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Abstract

One main feature of metametarials is the occurrence of a negative dynamic mass density
that is produced when an inner local resonance is present. The inner resonance can be
obtained in composite materials containing composite inclusions. For suitable ratios of the
physical properties of the constituting materials, the composite inclusions act as spring-
mass systems. The scaling of physical properties leading to such an inner resonance and
the associated effective dynamic properties of materials containing composite inclusions are
recalled briefly. The resonance frequencies and dynamic mass densities are obtained in
a closed form for materials containing cylindrical composite fibers or spherical composite

inclusions, after solving the related boundary value elasticity problems.
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I. INTRODUCTION

A significant amount of research has been devoted recently to metamaterials, firstly in
the field of electromagnetism and more recently in the field of acoustics. This field of
research can be traced back to 1968 Veselago’s paper®® on electromagnetism, as explained
in Shamonina and Solymar?32. For acoustic materials, an experimental evidence for acoustic
band gaps in two-dimensional composites with fibers was obtained by Vasseur et al.?.
From a fundamental point of view, it appears that interesting properties of acoustic
metamaterials come from resonance, either due to the collective behaviour of inclusions or
to the presence of local resonators??2®. This last case corresponds to the occurence of inner
resonance . Numerous papers in this field were published that either study the properties

h 11516188 o display experimentally the

of metamaterials from a theoretical approac
properties of such materials!%3%26:3%29 = Ap important aspect of these works is that the
dynamic behaviour exhibits an ”effective dynamic mass density”, that becomes negative at
certain frequencies, as predicted or observed by several authors?3i11:3819:37,

In the following, the study will be restricted to elastic composites made of composite
inclusions. Even so, the amount of literature devoted to this field is impressive. A first
method for studying this problem consists of providing the elastodynamic solution for

waves propagating through a periodic composite by decomposition into Bloch

waves 72751028 However, the solutions depend essentially on the ratios of physical
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properties of the components of the composite (elastic parameters and mass densities).
Therefore, a strong physical insight can be gained using an asymptotic series expansion of
the dynamic solution for different assumptions on the ratios between physical parameters:
elastic coefficients and mass densities. First results showing by such a method the
occurrence of bandgaps in elastic composites were obtained in early works??, but with the
development of the ideas on metamaterials, new results have been obtained more recently
with the use of asymptotic expansions in dynamic elasticity3%%i%434, More specifically,
Auriault and Boutin* have extended recently the method of asymptotic expansion to
materials containing composite inclusions. They have shown that, under suitable
assumptions, these composite inclusions act as inner resonators, leading to relatively lower
values of frequencies characterizing the inner resonance. These results are the basis of the
present, paper. It is worthwhile noting that, compared with results coming from other
publications in this field, an important aspect does appear in the papers written by

i3i%: it is indeed shown in these papers

Auriault and al. that are at the basis of our work?
that the use of different scalings of physical properties lead to different macroscopic
behaviours. As a consequence, it is of prime importance to characterize the scaling
properties leading to a specific dynamic behaviour.

In section 2, the results of the asymptotic expansion method in the case of materials

containing composite inclusions are briefly recalled to point explicitly the set of physical
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parameters leading to inner resonance, the composite inclusions acting as ”spring-mass
resonators”. In section 3, the inner motion of composite inclusions made of cylindrical
fibers is studied; the eigenfrequencies and dynamic mass densities of these resonators are
obtained in a closed form. The case of spherical composite inclusions is studied in section 4
and the full solution of the local elasticity problem is developed in this case, providing

again the frequencies that are characteristic of the occurrence of negative mass densities.

II. DYNAMIC BEHAVIOUR OF ELASTIC COMPOSITES CONTAINING

RESONANT COMPOSITE INCLUSIONS

Let us consider a composite material made of a matrix containing composite
inclusions. These composite inclusions contain an inner inclusion (3) located inside a
coating (2) and surrounded by the matrix (1) as shown in Fig.1

This composite material is defined by the geometry of the periodic cells containing the
composite inclusions and by the physical properties of the constituent materials. All
constituents are assumed elastic and isotropic. They are characterized by their mass

s) and their Lamé elastic parameters A®), ;(5).

