ))µ g (θ),
with the Weyl measure

µ g (θ) = δ g (θ)dθ, dθ = dθ 1 . . . dθ g , δ g (θ) = 1 g! g j=1 2 π (sin θ j ) 2 j<k (2 cos θ k -2 cos θ j ) 2 .
We call the open simplex

(3.2) A g = {(θ 1 , . . . , θ g ) ∈ X g | 0 < θ g < θ g-1 < • • • < θ 1 < π}
the fundamental alcove in X g . The closure Āg of A g is a fundamental domain for S g in X g , and, for every f ∈ C (X g ) sym , we have

Xg f (θ) dθ = g! Ag f (θ) dθ.
There is another way to state Weyl's integration formula, which will be used in Section 8. Let

I g = [-2, 2] g . The map (θ 1 , . . . , θ g ) → (2 cos θ 1 , . . . , 2 cos θ g ) defines an homeomorphism X g -→ I g . Let k(t 1 , . . . , t g ) = h arccos t 1 2 , . . . , arccos t g 2 .
where h(θ) is given by (2.1). Then the map

F → F • k defines an isomorphism C (G) • ∼ ----→ C (I g ) sym
where C (I g ) sym is the space of complex symmetric continuous function on I g . For an algebraic analog, see the isomorphism (A.2) in the appendix. Let

(3.3) D 0 (t) = j<k (t k -t j ) 2 , D 1 (t) = g j=1 (4 -t 2 j ).
Proposition 3.2 (Weyl integration formula, II).

If F ∈ C (G) • , then G F(m) dm = Ig F • k(t)λ g (t) dt,
where t = (t 1 , . . . , t g ) and dt = dt 1 . . . dt g , with the Weyl measure

λ g (t)dt, dt = dt 1 . . . dt g , λ g (t) = 1 (2π) g g! D 0 (t) D 1 (t). Proof. If ϕ ∈ C (I g ), we have Xg ϕ(2 cos θ 1 , . . . , 2 cos θ g )δ g (θ) dθ = Ig ϕ(t)λ g (t)dt.
Apply Weyl's integration formula of Theorem 3.1.

As in (3.2), we call the open simplex

(3.4) A g = {t ∈ I g | -2 < t 1 < t 2 < • • • < t g < 2}
the fundamental alcove in I g . Then Āg is a fundamental domain of I g for S g , and if f ∈ C (I g ) sym , we have

(3.5) Ig f (t) dt = g! Ag f (t) dt.
Examples 3.3. We have

λ 2 (t) = 1 4π 2 (t 1 -t 2 ) 2 (4 -t 2 1 )(4 -t 2 2
). The maximum of λ 2 in A 2 is attained at the point

t 0 = (- √ 2, √ 2 
), with λ 2 (t 0 ) = 2 π 2 . We have also

λ 3 (t) = 1 48π 3 (t 1 -t 2 ) 2 (t 1 -t 3 ) 2 (t 2 -t 3 ) 2 (4 -t 2 1 )(4 -t 2 2 )(4 -t 2 3
). The maximum of λ 3 in A 3 is attained at the point

t 0 = (- √ 3, 0, √ 3 
), with λ 3 (t 0 ) = 9 2π 3 . Now, for the convenience of the reader, we recall some notation on the distribution of central functions. Let G be a connected compact Lie group. The Haar measure dm of volume 1 on G is a probability measure, and G becomes a probability space; ipso facto, its elements become random matrices, and the functions in

C (G) • are complex random variables on G. If F ∈ C (G) • is a real random variable, whose values lie in the compact interval I ⊂ R, the distribution or law of F is the image measure µ F = F * dm on I such that I ϕ(x) µ F (x) = G ϕ(F(m)) dm if ϕ ∈ C (I), If B is a borelian subset of I, then µ F (B) = volume {m ∈ G | F(m) ∈ B} ,
and the cumulative distribution function of F is

Φ F (x) = P(F ≤ x) = x -∞ µ F (t) = F(m)≤x dm.
The characteristic function of F is the Fourier transform of µ F (x):

f F (t) = ∞ -∞ e itx µ F (x) = G e itF(m) dm = Xg e itF•h(θ) µ g (θ).
This is an entire analytic function of t, of exponential type, bounded on the real line. The distribution µ F has a density if µ F (x) = f F (x)dx with a positive function f F in L 1 (I). If µ F has a density, and if Fourier inversion holds, then

f F (x) = 1 2π ∞ -∞ f F (t)e -itx dt. Conversely, if f F ∈ L 1 (R), then µ F has a density. If G = USp 2g
, notice that Weyl's integration formulas supply the joint probability density function for the random variables (θ 1 , . . . , θ g ) and (t 1 , . . . , t g ).

The distribution µ F is characterized by the sequence of its moments

M n (F) = I x n µ F (x) = G F(m) n dm, n ≥ 1,
and the characteristic function is a generating function for the moments:

(3.6) f F (t) = ∞ n=0 M n (F) (it) n n! .
Remark 3.4. If π is an irreducible representation of G, with real character τ π , then the random variable τ π is standardized, i.e. the first moment (the mean) is equal to zero and the second moment (the variance) is equal to one.

Remark 3.5. Under suitable conditions, an expression of the density by integration along the fibers can be given. For instance, let

G = USp 2g , let F ∈ C (G) • be a C ∞ function, and put J = F • h(U ), where U is the open box ]0, π[ g . If F • h is a submersion on U , and if x ∈ J, then V x = {θ ∈ U | F • h(θ) = x}
is a hypersurface. Let α x be the Gelfand-Leray differential form on V x , defined by the relation

d(F • h) ∧ α x = δ g (θ)dθ 1 ∧ • • • ∧ dθ g .
For instance,

α x = (-1) j-1 (∂(F • h)/∂θ j ) -1 δ g (θ)dθ 1 ∧ . . . dθ j-1 ∧ dθ j+1 • • • ∧ dθ g
if the involved partial derivative is = 0. Then the distribution is computed by slicing: since the cumulative distribution function is

Φ F (x) = F•h(θ)≤x µ g (θ) = x -∞ ds Vs α s (θ),
we have

f F (x) = Vx α x (θ).
See [START_REF] Arnold | Monodromy and asymptotics of integrals[END_REF]Lemma 7.2] and [START_REF] Serre | Lectures on N X[END_REF]Lemma 8.5].

Equidistribution

Let A be an abelian variety of dimension g over F q . The Weil polynomial of A is the characteristic polynomial L(A, u) = det(u. I -F A ) of the Frobenius endomorphism F A of A, and the unitarized Weil polynomial of A is

L(A, u) = L(A, q -1/2 u) = g j=1 (u -e iθj )(u -e -iθj ).
This polynomial has coefficients in Z, belongs to the set Φ 2g defined in Remark 2.1, and θ(A) = (θ 1 , . . . θ g ) is the sequence of Frobenius angles of A. We write

L(A, u) = 2g n=0 (-1) n a n (A)u n , keeping in mind that a 2g-n (A) = a n (A) for 0 ≤ n ≤ 2g, since L(A, u) ∈ Φ 2g
. By associating to A the polynomial L(A, u), each abelian variety defines, as explained in Section 2, a unique class ṁ(A) in Cl G, such that L(A, u) = det(u I -ṁ(A)).

Let A g (F q ) be the finite set of k-isomorphism classes of principally polarized abelian varieties of dimension g over k. The following question naturally arises: As q → ∞, and as A runs over A g (F q ), what are the limiting distributions of the random variables a 1 , . . . , a g ?

