
HAL Id: hal-01165844
https://hal.science/hal-01165844

Submitted on 18 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining FFT methods and standard variational
principles to compute bounds and estimates for the

properties of elastic composites
Vincent Monchiet

To cite this version:
Vincent Monchiet. Combining FFT methods and standard variational principles to compute bounds
and estimates for the properties of elastic composites. Computer Methods in Applied Mechanics and
Engineering, 2015, 283, pp.454-473. �10.1016/j.cma.2014.10.005�. �hal-01165844�

https://hal.science/hal-01165844
https://hal.archives-ouvertes.fr


Combining FFT methods and standard

variational principles to compute bounds and

estimates for the properties of elastic

composites

Vincent Monchiet
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Abstract

In this paper, we develop a computational approach based on variational princi-
ples combined with FFT technique to determine the effective elastic properties of
composite materials. The unit cell problem of the composite is recast in a weak
and integral form by making use of classic variational approaches, based on the
strain and the stress potential, and the Hashin-Shtrikman variational principles.
The problem is discretized with Fourier series and the stationary point is computed
numerically by means of an iterative scheme. These algorithms use a representation
of the local elastic tensor on the double grid (twice the size of the discretization)
which is introduced by the integral formulation; it advantageously accounts for the
exact geometry of the microstructure and allows the derivation of rigorous bounds
of the effective elasticity coefficients. In the second part of the paper, we establish
a hierarchy between the different FFT solutions: the strain, the stress based solu-
tions coming from the classic variational formulations and the polarization based
solution derived from the Hashin-Shtrikman principle, which depends on the choice
of the elastic moduli of the reference material. It is proved that the strain and
the stress based solutions deliver optimal bounds since they are always better than
those obtained from the Hashin-Shtrikman variational principle when the same dis-
cretization is used. Alternatively, when the elastic moduli of the reference material
is negative, the polarization based solution provides an estimate of the effective
properties which is comprised between the strain based upper bound and the stress
based lower bound.
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1 Introduction

FFT based iterative schemes are simple and powerful methods for solving the
unit cell problems and the computation of macroscopic elasticity coefficients
of composite materials. The method is based on the resolution of the so-called
Lippmann-Schwinger equation by means of a fixed-point method, following an
idea already suggested in [9,15]. As regards to alternative methods such as
finite element, the approach based on FFT present very interesting compu-
tational advantages. First, the use of FFT algorithm makes the computation
very fast. Next, the memory requirement is strongly reduced compared to Fi-
nite Element Method (FEM) or Finite Volume Method (FVM). Instead to
need the storage of stiffness or interaction matrices, the storage is required
only for the nodal variables and for the components of the Green tensor (6 for
2D problems and 21 for 3D problems) which are explicitly known in Fourier
space.
Since the former numerical algorithm developed by Moulinec et al. [28,29],
particular attention has been focused on the convergence of the FFT iter-
ative schemes. Indeed, the rate of convergence of the strain based scheme
of Moulinec and Suquet [28], and the dual scheme (based on the stress) of
Bhattacharya and Suquet [1], Bonnet [4], depend drastically on the contrast
between the elastic coefficients of the constituents. Particularly, the method
is not adapted to handle the problem of composites with highly rigid inclu-
sions or voids. This has motivated the formulation of more robust solvers.
For instance, accelerated schemes has been proposed by Eyre and Milton [11],
Michel et al. [20,21] which has been recently proved in [31] to constitute some
particular cases of the polarization based iterative scheme of Monchiet and
Bonnet [26]. Note also that the convergence has been also improved by con-
sidering the conjugate gradient method to compute iteratively the solution of
the Lippman-Schwinger equation [43,12] or by using a modified Green opera-
tor in the recurrence relation [42,41].
The FFT methods have been well considered for various applications in the
field of linear elastic homogenization [40,16,10] and has also been adapted to
other class of linear problems, among which the static and dynamic Darcy
problem [25,33] or piezoelectricity [5,6]. FFT based iterative schemes have
been also successfully applied to non linear constitutive relations including
elastoplastic and elastoviscoplastic materials [29,21,30,2,3,35,14,17] and more
recently non local damage models [18,19].
The recent developments of the FFT based method have been devoted to their
reformulation using variational principles. For instance Brisard and Dormieux
[7,8], considered the Hashin-Shtrikman variational principle with constant po-
larization by pixels for the discretization of the unit cell problem. This has
two main consequences on the resulting linear system. First, the real image
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of the microstructure is replaced by an array of squared elements as in the
former approach [28,29], that only approximates the real geometry for various
practical problems such as in the case of fibers inclusions. Next, the method
does not use the Green operator, but a periodized Green operator that is not
explicitly known and must be evaluated numerically. In another recent contri-
bution [36,37], a link has been established between the Lippmann-Schwinger
equation and the Galerkin discretization of the weak form of the unit cell
problem.
Variational approaches are interesting in the sense that they provide rigorous
bounds for the homogenized elastic coefficients. In this paper we provide a
unified variational approach of the basic schemes (based on the strain or the
stress) and the polarization schemes. The basic iterative schemes are retrieved
using classic variational procedure based on the strain and the stress elastic
potential while the polarization scheme is derived in the Hashin-Shtrikman
variational approach. The unit cell problem is discretized with Fourier series
and the stationarity point are solve by a suitable numerical integration schemes
which are formally equivalent to those already proposed in the literature. The
method advantageously preserves the explicit form of the Green function in
Fourier space but introduces a representation of the local elastic tensor on a
double grid, that is twice the dimension of the cell discretization subspace.
In the last part of the paper, we provide a comparison of the different FFT
solutions: the strain and stress solutions coming from the classic variational
procedures and the solution for the polarization. The accuracy of the solu-
tion obtained with the different formulations are discussed through numerical
examples.