densities p{*), their volume concentrations ¢
s corresponds to the matrix (1), the coating (2) or the inner inclusion (3).
In a recent paper, Auriault and Boutin* have shown that, for chosen scaling

parameters, a material containing composite inclusions can display a negative mass density

due to the resonance of the composite inclusions acting as ”spring-mass” resonators. In a



Bonnet and Monchiet, JASA, p. 6

Matrix (1) tiff inner inclusion (3)

/

Coating (2)

Figure 1: A composite inclusion within the matrix.
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first step, we define these scaling parameters. Next, we present the order of magnitude of
the scaling parameters leading to inner resonance of ”spring-mass” type and the dynamic

mass density deduced from this kind of behaviour.
A. Scaling parameters

A first parameter is the scaling ratio that is defined by:

where [ is the size of the periodic cell and L is the order of magnitude of the
wavelength within the matrix in a chosen frequency range. The case of interest is when the
size of the periodic cell is small compared with L and ¢ << 1.
Other scaling parameters contain the various physical parameters that characterize
the constituents of the composite.
They comprise:
- the ratios between the different mass densities of the constituents %.
- the ratios between the orders of magnitude of the elastic coefficients of the

different constituents. The order of magnitude of the elasticity coefficients of a given

material will be defined by the value of a®) = A(®) 4-2,() (that is a norm of the elasticity

AD pou L6

tensor) . The scaling ratios related to elastic coefficients will be defined by o @ — o
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B. Scaling assumptions leading to a spring-mass behaviour

Using asymptotic expansion along the scaling parameter € , Auriault and Boutin?
studied the effect of different values of the previously defined scaling ratios on the overall
behaviour of the composite. In the following, only one case will be considered, that leads to
a dynamic behaviour characterizd by spring-mass resonance. It corresponds to these orders

of magnitude of the scaling ratios:

(2)
a 2
m = 0(6 )
a2 )
PORE O(e"),p > 1
for the elastic parameters, and:
2 (el
ol ('), >1
(3)
p
— = 01
o5 = o)

for the mass densities
It can be noticed that the scaling ratio for elastic parameters corresponds to a coating

that is very soft compared with the matrix and the inner inclusion.

C. Spring-mass behaviour
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Under the previously defined conditions, the composite has an effective behaviour for
harmonic time excitation at radial frequency w that is characterized by the dynamic

equation

where agj,flf ) are the "effective” elastic coefficients of the composite , £ are the

)

components of the strain tensor, u; are the components of the displacement and pz(-jf D are

the components of a frequency-dependent dynamic density. With a periodic array of

composite inclusions, the effective elastic behaviour is not isotropic, contrarily to the

behaviour of the constituents. Due to the scaling assumptions, the coating is very soft
(eff)

compared with the matrix. As a consequence, the effective elastic coefficients ;i can be

computed as for a matrix that contains voids in place of composite inclusions.

Concerning the components pZ(;f D of the mass density, they must be considered as the
ones of a tensor of second rank. In the following, it will be assumed that the composite
inclusions have three orthogonal symmetry planes. In this case, the dynamic mass density

is diagonal for a coordinate system whose axes are parallel to the symmetry planes, with:

2

(el ¢,y B3 3)_ Y
Pii (w) <p> +c P %2 _ w2

where Einstein’s convention summation must not be applied to the repeated indice ¢ in
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pgf 1 , (p) being the volume average of the density within the periodic cell and w; the

resonance frequency of the composite inclusion given by:

m(

) is the mass of the inner inclusion and the stiffness K is obtained by computing
the reaction F; coming from the inner inclusion when this inner inclusion is subjected to a

uniform displacement w; along axis 7, the displacement over the outer boundary of the

composite inclusion being null, with:

Fi = —Kw;

Due to the scaling and symmetry assumptions, it can be noticed that the inner
inclusion behaves as a rigid solid compared with the coating and is subjected to a uniform
translation. Under dynamic sollicitations, there is a dynamic displacement of the matrix

and w; is the relative displacement w; = ul@)

— ugl)of the inner inclusion with respect to the
matrix.

It is worthwhile mentioning that the behaviour that is so described corresponds to a
low frequency range. At higher frequencies, a more complicated dynamics involving the

resonance of the coating itself must be taken into account and the previously defined

dynamic mass density is no more appropriate.
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The objective of the paper is to compute the values of K; and pgfff) for two kinds of
composite inclusions. These values are obtained by solving different boundary value

elasticity problems in domain (2) corresponding to the coating.