In order to clarify this sentence, we look in particular to the coefficient a 1 , and focus on the Jacobians of curves. Let C be a (nonsingular, absolutely irreducible, projective) curve over F q . The Weil polynomial L(C, u) of C is the Weil polynomial of its Jacobian, and similarly for the unitarized Weil polynomial L(C, u), the sequence of Frobenius angles θ(C), the coefficients a n (C), and the conjugacy class ṁ

(C). If F C is the geometric Frobenius of C, then L(C, u) = det(u. I -q -1/2 F C ) = det(u I -ṁ(C)). Then (4.1) |C(F q )| = q + 1 -q 1/2 τ (C),
where

τ (C) = a 1 (C), namely τ (C) = q -1/2 Trace F C = 2 g j=1 cos θ j , with θ(C) = (θ 1 , . . . , θ g ).
Then Katz-Sarnak theory [START_REF] Katz | Random matrices, Frobenius eigenvalues, and monodromy[END_REF] models the behavior of the Weil polynomial of a random curve C of genus g over F q by postulating that when q is large, the class ṁ(C) behaves like a random conjugacy class in Cl G, viewed as a probability space, endowed with the image d ṁ of the mass one Haar measure. Here is an illustration of their results. Let R(G) be the character ring of G (cf. the appendix) and

T (G) • = R(G) ⊗ C C[2 cos θ 1 , . . . 2 cos θ g ] sym
the algebra of continuous representative central functions on G, the isomorphism coming from Proposition A.1. This algebra is dense in C (G) • , hence, suitable for testing equidistribution on Cl G. We use the following notation for the average of a complex function f defined over a finite set Z:

Z f (z)dz = 1 |Z| z∈Z f (z).
For every finite field k, we denote by M g (k) the finite set of k-isomorphism classes of curves of genus g over k. The following theorem follows directly, if g ≥ 3, from [10, Th. 10.7.15] (with a proof based on universal families of curves with a 3K structure), and from [10, Th. 10.8.2] if g ≤ 2 (with a proof based on universal families of hyperelliptic curves).

Theorem 4.1 (Katz-Sarnak). Assume g ≥ 1. If C runs over M g (F q ), the conjugacy classes ṁ(C) become equidistributed in Cl G with respect to d ṁ as q → ∞. More precisely, if F ∈ T (G) • , then Mg(Fq) F( ṁ(C))dC = Cl G F(m) dm + O q -1/2 .
Theorem 4.1 means that the counting measures

µ g,q = 1 |M g (F q )| C∈Mg(Fq) δ ( ṁ(C)) ,
defined on Cl G, converges to d ṁ in the weak topology of measures when q → ∞.

Since F • h(θ(C)) = F( ṁ(C)),
this theorem means also that if C runs over M g (F q ), the vectors θ(C) become equidistributed in the fundamental alcove with respect to the Weyl measure when q → ∞.

Remark 4.2. In the preceding theorem, and the above comments, one can substitute the set A g (F q ) to the set M g (F q ) [START_REF] Katz | Random matrices, Frobenius eigenvalues, and monodromy[END_REF]Th. 11.3.10]. This is an answer to the question raised in the beginning of this section.

As discussed above, the random variable τ (C) rules the number of points on the set M g (F q ), and its law is the counting measure on the closed interval [-2g, 2g]:

ν g,q = 1 |M g (F q )| C∈Mg(Fq) δ (τ (C)) = 2g x=-2g f g,q (x)δ (x) ,
where δ (x) is the Dirac measure at x, with the probability mass function

f g,q (x) = |{C ∈ M g (F q ) | (τ (C) = x}| |M g (F q )| , defined if x ∈ [-2g, 2g] and q 1/2 x ∈ Z. We put now τ (m) = Trace m, τ • h(θ) = 2 g j=1 cos θ j ,
for m ∈ G and θ ∈ X g . We take F(m) = τ (m) in Theorem 4.1, and call µ τ be the distribution of the central function τ as defined at the end of Section 3. We obtain:

Corollary 4.3. If q → ∞, the distributions ν g,q of the Frobenius traces converge to the distribution µ τ . More precisely, for any continuous function ϕ on [-2g, 2g], we have

Mg(Fq) ϕ(τ (C))dC = 2g -2g ϕ(x)µ τ (x) + O q -1/2 ,
and for every x ∈ R, we have

|{C ∈ M g (F q ) | τ (C) ≤ x}| |M g (F q )| = x -∞ f τ (s)ds + O q -1/2 . Lemma 4.4. If 1 ≤ n ≤ 2g -1, Ag(Fq) a n (A) dA = ε n + O q -1/2 , where ε n = 1 if n is even and ε n = 0 if n is odd.
Proof. As Equation (A.4) in the appendix, let

τ n (m) = Trace(∧ n m),
in such a way that τ 1 = τ . By equality (A.5), we have

a n (A) = τ n • h(θ(A)).
Since τ n ∈ T (G) 

τ n • h(θ(A)) dA = G τ n (m) dm + O q -1/2
but Lemma A.6 implies that the multiplicity of the character τ 0 of the unit representation

1 is equal to ε n , hence, G τ n (m) dm = ε n . Corollary 4.5. Let u ∈ C and q → ∞. (i) If |u| < q 1/2 , then Ag(Fq) L(A, u) dA = u 2g+2 -q g+1 u 2 -q + O q g-1 2
.

(ii) We have

Ag(Fq) |A(F q )| dA = q g + O q g-1 .
(iii) We have

Mg(Fq) |C(F q )| dC = q + O(1).
The implied constants depend only on g.

Proof. We have

L(A, u) = q g L A, q -1/2 u = 2g n=0 (-1) n a n (A)q (2g-n)/2 u n ,
with a 0 = 1 and a 2g-n = a n for 0 ≤ n ≤ g. From Lemma 4.4, we get

q (2g-n)/2 u n Fg(Fq) a n (A) dA = ε n q (2g-n)/2 u n + u n O q (2g-n-1)/2
for 1 ≤ n ≤ 2g -1, and there is no second term in the right hand side if n = 0 and

n = 2g. Now, if |u| < q 1/2 , 2g n=0 ε n q (2g-n)/2 u n = u 2g+2 -q g+1 u 2 -q ,
and the absolute value of the difference between this expression and

Ag(Fq) L(A, u) dA is bounded by B 2g-1 n=1 |u| n q (2g-n-1)/2 ,
with B depending only on g. If |u| ≤ q 1/2 , then |u| n q (2g-n-1)/2 ≤ q (2g-1)/2 , and this proves (i). If |u| ≤ 1, then |u| n q (2g-n-1)/2 ≤ q g-1 , hence,

Ag(Fq) L(A, u) dA = q g + O q g-1 .
and this proves (ii), since |A(F q )| = L(A, 1). Since Lemma 4.4 holds by substituting M g to A g , (iii) is a consequence of this lemma applied to a 1 (C), and of formula (4.1).

With Corollary 4.5(i), it appears as though the Frobenius angles were close in the mean to the vertices of the regular polygon with (2g + 2) vertices, inscribed in the circle of radius q 1/2 , the points ±q 1/2 being excluded. Another approach on the limiting equidistribution of Frobenius angles is the generalized Sato-Tate conjecture, see [START_REF] Serre | Lectures on N X[END_REF] for a comprehensive description. Let C be an absolutely irreducible nonsingular projective curve of genus g over Q, and S a finite subset of prime numbers such that the reduction C p = C Fp over F p is good if p / ∈ S. Then one says that the group USp 2g arises as the Sato-Tate group of C if the conjugacy classes ṁ(C p ) are equidistributed with respect to the Weyl measure of G when p → ∞. In other words, this means that if

C M

g Vertical Horizontal 2 3 5 … p m(C p ) µ g,2 µ g,3 µ g,5 … µ g,p
F ∈ C (G) • , then lim n→∞ P S (n) F( ṁ(C p )) dp = G F(m) dm,
where P S (n) = {p ∈ P \ S | p ≤ n}. The case g = 1 is the Sato-Tate original conjecture, now a theorem. Here is an example of what one expects [START_REF] Kedlaya | Hyperelliptic curves, L-polynomials, and random matrices[END_REF] :

Conjecture 4.6 (Kedlaya-Sutherland). If End C (Jac C) = Z,
and if g is odd, or g = 2, or g = 6, then the group USp 2g arises as the Sato-Tate group of C.

