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ABSTRACT

In this paper, we analyze the microstructural effects on non linear elastic and periodic composites within
the framework of asymptotic homogenization. We assume that the constitutive laws of the individual
constituents derive from strain potentials. The microstructural effects are incorporated by considering
the higher order terms, which come from the asymptotic series expansion. The complete solution at
any order requires the resolution of a chain of cell problems in which the source terms depend on the
solution at the lower order. The influence of these terms on the macroscopic response of the non linear
composite is evaluated in the particular case of a stratified microstructure. The analytic solutions of the
cell problems at the first and second order are provided for arbitrary local strain-stress laws which derive
from potentials. As dassically, the non-linear dependence on the applied macroscopic strain is retrieved
for the solution at the first order. It is proved that the second order term in the expansion series also
exhibits a non linear dependence with the macroscopic strain but linearly depends on the gradient of
macroscopic strain. As a consequence, the macoscopic potential obtained by homogenization is a qua-
dratic function of the macroscopic strain gradient when the expansion series is truncated at the second
order. This model generalizes the well known first strain gradient elasticity theory to the case of non lin-
ear elastic material. The influence of the non local correctors on the macroscopic potential is investigated
in the case of power law elasticity under macroscopic plane strain or antiplane conditions.
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1. Introduction equivalent strain rate that depends on first strain rate gradient

tensor and also on an internal lengthscale.

The analysis of the microstructural effects on the macroscopic
response of non linear solid materials is of paramount importance
for many practical problems in mechanics such as for example the
localization in shear band, the fracture or the microindentation.
Conventional theories of elasticity and plasticity are not adapted
to treat adequately the problems which are dominated by the
microstructural effects. This has motivated various strain gradient
theories. There is an abundant literature on this subject among
which Toupin (1962), Mindlin (1964), Green and Rivliin (1964),
Kroner (1967), Eringen and Edelen (1972) for the case of elasticity
and Aifantis (1984), Fleck and Hutchinson (1993, 1997), Nix and
Gao (1998), Gao et al. (1999a,b) and Gurtin and Anand (2005) for
plasticity. For instance Fleck and Hutchinson (1997) have proposed
an extension of the first strain gradient elasticity theory of Toupin
(1962) and Mindlin (1964) to the case of plasticity in which
the plastic dissipation is written with a new definition for the
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These strain gradient plasticity theories have been applied to
many problems where strain gradient effects are expected to be
important, including for example, the analysis of crack tip fields
in Xia and Hutchinson (1996) and Huang et al. (1997). Another
example is the localization in thin bands that standard plasticity
theories cannot reproduce adequately with the mesh refinement
when these models are implemented numerically. Indeed, itis well
admitted that the loss of homogeneity in the macroscopic response
of the structure is due to the presence of a microstructure in the
material. When the localization in shear bands occurs, the micro-
structure is involved in the deformation of the solid. Consequently,
standard continuum models are not adapted to describe such kind
of phenomena. By using plasticity strain gradient theories, the
problem of localization has been addressed in Aifantis (1984),
Zbib and Aifantis (1988) and Chambon et al. (2001), including
the mesh dependency investigation, the band width and the distri-
butions of field variables within and outside the band.

However, all the above cited strain gradient plasticity models
are not constructed in a rigorous homogenization approach able
to provide a mathematical meaning of the strain gradient depen-
dence at the macroscopic scale. The formulation of strain gradient