2 The unit cell problem and Fourier series representation

Let us consider a composite material represented by a periodic unit cell V =∏
i[−hi/2, hi/2] where i = 1, 2 for 2d problems and i = 1, 2, 3 for 3D ones. In

the context of elasticity, the unit cell problem reads:

div(σ) = 0 (equilibrium),

σ = C : ε (elastic law),

ε =
1

2
(∇u+∇Tu) (compatibility)

(1)

with the following periodicity conditions on the boundary of the unit cell:

u−E.x periodic, σ.n antiperiodic (2)
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In equations (1) and (2), u, ε and σ denote the displacement, the strain and
the stress fields respectively, C is the fourth order elasticity tensor and we also
denote by S = (C)−1 the compliance.
The problem is enforced with the macroscopic strain E,

< ε >V= E (3)

or the macroscopic stress Σ,

< σ >V= Σ (4)

where < • >V represents the volume average over the unit cell of volume V .
Since the problem is periodic, it is convenient to work with Fourier series and
the associated FFT technique. We consider a representation in Fourier series
for the displacement u, the strain ε, the stress σ and other fields considered
in the paper such as the polarization τ and the eigenstrain η. The expansion
in Fourier series of any real quantity f is denoted by:

f(x) =
n=N−1∑
n=−N

f̂(ξ
n
) exp(iξ

n
.x), f̂(ξ) =< f(x) exp(−iξ.x) >V , (5)

where ξ
n
denote the discrete wave vectors given by

ξ
n
= 2πnζ, n = −N..N − 1, ζi =

1

hi

(6)

and h1, h2, h3 are the half of the cell. Obviously, the problem is discretized
along each space direction, this would involve the use of two indices n1 and
n2 for 2-d problems and three for 3-d one. However, only one indice n is used
for simplicity. Still for simplicity, we shall use the notation f̂n, the Fourier
transform of f associated with the wave vector ξ

n
. Particularly, the Fourier

component corresponding to n = 0 of the quantity f represents its average
over the volume of the cell, f̂0 =< f(x) >V . Then, the quantity ε̂0 = E is
known when the macroscopic strain E is prescribed to the unit cell. In this
case, the macroscopic stress is Σ = σ̂0 that is determined by the resolution of
the unit cell problem. The homogenized elasticity tensor is determined such
that Σ = Chom : E and we also denote by Shom = (Chom)−1 the homogenized
compliance tensor. Alternatively, when the macroscopic stress is applied, the
macroscopic strain have to be determined.
In the next section, classic variational principles are considered to obtain el-
ementary bounds for the macroscopic elastic energy. These variational prin-
ciples are based on the consideration of admissible subsets made up of com-
patible fields for the strain, and equilibrated fields for the stress. These ad-
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missibility conditions can be formulated by means of two suitable projection
operators, Pn and Qn, defined for every ξ

n
̸= 0 by:

Qn = E1(ξn) + E3(ξn), Pn = E2(ξn) + E4(ξn)

in which the Ei(ξ) for i = 1..4 are the first four tensors of the Walpole basis
[38]. Let us recall the six tensors of this basis:


E1(ξ) =

1
2
k⊥ ⊗ k⊥, E2(ξ) = k ⊗ k

E3(ξ) = k⊥⊗k⊥ − E1, E4(ξ) = k⊥⊗k + k⊗k⊥

E5(ξ) = k ⊗ k⊥, E6(ξ) = k⊥ ⊗ k

(7)

where k and k⊥ are given by:

k =
1

|ξ|2
ξ ⊗ ξ, k⊥ = i− k (8)

and i is the second order identity tensor. As already shown in [26], the strain
field is compatible if its fourier coefficients ε̂n comply with

∀n ̸= 0, Qn : ε̂n = 0 (9)

Alternatively, the equilibrium for the stress field leads to the following condi-
tion for its fourier coefficients σ̂n:

∀n ̸= 0, Pn : σ̂n = 0 (10)

With these notations, the subset of kinematical and statical admissible fields,
denoted EN and SN respectively, are defined by:

EN =

ε =
n=N−1∑
n=−N

ε̂n exp(iξn.x), ε̂0 = E, Qn : ε̂n = 0 for n ̸= 0


SN =

σ =
n=N−1∑
n=−N

σ̂n exp(iξn.x), σ̂0 = Σ, Pn : σ̂n = 0 for n ̸= 0


(11)

In the next section, we derive the solutions ε ∈ EN and σ ∈ SN within the
classic variational principles.
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3 Classic variational principles with FFT numerical integration

Variational principles based on the macroscopic elastic energy are now con-
sidered to determine a lower and an upper bound for the effective elastic
coefficients of the composites. Let us introduce the strain elastic energy U(ε)
and the complementary elastic potential W(σ) by:

U(ε) = 1

2
< ε : C : ε >V , W(σ) =

1

2
< σ : S : σ >V (12)

Since the elastic tensors C and S are positive definite, the following energy min-
imization principles hold for the macroscopic elastic energy (see for instance
[34]):

1

2
E : Chom : E ≤ 1

2
E : Cε

N : E = min
ε ∈ EN

U(ε)

1

2
Σ : Shom : Σ ≤ 1

2
Σ : Sσ

N : Σ = min
σ ∈ SN

W(σ)

(13)

where Cε
N and Sσ

N are two estimates of the homogenized elastic tensor Chom =
(Shom)−1 in which the index N refers to the dimension of the subset of admis-
sible fields for the strain and the stress. Classically, the following inequality is
deduced for the elasticity tensors:

Cσ
N ≤ (Shom)−1 = Chom ≤ Cε

N
(14)

with the notation Cσ
N = (Sσ

N)
−1.

