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Abstract

In this paper, we derive the crack opening displacement of a penny-shaped crack
embedded in an infinite isotropic elastic medium and subjected to a remote constant
stress gradient. The solution is derived by taking advantage of the solution of the
equivalent ellipsoidal inclusion problem subjected to a linear polarization. The case
of the penny-shaped crack is thereafter investigated by considering the case of a
spheroidal cavity which has one principal axis infinitesimally small compared to
both others. The derivation of the explicit solution for the inhomogeneity subjected
to a remote stress gradient raises the problem of the inversion of a sixth order tensor.
For the problem having a symmetry axis (this including the case of penny shaped
crack), this problem can be tackled by using a decomposition on the canonical basis
for transversely isotropic sixth order tensors.
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1 Introduction

This paper provides the explicit solution for the penny shaped crack opening
displacement subjected to remote stress gradient. The problem of a crack in
an infinite elastic body has been studied for a long time; there is an abondant
literature on this subject which has been summarized in the classic books of
[16,17,8]. Classically, the problem of crack submitted to an applied remote
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strain (or equivalently stress) can be addressed using the Eshelby [3,4] for-
malism. Eshelby’s solution for inclusions and for equivalent inhomogeneity
problems are fundamental to many problems in material science, mechanics
of composite, etc. In the terminology of Eshelby [3] and Mura [16], an inclu-
sion denotes a subdomain subjected to an eigenstrain while an inhomogeneity
is a subdomain whose elastic properties differ from those of the surrounding
medium. The main Eshelby’s result is well known for the case of a prescribed
constant eigenstrain: it shows that a constant strain field is generated inside
an ellipsoidal inclusion [3] while the exterior point solution (outside the in-
clusion) is heterogeneous [4]. The Eshelby’s equivalent method handles the
problem of a single ellipsoidal inhomogeneity by replacing it with an inclusion
having properly chosen eigenstrains. The results for the penny shaped cracks
are recovered when two semi-axes of the ellipsoidal inhomogeneity are equal
and the last is infinitesimally small compared to the others.
Due to its simplicity, the Eshelby’s solution is the basis of numerous ways to
understand the behaviour of heteregeneous and cracked materials, and finally
was used extensively to construct numerous constitutive equations of these
materials. A few recent references show that this field of research is still ac-
tive for studying cracked materials [11,9]. However, some works have shown
also that taking into account the influence of strain (or stress) gradients is of
fundamental significance when studying cracked materials, leading to the use
of constitutive equations of gradient elasticity type [15,7]. So, extending the
Eshelby’s formalism to inclusions and cracks submitted to remote strain (or
stress) gradients allows to provide a new fundamental background to the un-
derstanding of heterogeneous materials. Such a solution was provided in [12]
for the case of an ellipsoidal inclusion submitted to a remote gradient, based
on older fundamental results. Indeed, following Eshelby’s work, Sendeckyj [19],
Moschovidis [13], Asaro and Barnett [1], generalize Eshelby’s solution to the
case of prescribed polynomial fields. In these studies, the following result has
been proved: the strain in an ellipsoidal subdomain of an infinite linear elastic

medium which undergoes an eigenstrain on the form of a polynomial of de-

gree N , is also a polynomial with the same degree N . The expansion of the
eigenstrain and the interior point solution for the strain field along polynomial
functions introduce tensors of order 2, 3, 4 etc and higher order Eshelby tensors
of order 6, 8 etc. It has been pointed out in [16] that the strain disturbance due
to a polynomial type remote strain field of degree N can be simulated by an
appropriate polynomial eigenstrain field of degree N . If the inclusion problem
can be traced back to these works, the related heterogeneity problem requires
the inversion of high order tensors. For example, for a remote strain which
is linear with coordinates, the problem involves the inversion of a sixth order
tensor. Although this inversion can be performed numerically, it is obviously
of interest to derive closed form solutions which can cover many applications,
as performed in [12].
In the present paper, we use a canonical basis of transversely isotropic sixth
order tensors [12] which has the advantage to reduce drastically the size of the
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system for the case of a spheroidal inhomogeneity (ellipsoidal inhomogeneity
with symmetry axis). It allows to provide an easy inversion of high order ten-
sors and therefore to find an easy way to solve the heterogeneity problem.
Thus, the linear system which is initially of dimension 18 reduces to five in-
dependent systems of dimension 1, 1, 2, 3 and 4. When the case of a void is
considered the problem exhibits some impotent strains and degenerates into
five independent systems of dimension 1, 1, 2, 2 and 3. Finally, the case of a
penny shaped crack is considered by expanding the solution with respect to
the aspect ratio of the spheroidal inhomogeneity.