models in the framework of homogenization methods has been the
subject of intense research. For instance, Diener et al. (1981, 1982)
and later Drugan and Willis (1996 ), and Drugan (2000, 2003) have
extended the Hashin-Shtrikman variational approach (Hashin and
Shtrikman, 1962, 1963; Willis, 1977) in order to derive a non local
macroscopic constitutive law of linear elastic heterogeneous mate-
rials. This approach corrects the standard homogenization proce-
dure by accounting for the dependence of ensemble average
stress on ensemble average strain by addition of terms which
depend on the strain gradients in the ensemble average strain.
However, such a method is restricted to the case of linear constit-
uents. Other methods are based on the resolution of unit cells of
random media with prescribed strain gradient at the boundary
(Gologanu et al.,, 1997; Forest, 1998; Bouyge et al., 2001, 2002;
Kouznetsova et al., 2002, 2004; Yuan et al., 2008 ). They use a gen-
eralization of the Hill-Mandel lemma for deriving the higher-order
constitutive relations and they can deal with non-linear materials
(the reader could refer to Forest (2006) for a review on these mul-
tiscale methods). In particular, Gologanu et al. (1997) have
extended the Gurson model (1977 ) by accounting for strain gradi-
ent at the boundary of the hollow sphere and provide an analytic
expression for the macroscopic yield criterion which depends on
macroscopic stress and hyperstress. As already mentioned in
Fleck and Hutchinson (1997), the results are however somewhat
surprising: the dominant strain gradient effect is not influenced
by the void volume fraction or void spacing and this effect persists
even when the void volume fraction tends to zero. This last result is
however surprising because the strain gradient effect is only due
to the presence of the microstructure. Therefore, when the volume
fraction tends to zero, the solid is homogeneous at the microscopic
scale and the microstructural effects cannot be observed at the
macroscopic scale. Note that a similar conclusion has been formu-
lated by Yuan et al. (2008) about the use of this kind of generalized
boundary conditions. This suggests that the resulting macroscopic
model overevaluates the macroscopic internal energy of gradient
elastic media and gives rise to some unphysical results such as
the persistence of strain gradient effect when the unit cell is
homogeneous.

The asymptotic homogenization is a powerful tool which
has shown to be efficient to incorporate the microstructural
effects on the effective behavior of periodic elastic composites
(Gambin and Kroner, 1989; Boutin, 1996; Smyshlyaev and
Cherednichenko, 2000; Peerlings and Fleck, 2004; Tran et al,
2012). The general solution of a linear elastic composite subjected
to an external macroscopic loading is expanded in series with
respect to a small parameter, the scale factor ¢, which is defined
as the ratio between the microstructure lengthscale and a macro-
scopic lengthscale. This last one is characteristic of the macro-
scopic structure dimensions or of the applied loading. When the
scale factor is small but not completely negligible or when strong
values of macroscopic strain gradient occur, it is reasonable to
incorporate higher order terms which come from asymptotic ser-
ies. For instance, in Tran et al. (2012), these higher order terms
are kept in the homogenization procedure to evaluate the correc-
tion in the macroscopic elastic energy density. More particularly,
it has been found that the resulting model coincides with the phe-
nomenological strain gradient theory of Green and Rivlin (1964)
(which accounts for the derivatives of macroscopic strain at any
order) and also contains the second gradient theory of Toupin
(1962) and Mindlin (1964) when it is truncated. Moreover, the
microstructural effects do not persist when the cell is homoge-
neous. The reason for this feature is that the source terms in the
higher order cell problems vanish when the cell is homogeneous.
In the same way, the higher order terms of the expansions series,
which introduce the non local correctors, also vanish in the macro-
scopic energy density. Mention must be made of the studies of

Seppecher and Pideri (1997ab) and Soubestre and Boutin (2011)
who show, still in the framework of asymptotic homogenization,
important effects of the strain gradient on the effective properties
of elastic composites reinforced by highly rigid slender inclusions.
When the elastic coefficients of the inclusions have an appropriate
order of magnitude with respect to the scale factor, the effective
material exhibits a strain gradient dependence.