Replacing, in the expressions (12), the strain and stress fields by their Fourier
series and taking advantage of Parseval’s theorem, one obtains:

U(ε) = Ũ(ε̂n) =
1

2

n=N−1∑
n=−N

m=N−1∑
m=−N

ε̂n : Ĉn−m : ε̂m,

W(σ) = W̃(σ̂n) =
1

2

n=N−1∑
n=−N

m=N−1∑
m=−N

σ̂n : Ŝn−m : σ̂m

(15)

Where the quantity ân denotes the conjugate of ân. Moreover, Ĉn and Ŝn are
the Fourier coefficients of the elasticity tensor. For a composite made up of p
distinct elastic constituents, the elasticity tensors can be decomposed in the
form:
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C =
α=p∑
α=1

CαIα(x), S =
α=p∑
α=1

SαIα(x) (16)

where Iα(x) are the characteristic functions of the phases, defined by:

Iα(x) =


1 if x ∈ Vα

0 if x ∈ V − Vα

(17)

where Cα and Sα = (Cα)−1 are the constant elasticity tensors of the individual
constituents. The discrete convolution product between a quantity ŷn and the
Fourier coefficients of a characteristic function is denoted

ŷαn =
m=N−1∑
m=−N

Îαn−mŷm (18)

With these notations, the expressions in (15) also read:

Ũ(σ̂n) =
1

2

n=N−1∑
n=−N

ε̂n :

[α=p∑
α=1

Cα : ε̂αn

]
,

W̃(σ̂n) =
1

2

n=N−1∑
n=−N

σ̂n :

[α=p∑
α=1

Sα : σ̂α
n

] (19)

The stationarity of Ũ(ε̂n) with respect to ε̂n (accounting for the admissibility
conditions (11)) leads to the following linear system for the minimizer ε̂n:



Qn : ε̂n = 0 n ̸= 0,

Pn :

[α=p∑
α=1

Cα : ε̂αn

]
= 0 n ̸= 0,

ε̂0 = E

(20)

Conversely, the stationarity of W̃(σ̂n) with respect to σ̂n (accounting for the
admissibility conditions (11)) gives:
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

Pn : σ̂n = 0 n ̸= 0,

Qn :

[α=p∑
α=1

Sα : σ̂α
n

]
= 0 n ̸= 0,

σ̂0 = Σ

(21)

The direct resolution of both linear systems (20) and (21) is computationally
too expensive due to the presence of the discrete convolution product between
the fourier coefficients of the characteristic functions of the phase and those
of the strain and stress fields. The resolution by means of an iterative scheme
which uses the FFT algorithm is obviously recommended to reduce drastically
the computer memory requirements and the CPU time. For instance, strain
based iterative schemes introduced by [28,29] and the stress formulations [1,4]
can be used to compute the solution of the linear systems (20) and (21). The
solution of (20) is computed with the following recurrence relation:

(ε̂n)
i+1 = (ε̂n)

i − Γ̂0
n :

[α=p∑
α=1

Cα : (ε̂αn)
i

]
(22)

which starts with ε̂n = 0 for n ̸= 0 and ε̂0 = E. In (22), Γ̂0
n are the Fourier

coefficients of the Green tensor associated to the reference material of rigidity
C0. The iterative scheme (22) can be interpreted as a fixed-point method for
computing the solution of the linear system (20). A priori, tensor Pn could
be used instead of the Green operator, however the latter is required to reach
the convergence. Indeed, Γ0 depends on the elastic coefficients of the refer-
ence material which are chosen such that the spectral radius of the operator
involved in the iterative scheme is lower than 1. The analysis of convergence is
not the central issue of this work which, besides, has been well documented in
the literature. The reader could refer to [22,24,26,31] for more details on these
issues. The introduction of the Green operator could be interpreted as pre-
conditioning since there is close relationship between tensor Pn and the Green
tensor. Indeed, for an isotropic elastic reference material, the Green operator
can be decomposed along the Walpole basis:

∀n ̸= 0 : Γ̂0
n =

1

λ0 + 2µ0

E2(ξn) +
1

2µ0

E4(ξn) (23)

and Γ̂0
n = 0 for n = 0. In (23), λ0 and µ0 are the Lamé coefficients of the refer-

ence medium. Tensor Pn and Γ̂0
n are then represented with the same tensors of

the Walpole basis. It follows that the first equation in (20) remains unchanged
if Pn is replaced by Γ0

n. Moreover, tensor Pn is equal to Γ̂0
n when λ0 = 0 and

µ0 = 1/2. Note that the Green tensor is transversely isotropic with respect
to the direction given by the wave vector ξ and can be decomposed along the
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Walpole basis only if the reference material is isotropic. Such decomposition
is obviously not true for other class of material symmetries.
Similarly, the solution of the linear system (21) can be computed by means of
a stress based iterative scheme:

(σ̂n)
i+1 = (σ̂n)

i − ∆̂0
n :

[α=p∑
α=1

Sα : (σ̂α
n)

i

]
(24)

which is initialized with σ̂n = 0 for any n ̸= 0 and σ̂0 = Σ. In (24), ∆̂0
n are

the Fourier coefficients of the dual Green tensor defined by:

∆̂0
n = C0 − C0 : Γ̂0

n : C0 =
2µ0(3λ0 + 2µ0)

λ0 + 2µ0

E1(ξn) + 2µ0E3(ξn) (25)

for n ̸= 0 and ∆̂0
n = 0 for n = 0.

Again the introduction of ∆̂0
n in (24) can be interpreted as preconditioning.

The convergence test used for the strain and the stress based iterative schemes
are based on the residual of the linear system (20) and (20):

strain scheme:

∥∥∥∥∥Pn :

[α=p∑
α=1

Cα : (ε̂αn)
i

]∥∥∥∥∥ < ϵ

stress scheme:

∥∥∥∥∥Qn :

[α=p∑
α=1

Sα : (σ̂α
n)

i

]∥∥∥∥∥ < ϵ

(26)

where the precision ϵ = 10−4 is considered in the applications.
It is worth noted that the iterative schemes (22) and (24) are formally equiva-
lent to that introduced in [28,29] and [1,4]. They use the Green operator that is
explicitly determined by the wave vectors when it is represented in the Fourier
space. Its components only requires the storage of tables of dimension (2N)d

for d-dimensional problems. However the difference comes from the presence
of the discrete convolution product with the Fourier coefficients of the char-
acteristic functions of the phase, Îαn , which is performed on the double grid.
The details are provided in section 5.

4 Computation of cell problem with Hashin-Shtrikman variational
principles

We shall use now the Hashin-Shtrikman variational principle to compute the
solution of the unit cell problem. There are basically four Hashin-Shtrikman
inequalities: two upper bounds and two lower bounds derived from a primal

9



and dual variational principle which are recalled in sections 4.1 and 4.2. The
equivalence between dicretized solution of the primal and the dual variational
principles is established in section 4.2.