2 Inhomogeneity problem with applied remote strain or stress gra-

dient

Consider an ellipsoidal inhomogeneity embedded in an infinite elastic matrix
and centered at the origin of the cartesian frame (x1, x2, x3). Let us denote by
a1, a2, a3 the semi-axes of the ellipsoid along the three axes of the cartesian
frame. The subdomain Ω of the inhomogeneity is defined by:

U(x) = ηijxixj − 1 ≤ 0 (1)

with:

ηij =











0 if i 6= j

1/a2i if i = j
(2)

Both the inhomogeneity and the infinite domain are assumed to be isotropic
and we denote by µ, λ and µ0, λ0 their respective Lamé coefficients. The
inhomogeneity is subjected to a remote strain field taken on the form εij(x) =
ε∞ijkxk or equivalently to the remote stress field σ∞

ij (x) = σ∞

ijkxk where ε∞ijk
and σ∞

ijk are constant (x-independent). This problem is called ”second order
heterogeneity problem” since a uniform gradient of strain (or stress) is applied
instead of the constant strain considered by Eshelby in the first order problem.
The strain and stress are related outside the heterogeneity by:

σ∞

ijk = C0
ijpqε

∞

pqk
(3)

At infinity, the equilibrium for the applied remote stress is:

σ∞

ijj = C0
ijpqε

∞

pqj = 0 (4)
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ε∞ijk and σ∞

ijk being symmetric with respect to indices i and j and accounting
for the equilibrium condition (4), we deduce that they both depend on 15
independent coefficients.
The strain disturbance due to the application of ε∞ijk at infinity can be obtained
by considering the following appropriate inclusion problem: an ellipsoidal do-
main, defined by (1), is subjected to a prescribed eigenstrain of the form
ε∗ij(x) = eijkxk (with eijk = ejik). As shown in [19], [13] and also in [1] for the
more general case of an anisotropic matrix, the solution is defined by a linear
strain within the inclusion:

εij(x) = Sijkpqrepqrxk (5)

where Sijkpqr are the components of a sixth-order Eshelby tensor (to make
reference to the common fourth order Eshelby tensor when dealing with con-
stant eigenstrain within the inclusion domain). The expression of the stress
components (still within the inclusion) are:

σij(x) = C0
ijmn(Smnkpqrepqr − emnk)xk (6)

The components of the sixth order Eshelby tensor are:

8π(1− ν0)Sijkpqr = {δijδkrδpq [TIPR + 2ν0IIR]

+2Iijpqδkr [TIJR + (1− ν0)(IIR + IJR)]

+2IpqkrδijTIKR + 2Iijkrδpq [TIJP + 2ν0IIJ ]

+2(Iijprδkq + Iijqrδkp) [TPQR + (1− ν0)IKR]

+2(Iijkpδqr + Iijkqδpr) [TKPQ + (1− ν0)IKR]} a2R

(7)

In which some specific notations introduced in [16] hase been also used: re-
peated lower case indices are summed from 1 to 3; upper case indices take on
the same values as the corresponding lower case ones but are not summed. For
example, in the monomial aiaibI , the repeated indice is i and the upper case
indice takes the same value as i; it gives: aiaibI = a21b1 + a22b2 + a23b3. An other
example is aibI , here i is not summed and this monomial are the components
of a thirst order tensor whose components are: a1b1, a2b2, a3b3. In (7), Iij and
Tijk are invariant by any permutation of their indices and they are defined in
terms of elliptic integrals:

Iij = 2πa1a2a3

∫ +∞

0

ds

(a2i + s)(a2j + s)∆(s)

Tijk = 2πa1a2a3

∫ +∞

0

sds

(a2i + s)(a2j + s)(a2k + s)∆(s)

(8)
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with: ∆(s) = (a21 + s)1/2(a22 + s)1/2(a23 + s)1/2. There are explicit expressions
for these integrals when at least two semi-axes are equal (that corresponding
to an oblate or a prolate spheroidal inclusion). These expressions are provided
in appendix.
Let us now come back to the inhomogeneity problem. Using the equivalent
Eshelby inclusion method, the eigenstrain ε∗ij(x) is chosen as:

ε∗ij(x) = Yijpqεpq(x) (9)

where Yijpq is defined by:

Yijpq = αδijδpq/3 + β(Iijpq − δijδpq/3) (10)

with:

α = 1− k

k0
, β = 1− µ

µ0
(11)

where k = λ+2µ/3 and k0 = λ0+2µ0/3 are the compressibility moduli of the
inhomogeneity and of the infinite medium. The strain field in the ellipsoidal
inhomogeneity is also linear according to the vector position and can then be
written as εij(x) = aijkxk where aijk are the components of a constant third-
order tensor a which possesses the symmetry with respect to its two first
indices. The strain field, solution of the inhomogeneity problem, is the sum of:
(i) the prescribed remote strain field εij(x) = ε∞ijkxk, (ii), the disturbed strain
field due to the applied eigenstrain ε∗ij(x) = eijkxk where eijk is related to aijk
by eijk = Yijpqapqk. It follows that a is solution of the linear system:

[Iijkpqr − SijkmnrYmnpq] apqr = ε∞ijk (12)

in which Iijkpqr are the components of the sixth-order identity tensor given by:

Iijkpqr =
1

2
(δipδjq + δiqδjp)δkr (13)

The resolution of equation (12) involves the inversion of a sixth order tensor,
that constitutes the main difficulty when dealing with arbitrary ellipsoidal in-
homogeneities. This equation can be also written by using the applied gradient
of stress σ∞ as second member in the linear system:

C0
ijuv [Iuvkpqr − SuvkmnrYmnpq] apqr = σ∞

ijk
(14)
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and can be recast into the following tensorial form:

A�3 a = σ
∞ (15)

where A is the sixth order tensor whose components are:

Aijkpqr = C0
ijuv [Iuvkpqr − SuvkmnrYmnpq] (16)

and �3 denotes the inner product on three indices defined by (A �3 a)ijk =
Aijkpqrapqr. Tensor A can be written with the following equivalent form:

A = C
0 �3 (I− S�3 Y) (17)

in which I is the sixth order identity tensor and S is the sixth order Eshelby
tensor whose components are given by (13) and (7) respectively. In (17), C0

and Y are also two sixth order tensors; their components are C0
ijkpqr = C0

ijpqδkr
and Yijkpqr = Yijpqδkr in which Yijpq are given by (10). Obviously, C0

ijpq and
Yijpq are associated with fourth order tensors; however the introduction of
sixth order tensors is more suitable since the computation of the components
of A can be made in term of those of C0, I, S and Y by using an irreducible
representation with a canonical basis (this is detailed in the next section).
Since any third order tensor with previously defined symmetries depends on
18 independent coefficients, the direct inversion of tensor A involves one of a
matrix of dimensions 18×18. Since the problem has symmetries, it is possible
to represent sixth order tensors by using an irreducible basis, which reduces
significantly the size of the system.
When dealing with the case of voids, particular attention must be paid since
tensor A is singular and the linear system (15) has no more a unique solution
for a. This has been already pointed out by [6] (see also [16,18,22]). Indeed,
in the case of a cavity we put k = µ = 0 in (10), it follows that Y = I and
tensor A becomes:

A = C
0 �3 (I− S) (18)

Let A(a) being the linear application defined by A(a) : a → A �3 a, the
kernel of the linear application A(a) is the space of dimension 3:

Ker(A) = {a|aijk = θiηjk + θjηik} (19)

6



where θi are the components of an arbitrary vector and ηij is related to the
ellipsoid shape by (2). The kernel of A is associated with some impotent eigen-
strains [6] which do not produce a stress field around the inhomogeneity. In
the case of voids, the strain εij(x) = aijkxk is obtained by making a continu-
ation by continuity of the displacement field within the cavity; however, this
continuation is not unique, since there exist some displacement fields which
produce constant gradients of strain within the void and which are null on its
boundary. These displacements read:

ui(x) = θi(ηpqxpxq − 1) (20)

where the term ηpqxpxq takes the value 1 for a point located on the boundary
of the ellipsoidal void. The displacement (20) produces the strain εij(x) =
θiηjkxk + θjηikxk and then the constant gradient of strain θiηjk + θjηik.
On another hand, by examining the equilibrium condition for the stress field
solution of the inclusion problem, that corresponding to j = k in relation (6),
we observe that:

Aijjpqr = 0 (21)

It follows that the image of the application A is defined by :

Im(A(a)) = {b | bijj = 0} (22)

and is of dimension 15. We conclude that in the case of voids, the linear system
degenerates into a problem of dimension 15.