However, these results are restricted to the case of linear elastic
constituents while the microstructure effect are expected to be
prominent for non linear materials. Note that the case of compos-
ites made up of materials displaying a rate dependent behavior at
finite strain has been addressed by Triantafyllidis and Bardenhagen
(1996) to investigate the relation between macro and micro insta-
bilities. In the present paper, we extend the recent work of Tran
et al. (2012) by constructing the strain gradient dependent effec-
tive potential of non linear composites materials. Due to the high
complexity of the problem, the non linear effects are investigated
in the case of a stratified composite with non linear elastic constit-
uents. The paper is organized as follows. In Section 2, we apply the
asymptotic homogenization procedure for non linear solid and for
an arbitrary microstructure. In Section 3, we focus our study on
stratified composites for which analytic solutions can be derived.
The last part of the paper is devoted to some applications in the
case of power law elasticity under antiplane or plane strain
conditions.

2. Application of the asymptotic series method to non linear
composites

2.1. Description of the problem

We consider a periodic, non linear composite whose constitu-
ents have the following constitutive equation:

e
o(X) = 5 (X.8(X)) (1)
where X denotes the vector position and y is defined by:

WX 8X)) = 1, (X0, (8X) 2)

in which 7,(X) are the characteristic function of phase “r" and y,(X)
for r=1,2,... are non linear functions of the strain. Functions
¥, (2(X)) are assumed to be strictly convex and C* with respect to
the variable g(X). The strain and stress tensors comply with compat-
ibility and equilibrium equations:

divx(a(X)) = 0, &(X) = sym(Vyu(X)) 3)

where u(X) is the displacement. In the above relations, index “X" in
divy and ¥y means that the derivatives are made with respect to
the vector position X. This distinction is needed since two space
variables, namely a slow and a rapid position vector, will be intro-
duced thereafter when using the asymptotic expansion. For simplic-
ity, the body force has been neglected in the balance equation.
Additionally, the displacement and traction are continuous across
the interfaces of the individual constituents:

[WX)lp =0, [oX) nlr=0 (4)

The notation [s]. represents the jump of e across the interface T’
defined as follows: [¢]. = e* — e, where «* and e~ are the values
of e calculated on both sides of T

2.2. Cell problems issued from the asymptotic expansion
In the following, we use the asymptotic expansion method ini-

tiated by Sanchez-Palencia (1974, 1980) and Bensoussan et al.
(1978 ) in order to derive a set of cell problems at the microscopic



scale. To this aim, we introduce the two non-dimensional space
variables x = X/L and y = X/h where h and L are respectively a
characteristic lengthscale of the microstructure (the size of the unit
cell, of the inclusions, the distance between two neighboring inclu-
sions...) and of the (macro) structure. Variable x is “slow™ while y
is said rapid. All the fields, i.e. displacement, strain and stress, are
assumed to depend on these two variables. The dependenceinx is
attributed to the variations induced by the macroscopic loading
while the one in y is due to the local heterogeneity. Due to the peri-
odicity of the microstructure, the characteristic functions z,(y)
only depend on the rapid variable y. The local strain-stress relation
(1) reads:

oy = iyany) with: b(yeny) = YL EEY)

(5)

The scale factor, € = h/L, is assumed to be small compared to 1 but
not negligible. In presence of this small parameter, the solution can
be expanded as a power series in €:

uxy) =LY eu(xy) (6)
-0

where the displacements y_"(g,x) are y-periodic and non dimen-
sional due to the presence of the lengthscale L before the sum. In
the compatibility equation, the gradient operator is decomposed
into two parts: Ve = }(Vy « +2Vye), where the indices x and y indi-
cate that the derivatives are taken with respect to x and y respec-
tively. The strain tensor takes the form: -

gay)=e'e iy + .fe't‘"(a,x) (7)
a0

where &Y (x.y) and &”(x,y) for n = 0 read:

-N(xy) = g(u%xy))

8
£ (xy) = & xy) + g™ Vxy) for:nz0 ®)

The strain must remain finite when the scale factor tends to zero.
Consequently, one has &-"(x.y) =0 and then the displacement
u'®(x.y) is only a function of the slow space variable, x. It is there-
after denoted Uix) and is in fact the macroscopic displacement.’ It
follows that the strain 2/ (x, y reads:

£9(xy) = E@) + g (x y)with (E(x) = &(U(x) 9)

in which E(x) is the macroscopic strain and where ¢,, and g,, are the
strain tensors calculated with respect to x and y. The microscopic
stress is:

oy = dVxy) (10)
-0
with:

"y =2 (Pwy)

aVixy) = ﬂ(z‘“'(l,_:)) 8V xy)
a?x, Yy = (dol(x l)) 3‘“’(!-[) (11)
%;T;‘S. (#9xy) = (eVxy) o8 y))

' LX) is the average of the microscopic displacement and physically represents the
displacement of the centroid of the unit cell.