D. A physical approach to the dynamic density for an array of harmonic

oscillators

The physics leading to the previous expression of the dynamic density can be
recovered by studying the behaviour of composite inclusions as harmonic oscillators
contained within holes inside a very stiff matrix, as proposed by Milton and Willis?* and as
shown in Fig. 2. This set is assumed to move with a displacement u along z;.

Let us consider the displacement u® of the mass of such an harmonic oscillator
having a mass m® that is connected by a massless spring of stiffness K to the matrix
moving with the displacement component ") . The mass of the matrix contained within a
given unit cell is equal to m(Y. The dynamic equation of the inner mass for a motion at

radial frequency w is given by:

—K(u(3) — u(l)) — —m® 2B (2)

It leads to:
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HARMONIC OSCILLATOR MATRIX

Figure 2: A periodic array of harmonic oscillators.
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u®) = _

where w, = ,/% is the resonance frequency of the harmonic oscillator.

When a dynamic force F' is applied to a unit cell, one obtains:

F = —w?(mWu® 4 m®y®) (4)

Using the relationship between u® and u() and denoting the total mass within the period

by m?, m! = m™® + m® one obtains:

F = —w2uWmlefh (5)

where

2

(6)

m e = mt + m(3)ﬁ

w? —w
Dividing this mass by the volume of the periodic cell leads to the expression of the

dynamic mass density obtained previously. However, it is worthwhile mentioning that the

result of homogenization contains in addition the scaling ratios leading to this kind of

spring-mass system in 3D configurations and the boundary value problems to solve in order

to obtain the stiffness coeflicients.
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ITI. RESONANCE OF THE SPRING-MASS SYSTEM MADE OF

COMPOSITE FIBERS

Let us consider the case of a three-phase system containing composite fibers inside a
matrix (Fig. 3). As explained in the previous section, the inner inclusion (radius b) located
within the overall fiber (radius a) acts as a rigid body and the resonance frequency does
not involve the properties of the matrix nor the elasticity of the inner inclusion.

The dynamic mass density is obtained from a dynamic problem related to a given
overall displacement of the matrix. This one can be parallel to the direction of the fibers
(i.e. longitudinal) or perpendicular to the direction of the fibers (i.e. transversal). Let us

consider in a first step the case of a longitudinal motion.
A. Longitudinal motion

When the inertial forces due to the acceleration of the matrix are parallel to the
direction of the fibers, the fibers move also parallelly to the same direction. The stiffness of
the composite inclusion can be obtained by studying the inner fiber subjected to a
displacement W3 along the direction of the composite fiber, the matrix being fixed. It can
be shown that the displacement within the coating is antiplane with respect to the plane
x1, Ty perpendicular to the fibers. The relative displacement w inside the coating is oriented

along 3. Its component w3 along this direction has a circular symmetry and is solution of:
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Figure 3: A composite comprising a matrix containing a periodic array of composite fibers

made of a soft coating (radius a) surrounding a stiff inner fiber (radius b).
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82’[1]3 8211)3

— =0 7
0x? 03 @
The solution of this boundary problem is:
In(L)
= Wy—2 8
w3 3 ln(g) ( )

leading to the shear strain 7 along the inner fiber:

1
T= HW3W (9)

Integrating over the surface of the inner cylinder and dividing by the displacement W3

of the inner fiber leads to the stiffness by unit length of fiber:

1
K3 = 2mp——-ro (10)
The eigenfrequency w3y = %, where m(® is the mass of inner fiber by unit
length, is finally:
I 1
) = (]2 11
w (3) p(3) ln(%)bQ ( )

This can be written as:
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m
(g2

Wr3) = Wd(3) (12)

where the non-dimensional frequency wgs) is a function of the ratio a = g between
inner and outer radii of the composite fiber:
-2

Wq(3) = W (13)

This function presents only one minimum when « is between 0 and 1. This minimum
that is attained for a,,;, = ﬁ For this value of a, the nondimensional frequency is equal
t0 Wa3ymin = 2y/e. This shows that, for a given outer radius of the composite fiber, a
minimum is attained for this particular (named thereafter ”optimal”) geometry of the

composite fiber.
B. Transversal motion

Due to the circular geometry of the section, the stiffness corresponding to the
transversal motion does not depend on the direction of this motion in plane zix,.
Therefore, there is only one resonance frequency that is the same for all transversal
motions.