4.1 Primal Principle

The primal variational formulation of Hashin-Shtrikman [13,39] involves the
introduction of a reference material C0 and the functional H(τ ) defined by

H(τ ) =
1

2
E : C0 : E+ < τ >V : E − 1

2
< τ : δC−1 : τ + τ : Γ0 ∗ τ >V(27)

which is function of the polarization τ . In (27), δC−1 = (C−C0)−1 while the
symbol ”∗” denotes the convolution product defined by:

Γ0 ∗ τ =
1

V

∫
V
Γ0(x− x′) : τ (x′)dx′ (28)

The stationarity of (27) leads to a lower or an upper bound for the macroscopic
elastic energy, depending on whether δC−1 + Γ0 is either negative or positive
definite. Let us recall some classic results (see for instance [24]):

• if 0 < C0 < C, the operator δC−1 +Γ0 is negative definite, and the Hashin-
Shtrikman variational principle leads to a lower bound for the elastic strain
energy.

• Conversely, if C0 > C, the operator δC−1 + Γ0 is positive definite, and
the Hashin-Shtrikman variational principle leads to an upper bound for the
elastic strain energy.

• The situation corresponding to C0 < 0, has not been yet explored. However,
if none of the aforementioned hypotheses is made for C0, the extremal point
provides on estimate for the elastic energy that is not necessarily an upper
or a lower bound.

The following inequalities hold for the macroscopic elastic energy:

max
τ

0<C0<C

H(τ ) ≤ 1

2
E : Chom : E ≤ min

τ
C0>C

H(τ ) (29)

By adopting a Fourier series representation for the polarization τ , the Hashin-
Shtrikman functional (27) takes the form:
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H(τ ) =
1

2
E : C0 : E + τ̂0 : E − 1

2

n=N−1∑
n=−N

τ̂ n : Γ̂0
n : τ̂n

−1

2

n=N−1∑
n=−N

τ̂n :

[α=p∑
α=1

(δCα)−1 : τ̂α
n

] (30)

The stationary of H(τ ) is reached for:

α=p∑
α=1

(δCα)−1 : τ̂α
n + Γ̂0

n : τ̂n = δnE (31)

for n = −N..N − 1 and where δn = 0 for any n ̸= 0 but takes the value 1 for
n = 0.
This linear system can be put into an alternative form, more convenient for its
numerical resolution. Considering the following properties of the Green tensor:

∀n ̸= 0 : Qn : Γ̂0
n = 0, Pn : C0 : Γ̂0

n = Pn (32)

in relation (31), leads to:

Qn :

[α=p∑
α=1

(δCα)−1 : τ̂α
n

]
= 0

Pn :

[α=p∑
α=1

Cα : (δCα)−1 : τ̂α
n

]
= 0

(33)

Additionally, by putting n = 0 in (31), we obtain:

α=p∑
α=1

(δCα)−1 : τ̂α
0 −E = 0 (34)

To summarize the solution of (31) is equivalently solution of the linear system
constituted of (33) and (34). The solution can be computed with the following
polarization-based iterative scheme:

(τ̂n)
i+1 = (τ̂n)

i − αC0 : Γ̂0
n :

[α=p∑
α=1

Cα : (δCα)−1 : (τ̂α
n )

i

]

−β∆̂0
n :

[α=p∑
α=1

(δCα)−1 : (τ̂α
n )

i

]
, for n ̸= 0

(τ̂0)
i+1 = (τ̂0)

i − γC0 :

[α=p∑
α=1

(δCα)−1 : (τ̂α
0 )

i −E

]
(35)
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and which starts from:

τ̂ i=1
n = 0, for n = −N..N − 1 (36)

In (35), α, β, and γ are three coefficients introduced to obtain the convergence
of the polarization based iterative scheme. Considering an isotropic reference
material, and denoting by k0 and µ0 its compressibility and the shear modulus,
the convergence is ensured if [26,27]:

0 <
αk

k − k0
< 2, 0 <

αµ

µ− µ0

< 2

0 <
βk0

k − k0
< 2, 0 <

βµ0

µ− µ0

< 2

0 <
γk0

k − k0
< 2, 0 <

γµ0

µ− µ0

< 2

(37)

Since the conditions involving γ and β are the same, we put γ = β. Depending
on the values of k0 and µ0 the following conditions for the convergence are
derived from (37):

• if 0 < k0 < kmin and 0 < µ0 < µmin, the convergence is satisfied for:

0 < α < 2

(
1− k0

kmin

)
, 0 < β < 2

(
kmin

k0
− 1

)

0 < α < 2

(
1− µ0

µmin

)
, 0 < β < 2

(
µmin

µ0

− 1

) (38)

• Conversely, if k0 > kmax and µ0 > µmax the values of α and β must be
chosen such that:

2

(
1− k0

kmax

)
< α < 0, 2

(
kmax

k0
− 1

)
< β < 0

2

(
1− µ0

µmax

)
< α < 0, 2

(
µmax

µ0

− 1

)
< β < 0

(39)

• If kmin < k0 < kmax and µmin < µ0 < µmax, there no values for α and β
which satisfy (37). This case must be excluded when using the polarization
based iterative scheme.

• if k0 < 0 and µ0 < 0, the convergence is reached for:

0 < α < 2

(
1− k0

kmin

)
, 2

(
kmin

k0
− 1

)
< β < 0

0 < α < 2

(
1− µ0

µmin

)
, 2

(
µmin

µ0

− 1

)
< β < 0

(40)
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Particularly, when 0 < α < 2 and −2 < β < 0, the convergence is reached
independently of the local elasticity coefficients since k0/kmin and µ0/µmin

are negative quantities.