3 Case of spheroidal inhomogeneities: decomposition on a canoni-

cal basis for transversely isotropic sixth order tensor

The case of spheroidal inhomogeneities corresponds to a1 = a2. In this case, the
sixth order Eshelby tensor, and then also tensor A, is invariant by any rotation
around the axis Ox3 and by the reflection related to the plane Ox1x2. This
corresponds to the transversely isotropic symmetry, for which decomposition
of a sixth order tensor on a canonical basis is possible [12].
Any transversely isotropic sixth order A can be decomposed as follows:

A =
n=31
∑

n=1

anTn (23)
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where the an are the components of the tensor A in the basis (T1, ...,T31). The
definitions for tensors Tn can be found in [12]. The set of tensors (T1, ...,T31) is
constituted of 5 groups which are independent for the composition �3. These
groups are {T1}, {T2}, {T3, ...,T6}, {T7, ...,T15}, {T16, ...,T31}, and define sub-
spaces whose dimensions are respectively: 1, 1, 4, 9, 25. It follows that an
alternative representation for A is:

A = {a1, a2, A1, A2, A3} (24)

in which A1, A2 et A3 are matrices defined by :

A1 =





a3 a4

a5 a6



 , A2 =











a7 a8 a9

a10 a11 a12

a13 a14 a15











, A3 =

















a16 a17 a18 a19

a20 a21 a22 a23

a24 a25 a26 a27

a28 a29 a30 a31

















(25)

and is called compact representation of A since this form is irreducible for such
a symmetry.
These notations are very useful for performing the usual tensorial operations.
For instance the product between two sixth order tensors A and B are ob-
tained by making the product of the elements of their respective compact
representation:

A�3 B = {a1b1, a2b2, A1B1, A2B2, A3B3} (26)

and the inverse of A is:

A
−1 =

{

1

a1
,
1

a2
, A−1

1 , A−1
2 , A−1

3

}

(27)

with the following inversibility condition a1a2 det(A1) det(A2) det(A3) 6= 0.
Coming back now to the inhomogeneity problem, the inversion of A is effected
with relation (27), where the expressions of the elements of its compact rep-
resentation are obtained by the sum and product of tensors I, S and Y. The
elements of the compact representation of tensor A given by (17), are:

a1 = 2µ0(1− βs1), a2 = 2µ0(1− βs2), A1 = C0
1 (I2 − S2Y2),

A2 = C0
2(I3 − S3Y3), A3 = C0

3(I4 − S3Y3)
(28)

in which I2, I3 and I4 are the identity matrices of dimension 2, 3 and 4 respec-
tively. Matrices S2, S3, S4 and Y2, Y3, Y4 and also C0

1 , C
0
2 , C

0
3 can be found in
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appendix.
The relationship σ

∞ = A�3 a can be put into the form:

σ
∞

I = a1aI, σ∞

II = a2aII,





σ
∞

III
σ

∞

IV



 = A1





aIII
aIV



 ,









σ∞

V
σ∞

VI
σ∞

VII









= A2









aV
aVI
aVII









,











σ
∞

VIII
σ

∞

IX
σ

∞

X
σ

∞

XI











= A3











aVIII
aIX
aX
aXI











(29)

where the following notations have been used:

aI =





(a112 + 2a121 − a222)/4
(a221 + 2a122 − a111)/4



 , aII = a132 − a231,

aIII =





(a113 − a223)/2
a123



 , aIV =





a131 − a232
a132 + a231



 ,

aV = (a113 + a223)/2, aVI = a131 + a232, aVII = a333,

aVIII =





(a111 − a221)/2 + a122
(a222 − a112)/2 + a121



 , aIX =





(a111 + 3a221)/4− a122/2
(a222 + 3a112)/4− a121/2



 ,

aX =





a331
a332



 , aXI =





a133
a233





(30)

and the same notations are considered for the applied stress gradient σ∞. It
provides a direct link between the components of σ∞ and those of tensor a

when they are written in the cartesian frame aligned with the axis of trans-
verse isotropy (axis Ox3).
The computation of the components of the strain for an interior point as a
function of the applied remote stress gradient then involves the inversion of
two scalars and matrices of dimension 2, 3 and 4. With this compact repre-
sentation, the size of the problem is significantly reduced. When the case of
voids is considered, the problem can be again reduced since, as mentioned in
the previous section, the problem initially of dimension 18 degenerates to a
problem of dimension 15.
Let us examine the case of void more precisely. The elements of the compact
representation of A are obtained by putting β = 1 and Y1, Y2 and Y3 are the
identity matrices. This leads to:

9



a1 = 2µ0(1− s1), a2 = 2µ0(1− s2), A1 = C0
1(I2 − S2),

A2 = C0
2(I3 − S3), A3 = C0

3(I4 − S3)
(31)

a1, a2 and all the components of A1, A2, A3 are given in appendix. The com-
ponents of matrices A2 and A3 which are formally given by (25) comply with
the following relations:















a9ε
2 + a8 = 0

a12ε
2 + a11 = 0 group (a)

a15ε
2 + a14 = 0















a10 + a13 = 0
a11 + a14 = 0 group (b)
a12 + a15 = 0



















2a16ε
2 + a19 = 0

2a20ε
2 + a23 = 0 group (c)

2a24ε
2 + a27 = 0

2a24ε
2 + a31 = 0



















3a16 + 2a20 + 2a24 = 0
3a17 + 2a21 + 2a25 = 0 group (d)
3a18 + 2a22 + 2a26 = 0
3a19 + 2a23 + 2a27 = 0

(32)

in which we have introduced the aspect ratio:

ε =
a

b
(33)

The group of equations (a) and (c) shows that the solution for a is not unique,
because the second and the third columns of matrix A2 are proportional, as
are the first and last columns of A3.
In fact, this set of equations contains some impotent strains which read for
the spheroidal inhomogeneity:

aI = 0, aII = 0, aIII = 0, aIV = 0, aV = 0, aVI =
2

b2
θ3,

aVII =
2

a2
θ3, aVIII =

2

b2





θ1
θ2



 , aIX = 0, aX = 0, aXI =
1

a2





θ1
θ2





(34)

From another point of view, the group of equations (b) and (d) is the detailed
expression of the equilibrium condition (21).
By eliminating the equilibrium and the impotent components of a we obtain
the following reduced linear system for the spheroidal cavities:
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σ
∞

I = a1aI, σ∞

II = a2aII,





σ
∞

III
σ

∞

IV



 = A1





aIII
aIV



 ,





σ∞

V
σ∞

VI



 = A2





aV
aVI − ε2aVII



 ,









σ
∞

VIII
σ

∞

IX
σ

∞

X









= A3









aVIII − ε2aXI
aIX
aX









(35)

which corresponds to 15 scalar coefficients.
In addition, the reduced matrices A2 and A3 are defined by:

A2 =







a7 a8

a10 a11






, A3 =











a16 a17 a18

a20 a21 a22

a24 a25 a26











(36)

In the case of void, the resolution of the linear system consists then in the
inversion of two scalars (a1 and a2), two matrices of dimension 2 (A1 and A2)
and one matrix of dimension 3 (A3). Explicit solutions are now provided in
the case of the penny shaped crack.

4 Solution for the penny-shaped crack

The case of a penny-shaped crack is the special case of an oblate spheroidal
void when its radius a along the Ox3 axis vanishes. Taking the limit ε → 0 in
a1, a2 and in matrices A1, A2, A3, we obtain the following expressions at the
first order:

a1 = 2µ0 −
3π

16

7− 8ν0
1− ν0

ε+ o(ε),

a2 =
3µ0π

2
ε + o(ε),

A1 = A
(0)
1 + εA

(1)
1 + o(ε),

A2 = A
(0)
2 + εA

(1)
2 + o(ε),

A3 = A
(0)
3 + εA

(1)
3 + o(ε)

(37)

with:
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A
(0)
1 = 2µ0







1 −1

0 0






, A

(1)
1 =

3µ0π

8(1− ν0)







0 5− 4ν0

0 2(2− ν0)






,

A
(0)
2 =

2µ0(1 + ν0)

1− ν0







1 −1

0 0






, A

(1)
2 =

3µ0π

4(1− ν0)







0 3 + 2ν0

0 2







A
(0)
3 =

2µ0

1− ν0











1− ν0 0 0

ν0 1 + ν0 0

0 0 0











,

A
(1)
3 =

3µ0π

16(1− ν0)











− 2(5− 4ν0) − 6 2(1− 2ν0)

− (1 + ν0) − (3 + 8ν0) (1 + 6ν0)

4 4(1 + 2ν0) 4











(38)

The limit ε → 0 corresponds to two very close circular surface across which a
jump of the displacement field is generated. This jump can be deduced from
the interior point solution for the strain. Indeed, when the limit ε → 0 is taken,
the strain can be expanded as a power series in ε:

a =
1

ε
a
(−1) + a

(0) + εa(1) + ... (39)

where the dominent term a
(−1) is associated with the singularity. Accounting

for the decomposition (24) and collecting all the terms with the same power
in ε in the linear system (35), we obtain a hierarchy of problems for all the
components of a at every order. The resolution of each linear system leads to
the following expressions for the dominant terms:

a
(−1)
I = 0, a

(−1)
II =

2

3µ0π
σ∞

II , a
(−1)
III = a

(−1)
IV =

4(1− ν0)