In the equilibrium equation (the first equation in (3)), the diver-
gence operator is also decomposed into two parts “div," and
“div,". This leads to:

)] =0

(12)
By collecting all the terms having the same power in € we obtain:
divy(a%(xy)) =
div.(a"'(&.!)) + div,(c‘""(;.x]) =0 for:n=0

%div, (a‘“'[&x]) 4 .ff' [div, (a"‘" (;.x)) +divy (a‘"(;x}
n-0

(13)

By taking the average of each term in (13) over the volume of the
cell (denoted V) we obtain:

(0) -
[Na (x.y).ndS =0

(14)
div.((a"’(&-x))v) + /wa‘“"(;.x) ndS=0 for:nz=0

in which the divergence theorem has been used in order to replace
the volume integrals into integrals over the boundary 4V of the cell.
In the relation above, (), denotes the average of e over the volume
of the cell (here the integration is performed with respect to vari-
able y). Each surface integral over 4V is null due to the equilibrium
between two neighboring cells. It remains:

div,((d‘"(&x))v) =0 for:nz=0 (15)
It is possible to eliminate the mean part (¢'™(x.y))y in the second
relation in (13):

div;(a‘"(g.x)) + divy (a"‘”(&x)) =0 for:n=0 (16)
in which we have introduced div;, defined, for any function fix.y),
by:

div;[fxy)] = dive [flxy) - Fxyy] (17)

Finally, by using (8) and (11) for meodifying (16), we obtain a
hierarchy of equations for the unknowns fields
uVixy), u?(xy), uPixy), etc. The problem at the first order
reads:

divy [d“" (zt.,x)] =0, oy =#(Ex+&(uxy))

[E”(Lx)]r =0, [a‘°‘(&x) . Ll] =0
u’ (x.y) y ~ periodic, a“"(x_.x) -ny - antiperiodic
(18)
In the above equations we search the displacement u"'(x. y) for a

given value of the applied macroscopic strain E(x). The problem at
the second order is:

div, [a‘"()_(,!)] = —div;[a""(&!)].
oVixy) =2 (f9xy) : [ (W@ y) +a(uwy)
[uPixy)| =0 [o"xy) 5] =o0.
g’(&.x) y - periodic, ¢'"(x.y) ny - antiperiodic
(19)

In this problem, u'* (x. y) is known since it has been computed at the
first order. Also, £%(x.y) is known because it depends on the dis-
placement u™'(x, ) (see Eq. (9)). In the system of Eq. (19), the
unknown variable is u® (x.y).



The problem at the third order takes the form:

divy[a"'(a.x)] = ~div, [c‘"(a-x)],

FHLy) = ZhExy) : (6 (uxy) + & (1 @)
+h§§;(¢“’(g,x)) : (:‘“(&.x} -3#"(&!)) (20)
[1” (a,x)]r =0, [a‘” xy) ~£]r =0,

u¥(x.y) y - periodic, ¢¥ix.y) ny - antiperiodic

In these equations, the fields u'"(xy). uixy), £%xy) and
c‘“g,x) are known, being computed at lower orders. The unknown
is the displacement u®!(x. y).