Conditions (38) and (39) are considered for computing the lower bound and
the upper bound respectively. Conditions (40) can be also used, but the cor-
responding values for the homogenized elastic properties is uncertain and will
be further investigated.
From a practical point of view and for the applications proposed in the sequel,
the following values of α and β are considered depending on whether we aim
at computing the lower bound, the upper bound or an intermediate solution
(the terminology ”intermediate’” refers to the solution of the linear system (31)
computed with negative elastic moduli for the reference material):

• Lower bound:

α = min

(
1− k0

kmin

, 1− µ0

µmin

)
, β = min

(
kmin

k0
− 1,

µmin

k0
− 1

)
• Upper bound:

α = max

(
1− k0

kmax

, 1− µ0

µmax

)
, β = max

(
kmax

k0
− 1,

µmax

k0
− 1

)
• Intermediate: α = 1, β = −1

These choices are quite optimal as regards to the numerical results.
A convergence test based on the residual of the linear system (33) together
with (34) is used:

∥∥∥∥∥Pn :

[α=p∑
α=1

Cα : (δCα)−1 : (τ̂α
n )

i

]∥∥∥∥∥ < ϵ,∥∥∥∥∥Qn :

[α=p∑
α=1

(δCα)−1 : (τ̂α
n )

i

]∥∥∥∥∥ < ϵ,∥∥∥∥∥
α=p∑
α=1

(δCα)−1 : (τ̂α
0 )

i −E

∥∥∥∥∥ < ϵ

(41)

At stationarity, H(τ ) reads:

H(τ ) =
1

2
(τ̂0 + C0 : E) : E (42)

The solution of (31) linearly depends on the macroscopic strain E. Partic-
ularly, for n = 0, we can introduce the fourth order tensor Cτ

N such that
τ̂0 = (Cτ

N − C0) : E. With this notation, the value of H(τ ) at the extremal
point is:
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H(τ ) =
1

2
E : Cτ

N : E (43)

However the solution of the linear system defined by equations (33) and (34)
depends on the choice of the reference material, Cτ

N is then a function of C0.
From (29) we deduce the following inequalities:

Cτ
N(C0)

0<C0<C
≤ Chom ≤ Cτ

N(C0)
C0>C

(44)

Interestingly, it must be noted that the linear systems (20) and (21) for the
strain and stress are two particular cases of (33) together with (34) when
taking the limits C0 → 0 and C0 → ±∞. Indeed, when C0 → 0, then
(δCα)−1 = Sα and the linear system (21) for the stress is recovered. Alter-
natively, if we replace τ by C0 : ε and by taking the limit C0 → ±∞ in
relations (33) and (34), the linear system (20) for the strain is recovered. This
suggests that:

lim
C0→±∞

Cτ
N(C0) = Cε

N

lim
C0→0

Cτ
N(C0) = Cσ

N

(45)

4.2 Dual Principle

The effective elasticity coefficients of the composites can be computed by the
dual formulation of the Hashin-Shtrikman variational principle [23,44]. This
dual form uses the eigenstrain η, the dual Green operator ∆0 and the compli-
ance S and deals with the unit cell problem with an applied macroscopic stress.
The following complementary inequalities hold for the macroscopic elastic en-
ergy:

max
η

0<S0<S

L(η) ≤ 1

2
Σ : Shom : Σ ≤ min

η

S0>S

L(η) (46)

where L(η) is defined by:

L(η) = 1
2
Σ : S0 : Σ+ < η >V : Σ− 1

2
< η : δS−1 : η + η : ∆0 ∗ η >V

and δS = S − S0. The linear system associated with the dual variational
formulation is:
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α=p∑
α=1

(δSα)−1 : η̂α
n + ∆̂0

n : η̂n = δnΣ (47)

for n = −N..N − 1.
At the stationarity point, the value of L(η) is:

L(η) = 1

2
(η̂0 + S0 : Σ) : Σ (48)

Let us introduce the fourth order tensor Sη
N such that η̂0 = (Sη

N − S0) : Σ.
The value of L(η) at the extremal point is:

L(η) = 1

2
Σ : Sη

N : Σ (49)

However, the following equivalence hold between the homogenized elastic ten-
sor obtained with the primal and the dual Hashin-Shtrikman variational prin-
ciples:

Sη
N = (Cτ

N)
−1 (50)

Consequently, it not possible to obtain new estimate for the homogenized elas-
tic tensor with the dual principle.
Proof: In equation (47) we replace the eigenstrain η̂n by −S0 : ρ̂n. Addition-
ally, the multiplication of relation (47) by S0 leads to:

−
α=p∑
α=1

S0 : (δSα)−1 : S0 : ρ̂α
n − S0 : ∆̂0

n : S0 : ρ̂n = δnS0 : Σ (51)

In the above equation, we now use the following property:

S0 : ∆̂0
n : S0 : ρ̂n = S0 : [ρ̂n − ρ̂0δn]− Γ̂0

n : ρ̂n (52)

together with

S0 : (δSα)−1 : S0 = −S0 − (δCα)−1 (53)

It follows that (51) becomes:

α=p∑
α=1

(δCα)−1 : ρ̂α
n + Γ̂0

n : ρ̂n = δnS0 : (Σ− ρ̂0) (54)
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That is rigorously equivalent to (31) if we replaceE by S0 : (Σ−ρ0). Moreover,
since τ̂0 = (Cτ

N − C0) : E, we deduce that:

ρ̂0 = (Cτ
N − C0) : S0 : (Σ− ρ̂0) (55)

whose solution is:

ρ̂0 = −C0 :
[
(Cτ

N)
−1 − S0

]
: Σ (56)

The solution of (47) for η̂0, is then:

η̂0 = −S0 : ρ̂0 =
[
(Cτ

N)
−1 − S0

]
: Σ (57)

which, by identification with η̂0 = (Sη
N − S0) : Σ, proves that Sη

N = (Cτ
N)

−1.