3µ0π(2− ν0)
σ

∞

IV,

a
(−1)
V = a

(−1)
VI =

2(1− ν0)

3µ0π
σ∞

VI, a
(−1)
VIII = a

(−1)
IX = 0, a

(−1)
X =

4(1− ν0)

3µ0π
σ

∞

X

(40)

The terms a
(−1)
VII and a

(−1)
XI , which are associated to impotent strains, remain

undetermined. From (40) with definitions (30), we obtain the following ex-
pressions for the components of a in the cartesian frame:
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a
(−1)
111 = a

(−1)
112 = a

(−1)
121 = a

(−1)
122 = a

(−1)
221 = a

(−1)
222 = 0

a
(−1)
131 =

1− ν0
3πµ0(2− ν0)

[(4− ν0)σ
∞

131 − ν0σ
∞

232]

a
(−1)
132 =

1

3πµ0(2− ν0)
[(4− 3ν0)σ

∞

132 − ν0σ
∞

231]

a
(−1)
231 =

1

3πµ0(2− ν0)
[(4− 3ν0)σ

∞

231 − ν0σ
∞

132]

a
(−1)
232 =

1− ν0
3πµ0(2− ν0)

[(4− ν0)σ
∞

232 − ν0σ
∞

131]

a
(−1)
331 =

4(1− ν0)

3µ0π
σ∞

331, a
(−1)
332 =

4(1− ν0)

3µ0π
σ∞

332

a
(−1)
113 = 2a

(−1)
131 , a

(−1)
223 = 2a

(−1)
232 , a

(−1)
123 = a

(−1)
132 + a

(−1)
231

(41)

The strain field being determined for the interior points, one can deduce the
solution for the displacement at the surface of the crack. The strain field being
linear with respect to the coordinates, the components of the displacement field
for the interior points are:

ui = Ui +
1

2
Kijkxjxk (42)

The components Kijk can be easily computed from:

aijk =
1

2
(ui,jk + uj,ik) =

1

2
(Kijk +Kjik) (43)

which, by inversion, leads to:

Kijk = aijk + aikj − ajki (44)

It is not necessary to compute the constants Ui for i = 1..3 since they do not
enter in the expression of the displacement jump vector. Let us now introduce
the cylindrical coordinates (r, θ, z) centered at the origin and such that z ≡
x3. The radial coordinate r denotes the distance between the crack center
and a current position. For a given value of r and θ we can define the two
opposite positions z+ and z− on the surface of the spheroid (see figure 1).
Those positions are:

z+ = ε
√
b2 − r2, z− = −ε

√
b2 − r2 (45)
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The jump of displacement across the crack can be obtained by comparing the
value of the displacements for two opposite points taken on the surface of the
spheroid, then by taking the limit ε → 0:

[u] = lim
ε→0

[

u(r, θ, ε
√
b2 − r2)− u(r, θ,−ε

√
b2 − r2)

]

(46)

r

z+

z-

x3

Fig. 1. Radial coordinate and heights z+ and z− for two opposite points taken on
the surface of a spheroid

Denoting the displacement jump by:

∆u = u(r, θ, ε
√
b2 − r2)− u(r, θ,−ε

√
b2 − r2) (47)

It can be found, from (42) together with (44), that:

∆u1 = 2rε
√
b2 − r2

[

a113 cos(θ) + (a132 + a123 − a231) sin(θ)
]

∆u2 = 2rε
√
b2 − r2

[

(a123 + a231 − a132) cos(θ) + a223 sin(θ)
]

∆u3 = 2rε
√
b2 − r2

[

(a331 cos(θ) + a332 sin(θ)
]

(48)

Finally, replacing the components of aijk by (39) together with (41) and taking
the limit ε → 0, we obtain:

14



[u1] =
4

3πµ0(2− ν0)
r
√
b2 − r2

[

(1− ν0)((4− ν0)σ
∞

131 − ν0σ
∞

232) cos(θ)

+((4− 3ν0)σ
∞

132 − ν0σ
∞

231) sin(θ)
]

[u2] =
4

3πµ0(2− ν0)
r
√
b2 − r2

[

(4− 3ν0)σ
∞

231 − ν0σ
∞

132) cos(θ)

+(1− ν0)((4− ν0)σ
∞

232 − ν0σ
∞

131) sin(θ)
]

[u3] =
8(1− ν0)

3πµ0

r
√
b2 − r2

[

σ∞

331 cos(θ) + σ∞

332 sin(θ)
]

(49)

Note that the solution at the first order shows that the displacement jump
vector depends only on the stress components acting on the plane of the crack
i.e. σ∞

13 , σ
∞

23 and σ∞

33 . When a stress gradient is applied at infinity, the solution
for the sliding mode gives a dependence of [u1] and [u2] with the derivatives of
the shear stress components along the x1 and x2 directions. Considering the
opening mode, [u3], it depends on the derivatives of the normal stress along
the x1 and x2 directions.