The two preceding types of equidistribution are symbolically shown in Figure 1. The sequence of prime numbers are on the horinzontal axis, and the vertical axis symbolizes the space of curves. The Katz-Sarnak approach is figured as a (horizontal) limit of vertical averages µ p over vertical lines, and the Sato-Tate approach is a mean performed on horizontal lines.

Expressions of the law of the trace in genus 2

Assume now g = 2. Our purpose is to express the density of the distribution of the trace function τ on USp 4 with the help of special functions. In order to do this, the first step is to compute the characteristic function. The density of the Weyl measure on X 2 is

δ 2 (θ 1 , θ 2 ) = 2 π 2 sin 2 θ 1 sin 2 θ 2 (2 cos θ 2 -2 cos θ 1 ) 2 .
The fundamental alcove is

A 2 = {(θ 1 , θ 2 ) ∈ X 2 | 0 < θ 2 < θ 1 < π} .
The maximum of δ 2 in A 2 is attained at the point

θ m = (α m , π -α m )
, where tan

α m 2 = 2 + √ 3, δ(θ m ) = 128 27π 2 . We have τ • h(θ 1 , θ 2 ) = 2 cos θ 1 + 2 cos θ 2 ,
and the characteristic function of τ is

f τ (t) = X2 e 2it(cos θ1+cos θ2) δ 2 (θ 1 , θ 2 )dθ 1 dθ 2 .
Proposition 5.1. For every t ∈ R, we have

f τ (t) = 4J 1 (2t) 2 t 2 - 6J 1 (2t)J 2 (2t) t 3 + 4J 2 (2t) 2 t 2 .
Here, J 1 and J 2 are Bessel functions.

Proof. Let

V a (x) = 2 5 cos 2 x sin 2 x = 8 sin 2 (2x) V b (x) = 2 5 cos 2 x sin 2 x cos 2x = 4 sin 2x cos 4x V c (x) = 2 5 cos 2 x sin 2 x cos 2 2x = 2 sin 2 4x Then 32π 2 δ(x, y) = V c (x)V a (y) + V a (x)V c (y) -2V b (x)V b (y).
and

F (t) = 2 V a (t) V c (t) -2 V b (t) 2 . But V a (t) = √ 2 t J 1 (2t), V b (t) = i √ 2 t J 2 (2t), V c (t) = √ 2 t J 1 (2t) - 3 √ 2t 2 J 2 (2t),
and the result follows.

We now compute the moments M n (τ ) of τ . By Proposition 5.1, the characteristic function can be expressed by a generalized hypergeometric series [9, §9.14, p. 1010]:

f τ (t) = 1 F 2 3 2 ; 3, 4; -4t 2 = ∞ n=0 (-1) n ( 3 2 ) n (3) n (4) n 2 2n t 2n n! ,
where (a) n = a(a + 1) . . . (a + n -1) is the Pochhammer's symbol. It then follows from (3.6) that the odd moments are equal to zero. Since

( 3 2 ) n (3) n (4) n = 24 √ π (n + 1 2 )Γ(n + 1 2 ) Γ(n + 3)Γ(n + 4)
and [9, p. 897

] Γ n + 1 2 = √ π 2 -2n (2n)! n! ,
we obtain

M 2n (τ ) = 6.(2n)!(2n + 2)! n!(n + 1)!(n + 2)!(n + 3)!
for n ≥ 0.

One finds as expected Mihailovs' formula, in accordance with [12, §4.1], which includes another formula for f τ (t), and also [17, p. 126].

In what follows, four different but equivalent expressions for the distribution of τ are given.

5.1. Hypergeometric series. An expression of the density f τ of the distribution of τ is the following. Recall that Gauss' hypergeometric series

2 F 1 (a, b; c; z) = ∞ n=0 (a) n (b) n (c) n z n n! converges if |z| < 1 [9, §9.1.0, p. 1005].
Theorem 5.2. If |x| < 4, we have

f τ (x) = 1 4π 1 - x 2 16 4 2 F 1 3 2 , 5 2 ; 5; 1 - x 2 16 .
This theorem immediately follows from the following lemma.

Lemma 5.3. If |x| < 4, we have

f τ (x) = 64 5π 2 m(x) 4 I(m(x)), where m(x) = 1 - x 2 16 , and 
I(m) = 1 0 t 2 1 -t 2 1 -mt 2 5 2
dt.

Moreover

I(m) = 5π 256 2 F 1 3 2 , 5 2 
; 5; m .

Proof. We use a formula of Schläfli, see [18, Eq. 1, p. 150]. If µ and ν are real numbers, then

J µ (t)J ν (t) = 2 π π/2 0 J µ+ν (2t cos ϕ) cos(µ -ν)ϕ dϕ (µ + ν > -1).
As particular cases of this formula, we get

J 1 (t) 2 = 2 π 4 0 J 2 ut 2 du √ 16 -u 2 J 1 (t)J 2 (t) = 2 π 4 0 J 3 ut 2 u 4 du √ 16 -u 2 , J 2 (t) 2 = 2 π 4 0 J 4 ut 2 du √ 16 -u 2 .
By transferring these equalities in Proposition 5.1, we obtain

f τ (t) = 4 t 2 J 1 (2t) 2 - 6 t 3 J 1 (2t)J 2 (2t) + 4 t 2 J 2 (2t) 2 = 2 π 4 0 4 t 2 J 2 (ut) - 3u 2t 3 J 3 (ut) + 4 t 2 J 4 (ut) du √ 16 -u 2 .
and since

f τ (x) = 1 π ∞ 0 f τ (t) cos tx dt,
we have

(5.1) f τ (x) = 2 π 2 4 0 du √ 16 -u 2 ∞ 0 4 t 2 J 2 (ut) - 3u 2t 3 J 3 (ut) + 4 t 2 J 4 (ut) cos tx dt.
We use now a formula of Gegenbauer on the cosine transform, see [15, p. 409] and [18, Eq. 3, p. 50]. Assume Re ν > -1/2, u > 0 and let n be an integer ≥ 0. If 0 < x < u, then

∞ 0 t -ν J ν+2n (ut) cos tx dt = (-1) n 2 ν-1 u -ν Γ(ν) Γ(2ν + n) (u 2 -x 2 ) ν-1/2 C ν 2n x u ,
where C ν n (x) is the Gegenbauer polynomial. If u < x < ∞, this integral is equal to 0. From Gegenbauer's formula we deduce that if 0 < x < u, then

∞ 0 t -2 J 2 (ut) cos tx dt = 1 3 (u 2 -x 2 ) 3/2 u 2 , ∞ 0 t -3 J 3 (ut) cos tx dt = 1 15 (u 2 -x 2 ) 5/2 u 3 , ∞ 0 t -2 J 4 (ut) cos tx dt = - 1 30 (u 2 -x 2 ) 3/2 u 2 12x 2 u 2 -2 , since C 2 2 (x) = 12x 2 -2.
Transferring these relations in (5.1), we get

5π 2 f τ (x) = 16 4 x (u 2 -x 2 ) 3/2 u 2 du √ 16 -u 2 - 4 x (u 2 -x 2 ) 5/2 u 2 du √ 16 -u 2 -16x 2 4 x (u 2 -x 2 ) 3/2 u 4 du √ 16 -u 2 ,
and this leads to

f τ (x) = 1 5π 2 4 x (u 2 -x 2 ) 5/2 u 4 16 -u 2 du.
By the change of variables

u = 4 1 -m(x)t 2 , where m(x) = 1 - x 2 16 .
we obtain

f τ (x) = 64 m(x) 4 5π 2 1 0 t 2 1 -t 2 1 -m(x)t 2 5 2
dt, which is the first result. Euler's integral representation of the hypergeometric series is

2 F 1 (a, b; c; z) = Γ(c) Γ(b)Γ(c -b) 1 0 t b-1 (1 -t) c-b-1 (1 -tz) a dt
if Re z > 0, and Re c > Re b > 0. From this we deduce, with the change of variables t = u 2 , that 

I(m) = 5π 256 2 F 1 3 2 , 5 
P a b (z) = 1 Γ(1 -a) z + 1 z -1 a 2 2 F 1 -b, b + 1; 1 -a; 1 -z 2 .
If a = m is an integer and if z > 1 is real, then [9, Eq. 8.711.2, p. 960] :

P m b (z) = (b + 1) a π π 0 z + z 2 -1 cos ϕ b cos mϕ dϕ.
If a = 0, this is the Laplace integral.