5 Numerical integration of FFT iterative schemes on the double
grid

The implementation of the iterative schemes involves the discrete convolution
product between the Fourier coefficients of the characteristic functions with
the components of a second order tensor that is the strain, the stress or the
polarization. Since n and m vary from −N to N − 1, then n −m vary from
−2N to 2N − 2. It follows that in equation (18), Îαn−m must be computed on
a double grid while the coefficients ŷn are computed on the simple grid. This
section provides the details about the numerical computation of this discrete
convolution product.
Let us introduce

ŷ×2
n =


0 if − 2N ≤ n < −N

ŷn if −N ≤ n ≤ N − 1

0 if N − 1 < n ≤ 2N − 1

(58)

which can be formally written by the linear mapping:

Ŷ ×2 = JŶ (59)

where Ŷ and Ŷ ×2 represent the column vector having the components ŷn and
ŷ×2
n respectively. The vector Ŷ is of dimension (2N)d while Ŷ ×2 is of dimension
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(4N)d for d−dimensional problems. Moreover, J is a rectangular matrix of
dimension (4N)d × (2N)d.
The inverse discrete Fourier transform of ŷ×2

n is:

y×2
n =

k=2N−1∑
k=−2N

ŷ×2
k exp(iξ

k
.xn) (60)

Here, ŷ×2
n and y×2

n are defined on the double grid. The inverse discrete Fourier
transform can be formally written as a linear mapping:

Y ×2 = FŶ ×2 (61)

Similarly, we denote by Iαn the inverse Fourier transform of Îαn , also computed
on the double grid

Iαn =
k=2N−1∑
k=−2N

Îαn exp(iξ
k
.xn) (62)

that we denote:

Iα = F Îα (63)

The convolution product (18) is computed by:

Ŷ α = JTF (Iα ⊙ Y ×2) (64)

where JT represents the transpose of J , F is the discrete Fourier transform
and ”⊙” the Hadamard product of two vectors.
Proof: Let us introduce b̂ = F (Iα ⊙ Y ×2) whose components are

b̂n =
1

(4N)d

2N−1∑
k=−2N

Iαk y
×2
k exp(−iξ

n
.xk) (65)

Introducing (60) and (62) in the above expression leads to:

b̂n =
1

(4N)d

k=2N−1∑
k=−2N

r=2N−1∑
r=−2N

m=2N−1∑
m=−2N

Îαr ŷ
×2
m exp

[
i(ξ

r
+ ξ

m
− ξ

n
).xk

]

=
r=2N−1∑
r=−2N

m=2N−1∑
m=−2N

HnrmÎ
α
r â

×2
m

(66)
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in which we have introduced

Hnrm =
1

(4N)d

k=2N−1∑
k=−2N

exp
[
i(ξ

r
+ ξ

m
− ξ

n
).xk

]
(67)

The latter expression is null if r+m−n ̸= 0, but is equal to 1 if r+m−n = 0.
Eliminating r in (66) leads to

b̂n =
m=2N−1∑
m=−2N

Îαn−mŷ
×2
m (68)

Moreover, replacing ŷ×2
m by (59), we obtain:

b̂n =
m=N−1∑
m=−N

Îαn−mŷm (69)

Which proves relation (64) when keeping only the components b̂n for −N ≤
n ≤ N − 1.
The convolution product between the characteristic functions and the compo-
nents of f̂n (which represents the components of the strain, the stress or the
polarization) is made in four step. First, the components of f̂n are arranged
along the double grid following the linear mapping (59). The inverse discrete
Fourier transform of the characteristic functions and f̂n are computed follow-
ing (61) and (63), for which the inverse FFT algorithm is used. In the last
step, the discrete convolution product is performed following relation (64) for
which, again, the FFT is used.
When this convolution has to be made at each step of a recurrence relation,
the strain, the stress or the polarization changes from one iteration to another
but the characteristic functions remains unchanged during all the iterative
process. The components Iαn must be computed before the iteration process
and stored. The procedure is computationally more expensive than in [28] be-
cause the convolution product is made on the double grid while the former
method uses a representation of the elasticity tensor on the simple grid. How-
ever, the representation on the double grid is necessary to compute exactly
the discrete convolution product and then to ensure the bound character of
the solutions. Moreover, the method accounts for the real geometry of the cell
when exact Fourier coefficients of the characteristic function are used while,
in [28], the product between the elastic tensor with the strain is made with
the approximation:

ε̂αn ∼ FFT
[
Iα(xn)FFT−1(εn)

]
(70)
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in which Iα(xn) are the values of Iα(x) computed at the nodes of a simple
regular grid in the real space.
The shape functions account for the real geometry of the unit cell when the
exact expressions of these functions could be derived. For example, for the
case of a composite containing fibers with circular cross section, the Fourier
transform of the characteristic function can be analytically computed as func-
tion of the Bessel function. In this case, there is no approximations on the
geometry, while, in the former method [28], the real image was replaced by a
pixelized image which approximates the inclusion geometry by means of rect-
angular elements. Note also that finite element methods also approximate the
real geometry since they use triangular elements (or other kinds of elements)
in order to mesh the inclusion. Truly curved objects are then approximated
by polygon meshes.
However, the exact Fourier transform of these shape functions can be obtained
analytically only for some particular cases, including elliptic or rectangular in-
clusions. This expressions have been used in Nemat-Nasser and Hori [32] to
obtain estimates of the effective properties of composites materials and have
been also considered by Bonnet [4] in order to improve the solutions computed
from FFT based iterative schemes. The analytic expressions for rectangular
inclusions can be also considered when dealing with digital images obtained
from microtomography. For other inclusion shapes, such as the ”flower” inclu-
sion considered in section 6.2, there is no analytic expressions of the shape
functions and the Fourier transform must be computed by using a mesh of the
phases. In this case, the exact geometry is then not accounted by the method
and the approximations introduced by the discretization are comparable to
that made with finite element.