The stiffness is obtained by enforcing a given transversal displacement W of the inner

inclusion, the external boundary of the coating being fixed. The reaction given by the
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coating makes it possible to obtain the eigenfrequency of the system.

The solution of such a problem rests on the complex variable solutions described in
the classical Muskhelishvili’s book? for systems with circular boundaries. The application
of this kind of solution to the case corresponding exactly to the previously described
boundary value problem has been given by Gross'2.

The components in cylindrical coordinates of the stress tensor produced by a given

displacement W, of the inner cylinder are:
A B
o = [(34+x)— + 2457 + 2—32]0059 = B,cost
r r
A B
opg = [(1 — x)— + 6A4r — 2—32]0059 (14)
T T

A B
o = [(1 — x)— + 2457 + 2—32]32'719 = Bysinf
r r
where r is the radial coordinate, 6 is the polar angle from x; axis , x is a function of

the Poisson’s ratio v by x = 3 — 4v and the other constants are given by:

Wixp(a? + 0?)

A=
x2(a? +b%)In(§) — (a? — b?)
A
Ag=— — (15)
2 x(a? + b?)
Aa’b?
By = -7
2 a? + b2

The integration of the traction vector applied to the inner inclusion over the surface of

the inner inclusion produces the linear density of force F' applied to the inner inclusion:

F = rb(B, — B;) (16)
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Then, the stiffness is given by K; = F/W, = wb(B, — B;)/W,. Replacing B, and B,

by their values leads to:

2mx(a? + 1) (1 + x)

K, = 17
' a?—1—x%a?+1)in(a) (17
This stiffness depends only on the elastic coefficients and on the geometry of the
composite inclusion through the ratio a = b/a.
Finally, the resonance frequency wy(1) for a displacement in plane x5, is given by:
i 1/2
Wr(1) = [p(:*)a?} wa(n) (X, n) (18)
with:
2+ D(+y) 7
Wa(1) = 2 2( 2 2 (19)
[(a? = 1= x%(a? + 1)in(a)]a

The non-dimensional frequency wy() is only a function of the ratio a and of the
Poisson’s ratio (through x).

Studying the non dimensional frequency for different geometries, when « is varying
from 0 to 1, allows us again to show that wg(;) has always only one minimum wq(iymin (X)-
This minimum is attained for & = @, (x). It corresponds to an ”optimal geometry” (i.e.
the one giving the minimal eigenfrequency). The variation of a,,;, as a function of the
Poisson’s ratio is given in Fig. 4. It can be seen that a,,;, decreases with Poisson’s ratio

from a,,;,, = 0.5 for v = 0 to a,,;, = 0.3 for v = 0.5.
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Figure 4: Ratio of the radii of the internal and external spheres at the minimum value of the

resonance frequency as a function of the Poisson’s ratio for a material containing composite

fibers.

Then, Fig.5 presents the values of the non-dimensional resonance frequency
W4 = Wq(1)min for the 7optimal” geometry as a function of the Poisson’s ratio. It can be seen
that the non-dimensional frequency increases from wy =4 for v =0 to wy = 11 at v = 0.5.

These results make it possible to find easily the ”optimal” geometry and the
resonance frequency for given properties of the soft coating and of the inner inclusion.

As an example of application, let us now consider the case of a material containing
composite cylindrical fibers made of a polyurethane foam (E = 0.5MPa,v = 0.3) containing
steel wires (p®=7800 kg/m3). Fig. 6 shows the resonance frequency (Hz) as a function of
the outer radius of the composite fiber. The resonance frequency lies between 4 kHz and 4

MHz for an external radius taken between 1mm and 1um.
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Figure 5: ”Optimal” non-dimensional resonance radial frequency as a function of the Pois-

son’s ratio for a material containing composite fibers.

Resonance frequency (Hz)
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Figure 6: Resonance frequency as a function of the external radius (m) of the composite fibers
for a material containing composite inclusions made of a polyurethane coating containing

steel cylindrical wires.
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From the previous results, it comes that the dynamic mass density is given by the
second rank tensor whose non-null components are p\"/") = p{e/) Sl D) £ SelD) 1 thig
case, the dynamic density cannot be represented by a scalar but has a symmetry

corresponding to the geometry of the composite fiber.