Theorem 5.4. If |x| < 4, then

f τ (x) = - 64 15π |x| 1 - x 2 16 2 P 2 1 2
x 2 + 16 4x .

Proof. By Theorem 5.2, we have

F (x) = 1 4π m(x) 4 2 F 1 3 2 , 5 2 ; 5; m(x) 
.

But [15, p. 51]

2 F 1 3 2 , 5 2 ; 5 
; z = (1 -z) -3/4 2 F 1 3 2 , 7 2 ; 3; 
- (1 - √ 1 -z) 2 4 √ 1 -z and [15, p. 47] 2 F 1 3 2 , 7 2 ; 3; z = (1 -z) -2 2 F 1 - 1 2 , 3 2 
; 3; z .

On the other hand, if z = m(x), then

- (1 - √ 1 -z) 2 4 √ 1 -z = - (x -4) 2 16x .
By the definition of Legendre functions,

P -2 1 2 1 2 x 4 + 4 x = x -4 x + 4 4 2 F 1 (- 1 2 , 3 2 ; 3; - (x -4) 2 16x ),
and this implies

f τ (x) = 4 π √ x 1 - x 2 16 2 P -2 1 2 1 2 x 4 + 4 x . Since P m b (z) = Γ(b + m + 1) Γ(b -m + 1) P -m b (z)
if m ∈ Z, we obtain the required expression.

Since 2 F 1 (a, b; c; 0) = 1, we deduce from Theorem 5.2 that

f τ (x) = 1 4π 1 - x 2 16 4 + O(x -4) 5
and hence, in accordance with [17, p. 126]:

Corollary 5.5. If |x| = 4 -ε, with ε → 0 and ε > 0, then

f τ (x) = ε 4 64π + O(ε 5 ). Since lim x→0 √ x P 2 1 2 1 2 ( x 4 + 4 x ) = - 1 π ,
we deduce from Proposition 5.4 that the maximum of f τ is reached for x = 0, and

f τ (0) = 64 15π 2 = 0.432 . . .
The graph of f τ is given in Figure 2 ; we recover the curve drawn in [12, p. 124]. The mention of the existence of such a formula is made in [START_REF] Fité | Sato-Tate distributions and Galois endomorphism modules in genus 2[END_REF]. 

= 1 2iπ C m k=1 Γ(s + b k ) p k=n+1 Γ(s + a k ) . n k=1 Γ(-s -a k + 1) q k=m+1 Γ(-s -b k + 1) z -s ds
Here, a 1 , . . . , a p , b 1 , . . . , b q are a priori in C, and C is a suitable Mellin-Barnes contour.

Corollary 5.7. If |x| < 4,

f τ (x) = 6 π G x 2 16 , with G(z) = G 2,0 2,2 z 5 2 , 7 2 0, 1 .
We have [19, 07.34.03.0653.01]: 

G(z) = 1 2iπ Re s=c Γ(s)Γ(s + 1) Γ s + 5 2 Γ s + 7 2 z -s ds, with 0 < c < 1 2 . Proof. If |z| < 1, then
G 2,0 2,2 z a, c b, -a + b + c = √ π Γ(a -b) (1 -z) a-b-
Φ τ (x) = 3x π G x 2 16 + 1 2 , with G(z) = G 2,1 3,3 z 1 2 , 5 2 , 7 2 0, 1, - 1 2 . 
Proof. According to [19, 07.34.21.0003.01], we have

z α-1 G m,n p,q z a 1 , . . . , a p b 1 , . . . , b q dz = z α G m,n+1 p+1,q+1 z 1 -α, a 1 , . . . , a p b 1 , . . . , b q , -α . By Corollary 5.7, a primitive of f τ is Φ 0 (x) = 6 π G 2,0 2,2 x 2 16 5 2 , 7 2 0, 1 = 3x π G 2,1 3,3 x 2 16 1 2 , 5 2 , 7 2 0, 1, - 1 2 
, and Φ 0 (-4) = -1/2. In order to present a comparison with the above results, we give here without proof the distribution of the trace of a compact semisimple subgroup of rank 2 of USp 4 , namely, the group

SU 2 × SU 2 . If x = (x 1 , x 2 ) and x i = a i -bi b i āi ∈ SU 2 , |a i | 2 + |b i | 2 = 1, i = 1, 2, the map π(x) =     a 1 0 -b1 0 0 a 2 0 -b2 b 1 0 ā1 0 0 b 2 0 ā2     defines an embedding π : SU 2 × SU 2 ----→ USp 4
whose image contains the maximal torus T of USp 4 . We put

ρ(x) = Trace π(x).
The characteristic function of ρ is the square of the characteristic function of the distribution of the trace of SU 2 :

f ρ (t) = J 1 (2t) 2 t 2 .
The even moments are equal to zero, and the odd moments are

M 2n (ρ) = C n C n+1 = 2(2n)!(2n + 1)! (n!) 2 (n + 1)!(n + 2)! .
where

C n = 1 n + 1
2n n is the nth Catalan number. One finds the sequence 1, 0, 2, 0, 10, 0, 70, 0, 588, 0, 5544 . . . in accordance with the sequence A005568 in the OEIS [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF].

Theorem 5.9. If |x| < 4, the density of the distribution of ρ is

f ρ (x) = 1 2π 1 - x 2 16 2 2 F 1 1 2 , 3 2 ; 3; 1 - x 2 16 .
Corollary 5.10. If |x| = 4 -ε, with ε → 0 and ε > 0, then

f ρ (x) = ε 2 8π - ε 3 64π - ε 4 4096π + O(ε 5 ).
The maximum of f ρ is reached for x = 0, and 

f ρ (0) = 8 3π 2 = 0.270 . . . The graph of f ρ is given in Figure 4.