6 Hierarchization of FFT solutions

Different FFT solutions are derived from variational principles: two solutions
for the strain and the stress coming from the classic principles and an infinite
number of solutions for the polarization which depend on the choice of the ref-
erence material. We aim now at comparing these solutions. In section 6.1, we
establish inequalities between the classic bounds and the Hashin-Shtrikman
one (obtained in the range C0 > 0). Moreover, the polarization scheme is gen-
erally considered with C0 < 0 in the literature [26,31] since in this range, the
iterative process has a good rate of convergence. Consequently a comparison
with classic bounds for C0 < 0 is also investigated in section 6.2.
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6.1 Case C0 > 0

For any polarization tensor τ and for any kinematically admissible strain field
ε, we have:

U(ε)−H(τ ) =
1

2
< (τ + C0 : ε) : Γ0 ∗ (τ + C0 : ε) >V

+
1

2
< (τ − δC : ε) : δC−1 : (τ − δC : ε) >V

(71)

Proof: by expanding each terms on the right side of the equality in (71) we
obtain:

U(ε)−H(τ ) =
1

2
< τ : Γ0 ∗ τ >V + < τ : Γ0 ∗ (C0 : ε) >V

+
1

2
< ε : C0 : Γ0 ∗ (C0 : ε) >V +

1

2
< τ : δC−1 : τ >V

− < τ : ε >V +
1

2
< ε : δC : ε >V

(72)

Moreover, for any admissible strain field ε, we have:

Γ0 ∗ (C0 : ε) = ε−E (73)

It follows that (72) becomes:

U(ε)−H(τ ) =
1

2
< τ : Γ0 ∗ τ >V − < τ >V : E

−1

2
E : C0 : E +

1

2
< τ : δC−1 : τ >V

+
1

2
< ε : C : ε >V

(74)

It can be observed that with the definition (12) for U(ε) and (27) for H(τ ),
the expressions at each sides of (74) are rigorously equivalent, which proves
relation (71).
Now, if C0 > C, then δC is negative definite and the last term in (71) is surely
negative whatever the value of τ and ε. In this case, we have the inequality:

U(ε)−H(τ ) ≤ 1

2
< (τ + C0 : ε) : Γ0 ∗ (τ + C0 : ε) >V (75)
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Now we use (75) to establish an inequality for the solution obtained with the
classic variational principle based on the strain energy U(ε) and the solution
derived from the Hashin-Shtrikman variational principle. Considering a strain
ε ∈ EN and a polarization τ ∈ TN , inequality (75) becomes (and making use
of the Parseval theorem):

Ũ(ε̂n)− H̃(τ̂n) ≤
1

2

n=N−1∑
n=−N

(τ̂n + C0 : ε̂n) : Γ̂
0
n : (τ̂n + C0 : ε̂n) (76)

where Ũ(ε̂n) and H̃(τ̂n) are given by (19) and (30) respectively. To avoid any
confusion, let us denote by ε̂∗n and τ̂ ∗

n the stationary point of Ũ(ε̂n) and H̃(τ̂n)
which are solutions of the linear systems (20) and (31) respectively. The classic
variational principle implies that for any ε ∈ EN we have:

Ũ(ε̂∗n) ≤ Ũ(ε̂n) (77)

Moreover, consider in (76) the kinematically admissible strain:

ε̂n = δnE − Γ̂0
n : τ̂ ∗

n
(78)

The term at the right of the inequality in (76) is null because:

Γ̂0
n : C0 : (δnE − Γ̂0

n : τ̂ ∗
n) = −Γ̂0

n : τ̂ ∗
n

(79)

Accounting for (77) it follows that:

Ũ(ε̂∗n) ≤ H̃(τ̂ ∗
n) (80)

and then:

Cε
N ≤ Cτ

N(C0)
C0>C

(81)

Consequently, it is not possible to derive a better upper bound with the
Hashin-Shtrikman variational principle than with the classic principle when
the same discretization is used for both the strain and the polarization.
By duality, for any eigenstrain η and for any statically admissible stress field
σ, we have:
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W(σ)− L(η) = 1

2
< (η + S0 : σ) : ∆0 ∗ (η + S0 : σ) >V

+
1

2
< (η − δS : σ) : δS−1 : (η − δS : σ) >V

(82)

that is proved with a similar demonstration that used for (71). If 0 < C0 < C,
then S0 > S and δS is negative definite. The following inequality then holds
for any eigenstrain η and for any statically admissible stress field σ :

W(ε)− L(η) ≤ 1

2
< (η + S0 : σ) : ∆0 ∗ (η + S0 : σ) >V (83)

Following the same demonstration, we conclude that:

W̃(σ̂∗
n) ≤ L̃(η̂∗

n) (84)

and then:

Sσ
N ≤ Sη

N(C0)
0<C0<C

(85)

Moreover, since (Sη
N)

−1 = (Cτ
N)

−1 we have also:

Cτ
N(C0)

0<C0<C
≤ Cσ

N (86)

and accounting for (14) and (81), we deduce that:

Cτ
N(C0)

0<C0<C
≤ Cσ

N ≤ Chom ≤ Cε
N ≤ Cτ

N(C0)
C0>C

(87)

As an illustration purpose, we consider the 2d problem depicted in figure 1.
The unit cell contains a circular inclusion and is subjected to the macroscopic
strain E11 = 1, E22 = −1 and E12 = 0 or the macroscopic stress Σ11 = 1,
Σ22 = −1 and Σ12 = 0. We assume that both the matrix and the inclusion
are incompressible and we denote µ1 and µ2 their elastic shear modulus. The
problem is solved with 128 wave vectors along each space directions and we
put µ1 = 1 and µ2 = 10.
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Fig. 1. Unit cell containing a circular inclusion with shear moduli µ1 and µ2.

in figure 2 we represent the macroscopic shear elastic modulus, computed
with the polarization scheme, as function of the shear modulus of the reference
material in the range µ0 > 0. Are also reported on this figure the upper and the
lower bound based on the strain and the stress formulation (the two horizontal
lines). In the range µ0 > 10, the Hashin-Shtrikman principle provides an upper
bound that is less accurate that the strain based one. Alternatively, in the
range 0 < µ0 < 1, the stress based bound is always better than one derived
by the Hashin-Shtrikman approach. These numerical results are conform with
relations (87). Moreover, it is also observed that in the limit µ0 → +∞ (resp.
µ0 → 0), the two lower bounds (resp. the two upper bounds) coincide, as
suggested by the two relations in (45).
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shear modulus of the reference material (µ0)

Fig. 2. Effective shear modulus computed with the Hashin-Shtrikman approach as
function of µ0 in the range µ0 > 0. The two horizontal lines correspond to the strain
and stress based bounds.