To summarize, all terms of the series (6) are computed itera-
tively. The first cell problem( 18) is non linear for the displacement
uix y) and depends on the macroscopic variable x through E(x).
Interestingly, it is observed that higher order cell problems are lin-
ear for u?(x,y), u?(x.y), etc. and can be interpreted as linear elas-
ticity problems with source terms which depend on the solution at
lower orders and involve the tangent modulus computed with the
strain obtained at the first order. Since the local potentials y are
assumed to be strictly convex, the tangent modulus is strictly posi-
tive definite. This ensures the unigueness of the higher order cell
problems. In the next section we propose to derive some analytic
expressions for the displacements u™'(x. y) and u'*(x,y) in the par-
ticular case of a stratified composite.

3. Solutions for a stratified composite

In this section, we propose to derive the general solution of the
first and second order cell problems for the stratified composite.
This solution is provided for arbitrary microscopic strain poten-
tials. The macroscopic potential which includes the strain gradient
effect at the second order is also provided and compared with the
phenomenological model of Fleck and Hutchinson (1997).

3.1. The unit cell

Let us consider the case of a three dimensional layered material,
whose layers have the respective thicknesses f; and f, (see Fig. 1).
The dimensions of the cells are equal to 1; consequently f, and f,
represent the volume fractions of the phases. The layers being peri-
odically distributed along the axis Ox,, the displacement locally
oscillates with the non dimensional coordinate y, which varies
from —f, to f; in a period (y, is denoted y thereafter for the sake
of simplicity). The composite is subjected to a multiaxial macro-

(b)  |(a)

_fb 0 fn

Fig. 1. The unit cell of the periodic stratified composite.

scopic strain, involving the components Ey for i,j = 1,2,3. Also,
the dependence of the macroscopic variables with the coordinates
Xy, X3, X3 is omitted for clarity.

3.2. Solution of the first order cell problem

Owing to the one-dimensional geometry of the unit cell (peri-
odic arrangement of thin layers in the direction Oy, ) the local fields
only fluctuate with the coordinate y = y,. As a consequence, all the
derivatives with respect to y, and y; in the system of Eq.(18) van-
ish. The problem becomes:

(%40)=0,
) = &0 y).
&0) =y +3 (S )81 + '7'—.4,—1'0}5',], 21)
Wy =0]=0 [dly=0)]=0

iy =f) =u(y=-f), oPy=L)=0(y=-k)

The equilibrium equation combined with the continuity of ¢j;(y) at
the interface in y=0 implies that the components };'(y) for
i=1,2,3 are constant within the cell. As a consequence, the compo-
nents of the microscopic strain tensor £%(y) are piecewise constant
functions. The components of u'*'/(y) are then piecewise linear func-
tions, which are continuous at y = 0 and periodic. Such functions
have the following form:

" (y) = au(E)F(y) 22

where 2(E) for i =1,2,3 are three functions of the macroscopic
strain E and F(y) is given by:

Faly) =%~ foryeia)
F(y) = 23
) {F.(y):-‘ﬂi— for y € (b) o=
The microscopic strain £%(y) reads:
(24)

6(':’ =FEj - 5,%[-11(5)6)1 + %(E)da ],
{ tla = Ey+ o= [%(E)ys + 2(E)Sn )
where c‘:’(y) and cﬁ‘(y) are the values of local strains in phase (a)
and (b) respectively. The stress components read in both layers:

2 -2()

7-2)

where y, and y, are the expressions of y taken in layer (a) and (b)
respectively. The continuity of af,"(y) at y =0 provides three non
linear algebraic equations defining the function %(E) fori=1,2,3:

Ny Ny (o
E(lf") =E("]) (26)

Obviously, the derivation x%(E) for i =1,2,3 could be effected by
giving the expression of the potential y(z).