The Viète map and its image

Another approach of the distribution of the trace is realized by an algebraic form of Weyl's integration formula, using symmetric polynomials. This comes from a general program developed by Kohel [START_REF] Kohel | Sato-Tate distributions in higher genus[END_REF], formerly outlined by DiPippo and Howe in [START_REF] Dipippo | Real polynomials with all roots on the unit circle and abelian varieties over finite fields[END_REF]. If t = (t 1 , . . . , t g ) ∈ C g , consider a monic polynomial (6.1)

h t (u) = (u -t 1 ) . . . (u -t g ) = u g -s 1 (t)u g-1 + • • • + (-1) g s g (t) in C[u]. Here s n (t) = i1<•••<in t i1 . . . t i k is the elementary symmetric polynomial of degree n in g variables. The discriminant of h t is (6.2) disc h t = D 0 (t) = j<k (t k -t j ) 2 .
The Viète map s : C g -→ C g is the surjective polynomial mapping s(t 1 , . . . , t g ) = (s 1 (t), . . . , s g (t)), where t = (t 1 , . . . , t g ), inducing a bijection

C g /S g ∼ ----→ C g
which is a homeomorphism, because the map between the corresponding projective spaces is a continuous bijection between compact spaces. Hence, the Viète map is open and proper. We denote by

Π g = s(R g )
the closed subset which is the image of the Viète map. Hence, (s 1 , . . . , s g ) ∈ Π g if and only h t (u) has only real roots. The induced map

R g /S g ∼ ----→ Π g
is a homeomorphism. The fundamental chamber of R g related to S g is

C g = {t ∈ R g | t 1 < t 2 < • • • < t g }
and Cg is a fundamental domain for S g in R g . We are going to show that s is a local diffeomorphism at the points of an open dense subset of R g . For this purpose, we calculate J(s), where J(f) denotes the jacobian matrix of a polynomial map f : C g -→ C g . Recall that the power sums

p n (t) = t n 1 + • • • + t n g (n ≥ 1)
can be expressed in terms of elementary symmetric polynomials. Precisely, from Newton's relations

p n = n-1 j=1 (-1) j-1 s j p n-j + (-1) n-1 ns n (n ≥ 1),
we obtain [14, p. 28] :

p n = s 1 1 0 . . . 0 2s 2 s 1 1 . . . 0 . . . . . . . . . . . . . . . ns n s n-1 s n-2 . . . s 1 .
This is related to a more suitable expression [5, p. 72], [2, Ch. IV, § 6, Ex. 6], obtained by Albert Girard [START_REF] Girard | Invention nouvelle en l'algèbre[END_REF] in 1629, and sometimes attributed to Waring (1762):

Proposition 6.1 (Girard's formula). If 1 ≤ n ≤ g and s = (s 1 , . . . , s g ), let v n (s) = n b∈Pn (b 1 + b 2 + • • • + b g -1)! b 1 ! . . . b g ! u b1 1 . . . u bg g ,
where u n = (-1) n-1 s n for 1 ≤ n ≤ g, and the summation being extended to

P n = {b = (b 1 , . . . , b g ) ∈ N g | b 1 + 2b 2 + • • • + gb g = n} .
Then

p n = v n • s.
The map ϕ → ϕ • s defines an isomorphism

s * : Z[s 1 , . . . , s g ] ∼ ----→ Z[t 1 , . . . , t g ] sym .
Since D 0 ∈ Z[t 1 , . . . , t g ] sym , there is a polynomial d 0 ∈ Z[s 1 , . . . , s g ] such that (6.3) 

d 0 (s(t)) = D 0 (t) = j<k (t k -t j ) 2 . Let U g = {t ∈ R g | D 0 (t) = 0} , Π • g = {s ∈ R g | d 0 (s) = 0} . Then Π • g = s(U g ),
(i) If t ∈ R g , then |det J(s)(t)| = D 0 (t) = j<k |t k -t j |.
(ii) The map s is a local diffeomorphism at every point of U g .

(iii) The map s is a diffeomorphism from the fundamental chamber C g to Π • g . Proof. Define two polynomial maps from C g to C g :

p(t) = (p 1 (t), . . . , p g (t)) and v(s) = (v 1 (s), . . . , v g (s)). Then p = v • s by Girard's formula 6.1. If 1 ≤ n ≤ g, then v n (s) = (-1) n+1 ns n + v n (s),
where v n (s) depends only of s 1 , . . . , s n-1 . This implies that J(v) is lower triangular, with n-th diagonal term equal to (-1) n+1 n. Hence, det J(v) = (-1) [g/2] g! On the other hand,

J(p) =       1 1 . . . 1 . . . . . . . . . . . . kt k-1 1 kt k-1 2 . . . kt k-1 n . . . . . . . . . . . . gt g-1 1 gt g-1 2 . . . gt g-1 n       . Then J(p) = D.V (t)
, where D is the diagonal matrix diag(1, 2, . . . , g), and

V (t) =     1 1 . . . 1 t 1 t 2 . . . t n . . . . . . . . . . . . t g-1 1 t g-1 2 . . . t g-1 n     is the Vandermonde matrix. Hence, det J(p) = g! det V (t) = g! j<k (t k -t j ),
and since J(p) = J(v).J(s), we get (i), which implies (ii). Then (iii) comes from the fact that s is injective on the open subset C g of U g . The bezoutian of h t is the matrix

B(t) = V (t). t V (t) =     p 0 p 1 . . . p g-1 p 1 p 2 . . . p g . . . . . . . . . . . . p g-1 p g . . . p 2g-2     ∈ M g (R),
in such a way that det B(t) = D 0 (t). Proof. This is a particular case of a theorem of Sylvester, which states that the number of real roots of h t is equal to p -q, where (p, q) is the signature of the real quadratic form Q(x) = t x.B(t).x, where x = (x 0 , . . . , x g-1 ) ∈ R g . Here is a short proof: if 1 ≤ j ≤ g, define the linear form

L j (x) = x 0 + x 1 t j + • • • + x g-1 t g-1 j . Then x.V (t) = (L 1 (x), . . . , L g (x)
), and

Q(x) = g j=1 L j (x) 2 . If t j ∈ R, the linear form L j is real. If t j /
∈ R, the non-real linear form L j = A j +iB j appears together with its conjugate, and

L 2 j + L2 j = 2A 2 j -2B 2 j
. This shows that if h t has r real roots and s couples of non-real roots, the signature of Q is (r + s, s).

The bezoutian B(t) is positive definite if and only if its principal minors

M j (p 1 , . . . , p g ) = p 0 p 1 . . . p j-1 p 1 p 2 . . . p j . . . . . . . . . . . . p j-1 p j . . . p 2j-2
(1 ≤ j ≤ g) are > 0, see for instance [START_REF] Bourbaki | Algèbre. Chapitre 9[END_REF]Prop. 3,p. 116]. By substituting to the power sums their expression given by Girard's formula of Proposition 6.1, we obtain g polynomials

m j = M j • v ∈ Z[s 1 , . . . , s g ] (1 ≤ j ≤ g). Of course, m 1 = g, and M g (p 1 , . . . , p g ) = det B(t) = D 0 (t),
hence, m g (s) = d 0 (s). As a consequence of Lemma 6.3, we obtain

Π • g = {s ∈ R g | m j (s) > 0 if 2 ≤ j ≤ g} , hence:
Lemma 6.4. We have

Π g = {s ∈ R g | m j (s) ≥ 0 if 2 ≤ j ≤ g} . Example 6.5. If g = 2, then d 0 (s) = s 2 1 -4s 2 , and Π 2 = s ∈ R 2 | d 0 (s) ≥ 0 . Example 6.6. If g = 3, then d 0 (s) = s 2 1 s 2 2 -4s 3 2 -4s 3 1 s 3 + 18s 1 s 2 s 3 -27s 2 3 , and m 2 (s) = 2(s 2 1 -3s 2 ). But if d 0 (s) ≥ 0, then m 2 ≥ 0. Actually, if p = - s 2 1 -3s 2 3 , q = 2s 3 1 -9s 1 s 2 + 27s 3 27 , then d 0 (s) = -(4p 3 + 27q 2 ), m 2 = -6p.
If d 0 (s) ≥ 0, then 4p 3 ≤ -27q 2 and p ≤ 0. Hence, as it is well known, Π 3 is defined by only one inequality:

Π 3 = s ∈ R 3 | d 0 (s) ≥ 0 .

The symmetric alcove

The symmetric alcove is the compact set

Σ g = s(I g ) ⊂ Π g .
We have s( Āg ) = s(I g ), and the induced map

I g /S g ∼ ----→ Σ g
is a homeomorphism, leading to the commutative diagram

I g π " " s Āg ι > > I g /S g | | Σ g If p ∈ C[t 1 , . . . , t g ]
is a symmetric polynomial and if λ ∈ C, define p(λ; t) = p(λ + t 1 , . . . , λ + t g ), t = (t 1 , . . . , t g ).