5 Conclusion

In this paper we have derived the displacement jump vector occurring across
a penny-shaped crack embedded in an infinite elastic matrix and subjected
to a remote gradient of strain, extending older results corresponding to dis-
placement jumps induced by a constant strain at infinity. The method takes
advantage of the problem of the inclusion subjected to a polarization that
is linear with the coordinates. The problem is thus reduced to the inversion
of a sixth order tensor. This inversion is formally equivalent to the resolu-
tion of a system of dimension 18. For the case of a spheroidal inhomogeneity,
the problem has been proved to be greatly reduced by using a canonical ba-
sis for transversely isotropic sixth order tensors. More particularly, attention
has been focused on cavities for which the problem becomes singular which
is attributed to the presence of impotent strains which remain undetermined.
Eliminating the impotent strains leads to a reduced linear system which has
been also formulated for the case of cavities.
Finally, the particular case of penny-shaped cracks is studied and the closed
form solution for the crack opening displacement has been provided. This ex-
tends the classical solution for the jump induced across a penny-shaped crack
when a constant strain field is applied at infinity.
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A Elements of the compact representation of tensors S, Y, C0 and

A

The elliptic integrals, given by relation (8), are given by:
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I11 = I22 = I12 =
π(3(η − 1) + 2ε2)

2b2(ε2 − 1)
, I13 = I23 =

2π(1− 3η)

b2(ε2 − 1)

I33 =
4π(3ηε2 − 1)

3b2ε2(ε2 − 1)

T111 = T112 = T122 = T222 =
π(6ε2(2− 3η) + 3(η − 1)− 4a4)

12b2(ε2 − 1)2

T113 = T123 = T223 =
π(3(η − 1) + 12ηε2 − 2ε2)

2b2(ε2 − b2)2

T133 = T233 =
2π(5− 9η − 6ε2η)

3(ε2 − 1)2

T333 =
4π(3ε2(5η − 1)− 2)

15b2ε2(ε2 − 1)2

(A.1)

where η is defined by:

η =



























ε

(ε2 − 1)3/2
arctanh

{√
ε2 − 1

ε

}

− 1

ε2 − 1
(prolate spheroid)

− ε

(1− ε2)3/2
arctan

{√
1− ε2

ε

}

+
1

1− ε2
(oblate spheroid)

(A.2)

The introduction of η allows to produce various equations which are valid for
both the case of an oblate spheroid (ε ≤ 1) and a prolate spheroid (ε ≥ 1).
The components of the sixth order Eshelby tensor, written in the canonical
basis, are:
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s1 =
(6− 8ν0)(1− p)− q

8(1− ν0)
, s2 = p,

s3 =
q + 8p(1− ν0)

4(1− ν0)
ε2, s4 =

q + 4p(1− ν0)

4(1− ν0)
,

s5 =
q + 4p(1− ν0)

2(1− ν0)
ε2, s6 =

1

2
+

q + p(1− ν0)

2(1− ν0)
,

s7 =
q + 4p

2(1− ν0)
ε2, s8 =

q + 2p(1− ν0)

2(1− ν0)
,

s9 = −q + 2p(1− ν0)

2(1− ν0)
ε2, s10 =

q + 2p(1 + ν0)

1− ν0
ε2,

s11 = 1 +
q

(1− ν0)
, s12 = − q

1− ν0
ε2,

s13 =
2ν0 − (q + 2p+ 4pν0)ε

2

1− ν0
, s14 = −q + 2pν0

(1− ν0)
,

s15 = 1 +
q + 2pν0
1− ν0

ε2, s16 = 1− q + 4p(1− ν0)

4(1− ν0)
,

s17 =
−q − 2p+ 2

4(1− ν0)
, s18 =

q − 2ν0(p− 1)

4(1− ν0)
,

s19 =
q + 4p(1− ν0)