IV. RESONANCE OF THE SPRING-MASS SYSTEM MADE OF

COMPOSITE SPHERES

Let us now consider the case of inclusions made of composite spheres characterized by
the internal radius b and the external radius a ,with notations similar to the ones of
previous section for the properties of the coating and of the inner inclusion. As shown
before, the stiffness of the composite inclusion is found by applying a uniform displacement
on the inner inclusion, for a null displacement over the external surface of the coating. The
solutions of elasticity theory for solids subjected to boundary conditions over spherical
surfaces can be found in classical textbooks. Such solutions can be expressed using either
Papkovich-Neuber solution?! or Love’s scalar potentials®’. One difficulty when using these
solutions is to take into account the boundary conditions and an interesting method to
write easily these boundary conditions has been introduced by Rahman and Michelitsch?3!.
Using it, these authors found a few solutions for the full sphere or for spherical cavities
within an infinite medium. This solution is adapted in the following to the case of a

spherical layer subjected to boundary displacements on each spherical boundary.
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A. The Love potentials

The solution to the problem of displacement given on spheres is obtained in spherical

coordinates R, 0, o related to cartesian coordinates xq, x9, x3 of the position vector R

defined by:
xr1 = Recosfsingp
Ty = Rsinfsing
r3 = Recosgp

It was shown in the classical Love’s book?® that a fully general displacement field that

is solution of the isotropic elasticity problem is given by:

oo

u= Z [R2V,¢}n - MnR’an
n=o0 (20)

+ Vo, +V X Ry,]

where ¥, ¢n, Xn are "solid” spherical harmonics, R is the vector position. M, are

functions of n and v given by:

2un+ (1 —2v)(3n + 1)

M= T8+ (1= 20)(n +5)

(21)

B. Boundary conditions

The hard point when using Love’s solution is that the boundary conditions are given

using the components of the surface displacement, but the displacement itself is expressed
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in terms of potentials. A simplifying method has been proposed by Rahman and
Michelitsch3!, based on results coming from Happel and Brenner!'*. These authors have
shown that three scalar functions of the displacement along the surface can be computed
when knowing only the surface displacement. Indeed, they have shown the following

identities at the surface of a sphere of radius a:

ek - U]R:a =ep - u(a,0, )
[R-Vugr— RV -u],_, =— RV,u(ab, ) (22)
[R-V xul,_, =R -V, xu(ab,p)

where V- u and V; x u denote the tangential divergence and curl along the
surface!. The terms on the right contain only surface derivatives of the surface
displacement. If this surface displacement is known, these surface derivatives can be
computed from the surface displacement using only derivatives with respect to the angular

variables 6, ¢ as show the following relationships:

up 1 Ou,
V, - u=2—+_——7%
R R Oy (23)
+ %Cot + %
R Rsiny 00
and
1 0 0
- 9 ng) — — 24
[V, x u] Rosing agp(ugRszmp) aH(Ruw) (24)
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From another hand, the left terms of (22) can be computed using the harmonic
potentials. If one calls f(,) the contribution of the potentials of order n to f, one obtains

the following expressions in terms of harmonic potentials:

1
Ap = up@m) = er - = (n — My) Ry + n50n (25)

B, = R-Vugnmn — RV.up) =Ry, [n(n — 1) + 2M,]

+

(26)

Ch=R-V Xup =n(n+1)x, (27)

As defined before, 1, ¢,, x, are "solid” spherical harmonics of order n. As such, they
are given by Y, (0, ) where Y,,, are "surface” spherical harmonics (more precisely,
these functions are surface eigenfunctions for spherical boundaries coming from the
separation of variables applied to Laplace equation in spherical coordinates). These
”surface” harmonics are given by Yy, = cos(m8) P (cosp) or Yy, = sin(m8) P (cosy),
where P™ are the Legendre functions?®*.

For the problem under consideration, the internal sphere is subjected to a uniform
displacement along axis x3. Then, the displacement field does not depend on 6, leading to

m = 0. Therefore, the only surface spherical harmonics in the expansion are

Yo = PT?(COSSO) (28)
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These surface spherical harmonics are not independent and comply with
Yiun = Yi—n—1. The surface spherical harmonics with a positive value of n constitute a
complete orthogonal basis of functions defined on the surface of the sphere.