The polynomial p(λ; t) is symmetric with respect to t. Lemma 7.1. If t ∈ R g and λ > 0, the following conditions are equivalent:

(i) s i (λ; t) > 0 and s i (λ; -t) > 0 for 1 ≤ i ≤ g. (ii) |t i | < λ for 1 ≤ i ≤ g.
Proof. It suffices to prove the following result: if t ∈ R g , the following conditions are equivalent:

(i) s i (t) > 0 for 1 ≤ i ≤ g. (ii) t i > 0 for 1 ≤ i ≤ g. If h t ∈ R[u] is defined as in (6.1), namely h t (u) = (u -t 1 ) . . . (u -t g ) = u g -s 1 u g-1 + • • • + (-1) g s g , let f (u) = (-1) g f (-u). Then f (u) = (u + t 1 ) . . . (u + t g ) = u g + s 1 u g-1 + s 2 u g-2 + • • • + s g ,
and if (i) is satisfied, the roots of (-1) g f (-u) are < 0, and this implies (ii). The converse is trivial.

The polynomial s i (λ; t) ∈ C[t 1 , . . . , t g ] is a linear combination of elementary symmetric polynomials of degree ≤ i: Lemma 7.2. If 1 ≤ i ≤ g and if λ > 0, then s i (λ; t) = L + i (λ; s(t)), with

L + i (λ; s) = i k=0 g -i + k k s i-k λ k ,
which is a linear form with respect to s 1 , . . . , s i . Similarly,

s i (λ; -t) = L - i (λ; s(t))
, where L - i (λ; s 1 , s 2 , . . . , s i ) = L + i (λ; -s 1 , s 2 , . . . , (-1) i s i ). Proof. The Taylor expansion of h t (u -λ) with respect to u shows that

s i (λ, t) = (-1) i h (g-i) t (-λ) (g -i)! .
The first formula is obtained by transferring these equalities in the Taylor expansion of h (g-i) t

(λ) at 0 :

h (g-i) t (-λ) = i k=0 (-1) k h (g-i+k) t (0) λ k k! .
The second formula is deduced from the first by noticing that s i (-t) = (-1) i s i (t).

Considering that s 0 = 1, we have

s 1 (λ; t) = s 1 (t) + gλ, s 2 (λ; t) = s 2 (t) + (g -1)λs 1 (t) + g(g -1) 2 λ 2 , s g (λ; t) = g k=0 s g-k (t)λ k = (-1) g h t (-λ) = g i=1 (t i + λ).
Hence

L ± 1 (2; s) = ±s 1 + 2g, L + 2 (2; s) = s 2 ± 2(g -1)s 1 + 2g(g -1)
, and

(7.1) L ± g (2; s) = g k=0 2 k s g-k , L - g (2; s) = g k=0 (-1) g-k 2 k s g-k .
From Lemmas 7.1 and 7.2 we obtain Lemma 7.3. Assume t ∈ R g . Then t ∈ I g if and only if s(t) ∈ Θ g , where

Θ g = s ∈ R g | L ± i (2; s) ≥ 0 for 1 ≤ i ≤ g . Notice that the polyhedron Θ g is unbounded. Theorem 7.4. If Σ g = s(I g ), then Σ g = Θ g ∩ Π g ,
where Π g and Θ g are defined in Lemmas 6.4 and 7.3. Moreover, Σ g = s( Āg ) is a semi-algebraic set homeomorphic to the g-dimensional simplex, and

Σ g ⊂ g i=1 -2 i g i , 2 i g i .
Proof. By definition, Π g = s(R g ), hence, the first statement follows from Lemma 7.3. The properties of Σ g follow from Proposition 6.2, and the last statement is just a consequence of the definition of s 1 (t), . . . , s g (t).

Example 7.5. If g = 2, then d 0 (s) = s 2 1 -4s 2 , and

Π 2 = s ∈ R 2 | d 0 (s) ≥ 0 ,
as we saw in Example 6.5. The triangle Θ 2 is defined by four inequalities: 

L ± 1 (2, s) = ±s 1 + 4 ≥ 0, L ± 2 (2, s) = s 2 ± 2s 1 + 4 ≥ 0.
d 0 (s) = s 2 1 s 2 2 -4s 3 2 -4s 3 1 s 3 + 18s 1 s 2 s 3 -27s 2 3 , and Π 3 = s ∈ R 3 | d 0 (s) ≥ 0 ,
as we saw in Example 6.6. The polyhedron Θ 3 is defined by six inequalities 

L ± 1 (2, s) = ±s 1 + 6 ≥ 0, L ± 2 (2, s) = s 2 ± 4s 1 + 12 ≥ 0, L ± 3 (2,
s 2 = 12, s 3 = ±8, L ± 2 (s) = 0, L ± 3 (s) = 0. Then Σ 3 = Π 3 ∩ P 3 .
The symmetric alcove Σ 3 is drawn in Figure 6. This set is invariant by the symmetry (s 1 , s 2 , s 3 ) → (-s 1 , s 2 , -s 3 ). The graphical representation leads to suppose that

Σ 3 = Π 3 ∩ ∆ 3 ,
where ∆ 3 is the tetrahedron with vertices p 1 , p 2 , p 3 , p 4 and support hyperplanes L ± 3 (s) = 0, L ± 0 (s) = 0, where L ± 0 (s) = 24 ± 4s 1 -2s 2 ∓ 3s 3 .

Symmetric integration formula

The map ϕ → ϕ • s defines an isomorphism

s * : C (Σ g ) ∼ ----→ C (I g ) sym = C ( Āg ) If F ∈ C (G)
• , we denote by F the unique function in C (I g ) sym such that

F • s(t) = F • k(t), that is, F • s(2 cos θ 1 , . . . , 2 cos θ g ) = F • h(θ 1 , . . . , θ g ).
Then the map F → F is an isomorphism

C (G) • ∼ ----→ C (Σ g ).
inducing by restriction an isomorphism, cf. Proposition A.1 in the appendix:

R(G) ∼ ----→ Z[s 1 , . . . , s g ]. Since D 1 ∈ Z[t 1 , . . . , t g ] sym , there is a polynomial d 1 ∈ Z[s 1 , . . . , s g ] such that (8.1) d 1 (s(t)) = D 1 (t) = g j=1 (4 -t 2 j ),
hence D 1 (t) = s g (2; t)s g (2; -t), where s ± (λ; t) is defined in Lemma 7.2, and d 1 (s) = L + g (2; s)L - g (2; s), where L ± g (2; s) is defined by (7.1). Proposition 8.1 (Symmetric integration formula).

If F ∈ C (G) • , then G F(m) dm = Σg F(s)ν g (s) ds,
with ds = ds 1 . . . ds g , and

ν g (s) = 1 (2π) g d 0 (s)d 1 (s),
where d 0 (s) is given by (6.3) and d 1 (s) by (8.1).