For completeness, we represent in figure (3) the number of iterations at con-

23



vergence of the polarization-based iterative scheme as function of the shear
modulus µ0 in the range µ0 > 10 and in the range 0 < µ0 < 1. Are also
reported on these figures (the two horizontal lines) the number of iteration
at convergence of the strain and stress based iterative schemes, obtained with
the optimal shear moduli:

µ0(strain) =
1

2
(µ1 + µ2), µ0(stress) =

[
1

2

(
1

µ1

+
1

µ2

)]−1

(88)

The value µ0(strain) has been proved, in [22], to minimize the spectral radius of
the linear operator involved in the strain based recurrence relation. By making
a similar analysis, it can be shown that µ0(stress) is optimal for the stress based
iterative scheme.
Clearly, the results show that the rate of convergence of the strain and the
stress based iterative scheme is better than the rate of convergence of the po-
larization based iterative scheme. Since the polarization based iterative scheme
does not provides better bounds and does not improve the rate of convergence,
it has no real computational interest when it is used with C0 > 0.
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Number of iterations at convergence

Shear modulus µ0

Fig. 3. Number of iterations at convergence of the polarization based iterative
scheme as function of µ0, in the range 0 < µ0 < 1 (at the left) and µ0 > 1 (at
the right). The two horizontal lines correspond to the number of iterations needed
to obtain the convergence of the strain and the stress based iterative schemes.

6.2 Case C0 < 0

We now consider the polarization based iterative scheme when C0 < 0. As
shown in [26], the use of the polarization with C0 < 0 is interesting since
it drastically improves the rate of convergence of the strain and stress based
ones, and particularly in the domain of high contrasts. However, when C0 < 0
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the Hashin-Shtrikman variational principle does not deliver a bound for the
effective properties and the solutions must be considered only as an estimate
for the effective elasticity coefficients.
In order to evaluate the accuracy of solution for C0 < 0, let us consider again
the problem of the circular unit cell represented in figure 1. In figure 4 the
effective shear modulus µhom computed with the polarization based iterative
scheme is represented as function of the shear modulus of the reference ma-
terial in the range µ0 < 0. On this figure, the lower and the upper bound
computed with the strain and the stress based iterative schemes are also pro-
vided. It can be observed that the solution obtained with the polarization is
comprised between the two classic bounds (strain and stress based). Moreover,
and as expected by relations (45), the polarization based estimate coincides
with the upper bound when µ0 → −∞ and coincides with the lower bound
when µ0 → 0. This observation suggests to call this solution as ”intermediate”
(in fact intermediate between the classic lower and upper bounds).
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Fig. 4. Effective shear modulus computed with the Hashin-Shtrikman approach as
function of µ0 in the range µ0 < 0

Let us introduce the quantity:

Y (µ0) =
µτ
N(µ0)− µσ

N

µε
N − µσ

N

(89)
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where µε
N , µ

σ
N and µτ

N(µ0) are the effective shear modulus computed with
the strain, the stress and the polarization based iterative scheme respectively.
When µτ

N(µ0) is comprised between the upper and the lower bounds (resp. µε
N

and µσ
N), the quantity Y (µ0) is then comprised between 0 and 1. We propose

to evaluate the value of this quantity with numerical examples with different
contrasts and shapes of inclusion.
In figure (5), we now provide the variations of the quantity Y (µ0) with µ0 < 0
for three values of the contrast: µI/µM = 100, µI/µM = 10, µI/µM = 0.1.
In figure (6), we represent the same quantity Y (µ0) for two other shape of
inclusion: the square and the flower inclusion and for the contrast µI/µM = 10.
It can be observed that in each cases, Y (µ0) is comprised between 0 and 1
which means that the polarization scheme provide a solution for the effective
shear modulus that is always comprised between the two classic bounds.
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Fig. 5. Variations of quantity Y (µ0) as function of µ0 for the circular inclusion with
three values of the contrast.
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Fig. 6. Unit cells containing a rectangular or a flower inclusion.
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Fig. 7. Variations of quantity Y (µ0) as function of µ0 for the circular, the rectangular
and the flower inclusion and for the contrast of 10.

These numerical results suggest that:

Cτ
N(C0)

0<C0<C
≤ Cσ

N ≤ Cτ
N(C0)
C0<0

≤ Cε
N ≤ Cτ

N(C0)
C0>C

(90)

However this inequalities cannot been established rigorously since in the range
C < 0, H(τ ) is not convex, nor concave. Moreover, and for the same reasons,
it is also not possible to establish an inequality with Chom. In the range C0 < 0
the accuracy of this solution is then uncertain.
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7 Conclusion

In this paper, we have proposed a unified variational approach of FFT based it-
erative schemes. Classic variational approaches, based on the strain and stress
elastic potentials, are first considered for the derivation of an upper and a lower
bounds for the effective properties of the composite. The stationary point is
determined by means of fixed-point iterative schemes which use the Green op-
erator. The Hashin-Shtrikman principle is also considered and the associated
linear system is solved by means of a more sophisticated algorithm based on
the polarization. Depending on the choice of the elastic modulus of the ref-
erence material (positive or negative), the solution for the polarization leads
to either an upper bound, a lower bound or an estimate for the homogenized
elastic tensor. The main feature of these iterative schemes lies in the represen-
tation of the elasticity tensor on the double grid which advantageously account
for the exact geometry of the cell. Consequently, the methods deliver rigor-
ous bounds for the effective elasticity tensor. A hierarchization of the different
FFT solutions is afterward investigated. It has been shown that the numerical
Hashin-Shtrikman bounds are less accurate that the classic bounds (based on
the strain and stress). Moreover, when positive values for the elastic moduli
of the reference material are considered, it has been observed that the rate of
convergence of the polarization based iterative scheme is also reduced com-
paratively to the rate of convergence of the strain and stress based iterative
schemes. We conclude that the Hashin-Shtrikman variational principle and
the associated polarization based iterative scheme are irrelevant when used
with positive values of the elastic tensor of the reference material. Considering
now the polarization based iterative scheme with negative values of the elastic
tensor of the reference material, for which the rate of convergence polarization
scheme is significantly improved compared to the strain and stress based iter-
ative schemes, the solution is neither a lower or an upper bound but is only
on estimate which is strictly comprised between the two classic bounds.
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