Finally, the right terms of equation (22), that are known if the surface displacement is
known on the sphere of radius a, can be expanded along the orthogonal basis of ”surface”

spherical harmonics as:

er-u = Z Ua;n(ga 80)
n=0

RVS ‘u = i Va;n(ga (10) (29)

n=0

o0
R-V.,@u=>» W,.(0,¢)

where U, Vo, Wa, are surface harmonics th?;()are the projections of the given surface

displacement on the basis of surface harmonics of n'* order, with a similar relationship for

R=0b.

Using these surface harmonics, the boundary conditions can be written as:

Ap(a)+ A, 1(a) =Uuy

)

Bn(a) + B_p_1(a) =V (30)

)

Cul@) + Ci(a) =W

with similar relationships at the surface of the sphere of radius b.
Let us now consider the displacement U = Uejs of the inner sphere of radius b . One

has:
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er-U=U, =Ucosp =UP} (31)

This problem corresponds to n = 1 and the boundary conditions coming from all surface
terms lead to Uy, = 0, U1 = Ucosyp, all terms in V' and W being null. In absence of
coupling between Y, and other potentials, this leads to x,, = 0,Vn. Setting these boundary
conditions makes it possible to find the displacement and stress fields inside the coating.
Computing the tractions along the boundary of the coating and integrating these tractions
leads to the resultant F' applied to the coating for a given displacement U of the inner

inclusion. The algebra describing these operations is reported in Appendix.
C. Eigenfrequency of the composite inclusion

Finally, the radial frequency at resonance w, is given for a mass m of the inner

inclusion by:

, F
T Um®
w36
l+a+a’+a*+a*  p
’ a2 - p(3)a2wd

with



Bonnet and Monchiet, JASA, p. 28

o
© o
o O

0.55

o
4]

0.45

o at minimum

©
~

0.35f i

| |
0 0.1 0.2 0.3 0.4 0.5
Poisson’s ratio

Figure 7: Ratio of the radii of the spherical composite inclusion for the minimum of resonance

frequency as a function of Poisson’s ratio.

H = (1—a)[-2(3v—2)(6v —5)(1+a)
+ (—360% + 54v — %)(a + o) (33)
+3(=120* + 18v — 5)a?]

This expression displays again a non-dimensional frequency w, depending only on the
geometry and on the Poisson’s ratio. As for cylindrical fibers, studying for v fixed the
variation of w3 as a function of o shows that w? has only one minimum and that an
“optimal” resonance frequency does appear for this minimum when a = a,,;,

Fig. 7 shows the variation of a,,;, as a function of the Poisson’s ratio. Once again, the
curve displays a decrease of a,,;, when the Poisson’s ratio increases. Finally Fig.8 displays

the "optimal” value of non-dimensional frequency as a function of the Poisson’s ratio v,
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Figure 8: Minimum of the non-dimensional radial frequency at resonance of a spherical

composite inclusion as a function of Poisson’s ratio.

showing again that w, increases with v. As an example of application, let us now consider
the case of a material containing composite spherical inclusions of the same materials as for
the material containing composite fibers in the previous section. Fig.9 displays the
variation of resonance frequency for "optimal ” geometries as a function of the external
radius of composite inclusions, showing that the resonance frequency lies between 5 kHz
and 5 MHz for an external diameter of composite inclusion varying between 1mm and
lpm.

Finally, Fig.10 displays the ratio between dynamic mass density and static mass
density for the previously defined composite material containing equal parts (in volume) of

matrix and (composite) inclusions. Within the composite inclusions, the ratio of inner
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Figure 9: Resonance frequency (Hz) of a material with given physical properties containing

spherical inclusions as a function of the outer diameter.

inclusion and coating are those coming from the ”optimal” ratio such as defined before.
The choice of the window hides the fact that the dynamic mass density tends towards the
static mass density at low frequencies. It can be seen that the window corresponding to a
negative value of the mass density extends between 4.7 and 5.3 kHz. The minimal
frequency value of the window corresponds practically to the resonance frequency. The
maximal value of the window corresponds to the frequency such as the negative part of the
dynamic mass density equilibrates the static mass density. Obviously, if the minimal
frequency value depends only on the resonance frequency, the maximal value of the window
(and its width) depends also on the ratio between the dynamic and static parts of the mass

density: it increases with the proportion of composite inclusions.