Proof. By Proposition 6.2, we can perform a change of variables from Σ g to A g , apart from null sets, by putting s = s(t). If ϕ ∈ C (Σ g ), we have and

V x = s ∈ R 3 | d 0 (s) ≥ 0, ±s 3 + 2s 2 ± 4x + 8 ≥ 0 .
The density is

f τ (x) = Vx ν 3 (x, s 2 , s 3 )ds 2 ds 3 .
With this formula in hands, we are able to compute the even moments :

1, 1, 3, 15, 104, 909, 9 449, 112 398, 1 489 410, 21 562 086 . . . This sequence is in accordance with the results of [START_REF] Kedlaya | Hyperelliptic curves, L-polynomials, and random matrices[END_REF]Sec. 4] and the sequence A138540 in the OEIS [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF]. Actually, it is faster to compute this sequence by noticing that, according to Weyl's integration formula of Proposition 3.2, the characteristic function of τ is given, for y ∈ R, by

f τ (y) = 1 8π 3 I3 D 0 (t) D 1 (t) cos(y(t 1 + t 2 + t 3 )) dt 1 dt 2 dt 3 .
An implementation of this integral in the Mathematica software gives

f τ (y) = 24 - 4J 1 (2y) 3 y 5 + 11J 1 (2y) 2 J 2 (2y) y 6 - 2(3 + y 2 )J 1 (2y)J 2 (2y) 2 y 7 + 5J 2 (2y) 3 y 6 ,
and it suffices to apply (3.6) to obtain the moments. An approximation of f τ to any order in L 2 ([-6, 6], dx) can be obtained from the sequence of moments, using Legendre polynomials, which form an orthogonal basis of L 2 ([-1, 1], dx). For instance the maximum of f τ is reached for x = 0, and we find f τ (0) = 0.396 467 . . .

The graph of f τ obtained by this approximation process is drawn in Figure 8.

As a final instance, we come back to the case g = 2 and apply the symmetric integration formula to the distribution of the character τ 2 of the exterior power ∧ 2 π of the identity representation π of USp 4 on C 4 , namely The density of τ 2 is given by The implementation of this integral in the Mathematica software gives the sequence of moments (see below), from which one deduces:

τ 2 • h(θ) = 2 + 4 cos θ 1 cos θ 2 , τ 2 (s) = s 2 + 2.
f τ 2 (x) = I± 16 + 8x + x 2 -4z 2 z 2 -4x dz, with 
I -= - x + 4 2 , x + 4 2 if -4 < x < 0, I + = - x + 4 2 , -2 √ x ∪ 2 √ x, x + 4 2 if 0 < x < 4.
Proposition 8.5. Assume |x| < 4. Then f τ 2 (x) is equal to sgn(x) 24π 2 x(x 2 -24x + 16)E 1 - 16 x 2 + 4(3x 2 -8x + 48)K 1 - 16 x 2 .
The maximum of f τ 2 is reached for x 0 = -0.605 . . . , and f τ 2 (x 0 ) = 0.403 . . . Moreover f τ 2 (0) = 8 3π 2 = 0.270 . . . This function is continuous, but the derivative has a logarithmic singularity: 9. The moments M n of f τ 2 are obtained by numerical integration: 1, -1, 2, -4, 10, -25, 70, -196, 588, -1764 . . . Hence, the random variable τ 2 has mean -1 and variance 2. This sequence is, up to sign, the sequence A005817 in the OEIS [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF], such that

f τ 2 (x) ∼ log x 2 π 2 , x → 0. The graph of f τ 2 is shown in Figure
M 2n (τ 2 ) = C n C n+1 , M 2n+1 = -C 2 n+1
, where

C n = 1 n + 1 2n n is the nth Catalan number.
Remark 8.6. The representation ∧ 2 π is reducible, cf. for instance Lemma A.6 in the appendix. Actually, the two fundamental representations of USp 2 are the identity representation π = π 1 with character τ and a representation π 2 of dimension 5 and character χ 2 satisfying

χ 2 • h(θ) = 1 + 4 cos θ 1 cos θ 2 , χ 2 (s) = s 2 + 1.
The representation π 2 is equivalent to the representation corresponding to the morphism of USp 2 onto SO 5 . Since τ 2 = χ 2 + 1, we have in accordance with the sequence A095922 in the OEIS [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF].

∧ 2 π = π 2 ⊕
of characters of T to the group X(T g ). Hence, if Z[X(T )] is the group ring, we have a ring isomorphism Recall from Remark 2.1 that Φ 2g is the set of monic palindromic polynomials of degree 2g in C[u] with all roots on the unit circle. We write a typical element of Φ 2g as p a (u) = 2g n=0 (-1) n a n u 2g-n , where a 2g-n = a n for 0 ≤ n ≤ g. Moreover p a (u) = u 2g p a (u -1 ). The roots of p a come by pairs : if p a is monic, then p a (u) = where s 0 (t) = 1 and s n (t) is the elementary symmetric polynomial of degree n.

We deduce Theorem A.2 from the following lemma. and for 0 ≤ n ≤ 2g, define q n (s) by the relation

u g h s (u + u -1 ) = 2g n=0
(-1) n q n (s)u 2g-n .

If 0 ≤ n ≤ g, then q n (s) = n/2 j=0 g + 2j -n j s n-2j .

Proof. We have u g h(u + u -1 ) = u g g k=0 (-1) k s k (u + u -1 ) g-k .

Since u g (u + u -1 ) g-k = u g g-k j=0

g -k j (u -1 ) g-k-j u j = g-k j=0

g -k j u k+2j , one finds u g h(u + u -1 ) = j+k≤g,j≥0,k≥0

(-1) k g -k j s k u k+2j .

Let k + 2j = n. Then n runs over the full interval [0, 2g] and j ≥ 0 and k ≥ 0 and j + k ≤ g ⇐⇒ j ≥ 0 and 2j ≤ n and j ≥ n -g.

Hence, if 1 ≤ n ≤ 2g, we have q n (s) = n/2 j=max(0,n-g) g + 2j -n j s n-2j , and the result follows.

If p is a Weil polynomial and if p(u) = u g h(u + u -1 ), then h has real roots and is called the real Weil polynomial associated to p.

Proof of Theorem A.2. In Lemma A.3, assume that h s (u) = g j=1 (u -t j ).

Then s n = s n (t), where t = (t 1 , . . . , t g ), and u g h s (u + u -1 ) = g j=1 (u 2 -ut j + 1).

Hence, a n (t) = q n (1, s 1 (t), . . . , s n (t)). 

The dual pairing

∧ n V × ∧ 2g-n V ----→ ∧ 2g V = C implies that τ 2g-n = τ n for 0 ≤ n ≤ 2g, and this proves that cp m ∈ Φ 2g . If m is conjugate to h(θ 1 , . . . , θ g ), then cp m (u) = g j=1 (u 2 -ut j + 1), with t j = 2 cos θ j , and hence τ n • k ∈ Z[t 1 , . . . t g ] sym as expected.

In the notation of Theorem A. 

  is a continuous central function on G, whose values lie in a compact interval I ⊂ R. The distribution or law of τ is the measure µ τ = τ * (dm) on I which is the image by τ of the mass one Haar measure dm on G. That is, for any continuous real function ϕ ∈ C (I), we impose the integration formula I ϕ(x) µ τ (x) = G ϕ(Trace π(m)) dm. Alternately, if x ∈ R, then volume {m ∈ G | Trace π(m) ≤ x} = x -∞ µ τ .
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 1 Figure 1. Horizontal versus vertical distribution.
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 253156 Figure 2. Density of the distribution of τ , case g = 2.
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 4 Meijer G-functions. Another expression of f τ is given by Meijer G-functions [9, §9.3, p. 1032]. They are defined as follows : take z in C with 0 < |z| < 1 and m, n, p, q in N. Then G m,n p,q z a 1 , . . . , a p b 1 , . . . , b q
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 355 Figure 3. Repartition function of τ

Figure 4 .

 4 Figure 4. Density of the distribution of ρ.

Lemma 6 . 3 .

 63 Let h t ∈ R[u]. The following conditions are equivalent: (i) The roots of h t are real and simple, i.e. s(t) ∈ Π • g . (ii) The bezoutian B(t) is positive definite.

  The symmetric alcove Σ 2 the curvilinear triangle, drawn in Figure 5, contained in the square [-4, 4] × [-4, 4].

Figure 5 . 2 . 7 . 6 .