2(1− ν0)
ε2, s20 = − q

8(1− ν0)
,

s21 = −q + 2(p− 1)

8(1− ν0)
, s22 =

q − 2ν0(p− 1)

8(1− ν0)
,

s23 =
q

1− ν0
ε2, s24 =

q + 2pν0
2(1− ν0)

s25 =
q + 4pν0
2(1− ν0)

, s26 =
−q + 2p(1− ν0)

2(1− ν0)
,

s27 = −q + 2pν0
1− ν0

ε2, s28 = −−q + p(ν0 − 3)

2(1− ν0)
,

s29 =
q + 2p(1 + ν0)

2(1− ν0)
, s30 = − q

2(1− ν0)

s31 = 1 +
−q + p(ν0 − 3)

1− ν0
ε2

(A.3)

in which p and q are two functions of the aspect ratio ε given by:

p =
1− 3η

2(ε2 − 1)
, q =

3(η − 1) + 12ηε2 − 2ε2

2(ε2 − b2)2
(A.4)

In the case of cracks, the expansion series of p and q at ε = 0 is:
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p = 1− 3π

4
ε + o(ε), q = −3π

4
ε+ o(ε) (A.5)

The element of the compact representation of Y are {β, β, Y1, Y2, Y3} with:

Y1 =







β 0

0 β





 , Y2 =
1

3











2α + β 0 α− β

0 3β 0

α− β 0 2α + β











,

Y3 =
1

3

















3β 0 0 0

α− β (2α+ β) α− β 0

α− β 2(α− β) 2α+ β 0

0 0 0 3β

















(A.6)

The element of the compact representation of C0 are {2µ0, 2µ0, C
0
1 , C

0
2 , C

0
3}

with:

C0
1 = 2µ0







1 0

0 1






, C0

2 =
2µ0

1− 2ν0











1 0 ν0

0 1− 2ν0 0

ν0 0 1











,

C0
3 =

2µ0

1− 2ν0

















1− 2ν0 0 0 0

ν0 1 ν0 0

ν0 2ν0 1 0

0 0 0 1− 2ν0

















(A.7)

In the case of a cavity, the components of A are:
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a1 = µ0
2 + q + (6− 8ν0)p

4(1− ν0)
a2 = 2µ0(1− p)

a3 = 2µ0 − µ0
q + 8p(1− ν0)

2(1− ν0)
ε2 a4 = −µ0

q + 4p(1− ν0)

2(1− ν0)

a5 = −µ0
q + 4p(1− ν0)

1− ν0
ε2 a6 = µ0 − µ0

q + p(1− ν0)

1− ν0

a7 = −µ0
(2(1 + ν0)(2pε

2 − 1) + qε2)

1− ν0
a8 = −µ0

q + 2p(1 + ν0)

1− ν0

a9 = µ0
q + 2p(1 + ν0)

1− ν0
ε2 a10 = −2µ0

q + 2p(1 + ν0)

1− ν0
ε2

a11 = −2µ0
q

1− ν0
a12 = 2µ0

q

1− ν0
ε2

a13 = 2µ0
q + 2p(1 + ν0)

(1− ν0)
ε2 a14 = 2µ0

q

1− ν0

a15 = −2µ0
q

(1− ν0)
ε2 a16 = µ0

q + 4p(1− ν0)

2(1− ν0)

a17 = µ0
q + 2(p− 1)

2(1− ν0)
a18 = µ0

−q + 2(p− 1)ν0
2(1− ν0)

a19 = −µ0
q + 4p(1− ν0)

(1− ν0)
ε2 a20 = µ0

q + 8pν0
4(1− ν0)

a21 = µ0
6 + q + 2p+ 8pν0

4(1− ν0)
a22 = −µ0

q + 6(p− 1)ν0
4(1− ν0)

a23 = −µ0
q + 8pν0
2(1− ν0)

ε2 a24 = −µ0
q

1− ν0

a25 = −µ0
q + 2(p− 1)ν0

(1− ν0)
a26 = µ0

q + 2(1− p)

1− ν0

a27 = 2µ0
q

1− ν0
ε2 a28 = −µ0

q + p(3− ν0)

(1− ν0)

a29 = −µ0
q + 2p(1 + ν0)

(1− ν0)
a30 = µ0

q

1− ν0

a31 = 2µ0
q + p(3− ν0)

(1− ν0)
ε2

(A.8)

In the case of a penny-shaped crack, the expansion series of an for n = 1..31
with respect to the aspect ratio ε can be obtained by replacing p and q by
(A.4) in the above expressions.
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