V. CONCLUSION
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Figure 10: Relative dynamic mass density p(¢/7)/p( as a function of frequency (kHz).

Right: zoom to show the range where p.s; is negative, denoted by thick vertical bars.

In this paper, the basic results obtained from the homogenization theory using
asymptotic expansions have been summarized for composite elastic metamaterials with
composite inclusions displaying inner resonance. These results show that the dynamic
behaviour of the composite displays a frequency-dependent and tensorial mass density.
This mass density can be computed knowing the resonance frequencies of the inclusions for
the condition of null displacement at the surface of the composite inclusion. This greatly
simplifies the computation of the dynamic mass density. In addition, it shows that all
resonators are independent. This corresponds to the idea of inner resonance.

The resonance frequencies of these resonators have been computed successfully in the
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case of cylindrical or spherical composite inclusions. They have been obtained in the form of
simple analytical expressions and the results show that these resonance frequencies are
minimal for a specific,”optimal”, geometry of the composite inclusion. These results lead to
closed form expressions of the resonance frequencies and of the dynamic mass density
corresponding to cylindrical and spherical composite inclusions acting as ”spring-mass”

resonators.

APPENDIX: DETAIL OF THE COMPUTATION OF THE STIFFNESS
OF SPHERICAL COMPOSITE INCLUSIONS

From equations (25,26,30) and the first two equations of (31), the displacement
conditions on the boundaries of the coating lead to the following system of equations for

the unknown values of potentials ¢, Y, ¢_2,1_5 on the boundaries:

Lnats(a) + ~61(a) — Nyavp_a(a) — ~6-(a) = 0
2M1a@/)1(a) + an’QZ)_Q(CL) + 6M =0

) a ) (34)
Loy (b) + E(bl(b) — Nibtp_5(b) — g¢—2(b) = Ucosyp

2M1bap1 (b) + 0Q1%p2(b) + 6¢_Z(b)

where L1 =1- M17N1 =24 M,Z,Ql =6+ 2M,2.

=0

However, the values of potentials at a and b are not independent: due to the radial
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dependence of spherical harmonics, only four values of boundary potentials are

independent. The system is rewritten using the values of all potentials at R = a. Finally,

the solution of the linear system gives ¢4 (a), ¢1(a), w_2(a), ¢ 2(a), leading to the

potentials given by:

where :

with

1 = AR cos ¢

¢1 = B1Rcosp
(35)
cos
R2
coS
R2

Yog=A

¢p2=B_,

1 3aS;(a+1)
a? DL,
aTIaz(S’l —3)(1—a?) =3(S1 +T1)(1 — a?)
D(1— )
A, = —3aaTi(1 +a+a? +a® +a?) U
DN,
ATy S10%(1 + o+ o?)

B 5 =
2 2D v

A1: U

Blz U

(36)

D =(1—-a)[Ty(3 - S1)(1+a")
+ (=38, — 2135y 4 3T7) (e + ) (37)

+ 3(T1 - T15’1 - 251)&2]

and where « is the ratio of radii b/a. S;,T; are functions of Poisson’s ratio through
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My, M_5 given by

2M
=1 1\14
' (38)
g _6+2M,2
YT oM,

The general expression for the traction vector f around the sphere of radius R as a

function of the potentials is given3! by:

f
; = Z 7n¢neR + 5nvan
n (39)
2(n —1
+ %Vqﬁn + (n—1)Vx, X eg
where v, £, are:
571 =2n — M,
(40)

Yo =2n — (2 +n)M, +

(20— Ma(n+3))

Accounting for the potentials appearing in this particular case of boundary condition,
only the potentials for n = 1,n = —2 do appear in the solution. From another hand, the
resultant of the tractions over the boundary of the coating is oriented along x3 direction

and only the projection f3 of the traction vector along z3 contributes to the resultant, with

% = (M1 + 7-2¥_2) cos @

(41)
+ R(51 VP + f_oVip_s) - e3 — %V¢—2 - €3
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The resultant is finally given by:
m 2m
F= / f3R? sin pdfdyp
0

b (42)
= 27TR2/ f3sin pdy
0

The integration over the inner spherical boundary leads to:

F . _2UR1’)/_2

SR = waDN, (1 Tat+a?+a®+ a4) (43)

that gives the stiffness of the composite inclusion.
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