 5276 Figure 5. The symmetric alcove Σ 2 .

  s) = ±s 3 + 2s 2 ± 4s 1 + 8 ≥ 0. The intersection of Θ 3 and of the box [-4, 4] × [-12, 12] × [-8, 8] make up a polytope P 3 with 6 verticesp 1 = (-6, 12, -8) = s(-2, -2, -2), p 2 = (-2, -4, 8) = s(2, -2, -2), p 3 = (2, -4, -8) = s(2,2, -2), p 4 = (6, 12, 8) = s(2, 2, 2), p 5 = (6, 12, -8), p 6 = (-6, 12, 8), and 7 facets supported the following hyperplanes:

Figure 6 .

 6 Figure 6. The symmetric alcove Σ 3 .

  Σgϕ(s)ν g (s) ds = g! Ag ϕ(s(t))λ g (t).

Figure 7 .

 7 Figure 7. The density ν 2 .

Figure 8 .

 8 Figure 8. Density of the distribution of τ , case g = 3

Figure 9 .

 9 Figure 9. Density of the distribution of τ 2 , case g = 2
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  * : Z[X(T )] ∼ ----→ Z[{e iθj , e -iθj }].Let Z[X(T )] W be the subring of elements invariants under W . Recall that the restriction mapR(G) ∼ ----→ Z[X(T )] W is a ring isomorphism [4, Ch. 9, §7, n • 3, Cor., p. 353].From the structure of W , we deduce that h * induces a ring isomorphism(A.1) R(G) ∼ ----→ Z[2 cos θ 1 , . . . 2 cos θ g ] sym .and, by putting (2 cos θ 1 , . . . 2 cos θ g ) = (t 1 , . . . , t g ), a ring isomorphism(A.2) R(G) ∼ ----→ Z[t 1 , . . . t g ] sym .On the other hand, the application ϕ → ϕ • s, where s is the Viète map, induces the classical isomorphisms * : Z[s 1 , . . . , s g ] ∼ ----→ Z[t 1 , . . . , t g ] sym .If F ∈ R(G), we denote by F the unique polynomial in Z[s 1 , . . . , s g ] such thatF • s(2 cos θ 1 , . . . , 2 cos θ g ) = F • h(θ 1 , . . . , θ g ).We obtain: Proposition A.1. If G = USp 2g , the map F → F is a ring isomorphism R(G) ∼ ----→ Z[s 1 , . . . , s g ].

(u 2 -(u 2 -

 22 e iθj )(u -e -iθj ) = g j=1 ut j + 1), with t j = 2 cos θ j , and the coefficients a n are symmetric polynomials in the variables {e iθj , e -iθj }, invariant under conjugation.Theorem A.2. If t = (t 1 , . . . , t g ) ∈ C g , and if 0 ≤ n ≤ 2g, define a n (t) by the relationg j=1 ut j + 1) = 2g n=0 (-1) n a n (t)u 2g-n . If 0 ≤ n ≤ g, then a n (t) = n/2 j=0 g + 2j -n j s n-2j (t),

Lemma A. 3 .(- 1 )

 31 If s = (s 0 , . . . , s g ) ∈ C g+1 , let h s (u) = g n=0 n s n u g-n ,

(i) If 1 ≤

 1 2n + 1 ≤ g, we have∧ 2n+1 π = 0≤j≤n π(ω 2j+1 ). (ii) If 2 ≤ 2n ≤ g, we have ∧ 2n π = 1 ⊕ 1≤j≤n π(ω 2j ).Proof. See [11, Lemma, p. 62]; the corresponding result for a simple Lie algebra of type C g is proved in [4, Ch. 8, §13, n • 3, (IV), p. 206-209]. The characteristic polynomial of m ∈ USp 2g is cp m (u) = det(u. I -m) = 2g n=0 (-1) n τ n (m)u 2g-n .

  Legendre function. Another expression of f τ is given by the associated Legendre function of the first kind P a b (z), defined in the half-plane Re z > 1. If a is not an integer ≥ 1, and if b > 3/2, this function is defined by [9, Eq. 8.702, p. 959] :

	5.2.	
	2	; 5; m ,
	which is the second result.	

  and Π • g is a dense open set of Π g . The roots of the polynomial h t ∈ R[u] given by (6.1) are real and simple if and only if s(t) ∈ Π • g . Proposition 6.2. With the preceding notation:

  = 2: τ 2 (m) = s 2 (t) + 2 (cf. Remark 8.6), -if g = 3: τ 2 (m) = s 2 (t) + 3, τ 3 (m) = s 3 (t) + 2s 1 (t).

	n/2 j=0	g + 2j -n j	s n-2j (t).
	For instance, according to (A.3):		
	-if g		

2, we have (A.5) τ n • k(t) = a n (t), and we deduce from this theorem: Theorem A.7. Let m ∈ USp 2g be conjugate to k(t 1 , . . . , t g ). If 0 ≤ n ≤ g, then τ n (m) =

the second equality by using (3.5). One concludes with the help of Proposition 3.2.

In other words, if φ g is the characteristic function of Σ g , the function ν g φ g is the joint probability distribution density function of the distribution for the random variables s 1 , . . . , s g .

If τ is the trace map on USp 2g , then

One obtains an integral expression of the density by the method of integration along the fibers already used in Remark 3.5, which reduces here to an application of Fubini's theorem. The linear form s → s 1 is a submersion from the open dense subset U = s(A g ) of Σ g onto J = (-2g, 2g), and if x ∈ J, then

is just an intersection with a hyperplane. If 

), with

It can be verified that this formula is in accordance with Theorem 5.4.

Example 8.4. If g = 3, the symmetric alcove Σ 3 is described in Example 7.6. Here,

• generated, as a Z-module, by the characters of continuous representations of G on finite dimensional complex vector spaces. Since every representation of G is semi-simple, the Zmodule R(G) is free and admits as a basis the set G of characters of irreducible representations of G :

The virtual characters are the elements of R(G), and the characters correspond to the additive submonoid of sums over G with non-negative coefficients. The functions θ → e iθj (1 ≤ i ≤ g) make up a basis of the discrete group T g , and if h(θ) is as in (2.1), the map h * : f → f • h defines an isomorphism from the group X(T )

Define an endomorphism q of C g+1 by q : (s 0 , . . . , s g ) → (q 0 (s), . . . , q g (s)).

By Lemma A.3, the square matrix of order g + 1 associated to q is unipotent and lower triangular, with coefficients in N. For instance:

) is constructed as follows. If n ≥ 1, let T n (u) be the n-th Chebyshev polynomial [9, p. 993], and c n (u) = 2T n (u/2), in such a way that

Moreover put c 0 (u) = 1. If p a ∈ Φ 2g as above and if

Remark A.5. It is worthwile to notice that the map ϕ → ϕ • q defines an isomorphism of the two ring of invariants:

where we identify Z[a 1 , . . . , a g ] and Z[a 1 , . . . , a 2g-1 ]/((a 2g-n -a n )). If we define a polynomial mapping a : C g -→ C g+1 by a : t = (t 1 , . . . , t g ) → (a 0 (t), . . . , a g (t)).

and if s(t) = (s 0 (t), s 1 (t), . . . , s g (t)) is the (extended) Viète map, then a = q • s.

These maps are gathered in the following diagram:

We apply the preceding to the character of the n-th exterior power ∧ n π of the identity representation π of G in C 2g . For 0 ≤ n ≤ 2g, let (A.4) τ n (m) = Trace(∧ n m).

Generally speaking, the representation ∧ n π is reducible, and we describe now its decomposition. For each dominant weight ω of USp 2g , we denote by π(ω) the irreducible representation with highest weight ω, cf. [START_REF] Bourbaki | Lie groups and Lie algebras[END_REF]. The following lemma is used in Lemma 4.4.

Lemma A.6. Let ω 1 , . . . , ω g be the fundamental weights of USp 2g . Then