(25)

3.3. Solution at the second order

We derive now the solution of the second order cell problem
(19) which introduces the microstructural effects and the depen-
dence on the macroscopic strain gradient. Again, in (19), all the
derivatives with respect to y, and y, vanish. Moreover, the stress
o'%(y) and the displacement u'"(y), given by (25) and (22), are
introduced as source terms. The second order problem reads:



Ll (y) 4+ 8F ) =

) = Coa ) 5 0) + Cuuly)ef (y) -
[({y=0] =0, [d}y=0]=0

Uy =fo) =uPy = ). @)y =f) =iy =-f)

where g, and ey are constant while the tangent modulus Cyu(y) is a
piecewise constant function. Their expressions are:

Py
Coul) = g 5o € 0)
81 = Sufs [ Chog ~ Gl s + ufb [ G + £ Chaa | D[ Gl ~ g s
(28)
_fh

5 [Dady + Dy de] [('u,.

In the relation above, Ey, are the components of the macroscopic
gradient of strain V,E while C‘,,, and C‘ are the values taken by
Cyuly) in layer (a) and (b) rspecnvely The components Dy are
defined as:

(D_‘)g =qu,m +f‘CI.I}l (29)
The details about the derivations of g, and ey can be found in Appen-
dix A,

The solution of (27) is searched with the form:

(2I

un] Epqr

= g;(y)F(y) (30)

where g,(y) is constant in each layer. Introducing this expression
into (27) leads to:

9i(y) = ~Q(y)[8 + Cruly)ew] (31)
where Qy(y) is defined by:
[Q_‘ ()')]0 = Cyjs(¥) (32)

The components of the strain tensor £/(y) are:

§) = ["“M Fiy) (33)

The microscopic displacement 1? (y) can be obtained by the inte-
gration of (30) with the periodic conditions at the boundary of
the cell and the continuity at the interface in y = 0. The analytic
expression of u® (y) is not provided here since the computation of
the macroscopic elastic energy involves only the microscopic
strains.

3.4. The macroscopic potential

The macroscopic potential, denoted by Wix), is obtained from
the standard average rule:

W= ey (34)

This macroscopic potential is evaluated by keeping in 2(x. y) the first
two terms of the series:

e(y) = &%) + e (y) + o(e) (35)

Let us recall that £ (y) and &'"(y) are non linear functions of the
macroscopic strain and &'(y) also depends on the gradient of mac-
roscopic strain. Higher order terms which introduce a dependence
on higher order derivatives of macroscopic strain (double gradient
of macroscopic strain, triple gradient of macroscopic strain etc.)
are not considered here. It follows that the macroscopic potential

(34) with (35) only depends on the macroscopic strain and its gra-
dient. The resulting macroscopic model then provides a non linear
version of the second gradient model of Mindlin (1964) for the
stratified composite.

Due to the presence of the small parameter ¢, the macroscopic
potential is also expanded along a power series in €:

W W eV 4 €25 4 o(€F) (36)
with:

Wo = (W (£9()),

Wy =, (e90) eV ), (37)

s = 3 (E0)  Va(#00)) € 0),

It can be noticed that the expansion of the macroscopic potential at
the firstorder in € is licit since only the first two terms in the expan-
sion of the microscopic strain have been kept (see Eq. (35)). The
strain £%(y) could be also considered for the computation of ‘¥;.
However the term ‘¥ is null due to the geometry of the elementary
cell and a truncation at the first order for the stratified composite is
then not able to capture the microstructural effects. These effects
are accounted by the second order term in the expansion of ‘¥,
butin which £?/(y) is not considered since only the effect of the first
gradient of macroscopic strain is taken into account.
Owing to expression (33), we obtain for Wo, ¥ and ¥2:

Yo = Lo (£") + v (2"
Wy =0 (38)

1 i 1 a
W = 5z [folg e + Sl | st + 55 [1:Q5 + Q5 |sig;
with:
L;H =c;"_c;HQ{,c;N, B=ab (39)

In (38), Wo has a non linear dependence on £ (y) and then on the
macroscopic strain E. The term '¥; has also a non linear dependence
on E (through Cj, and Cj,) and is quadratic with respect to the
macroscopic gradient of strain V,E (see the definitions of g, and
ey in (28) which show that these terms linearly depend on V.E).
These solutions generalize those obtained by Boutin (1996) which
can be retrieved by putting:

Chu = dabydu + 2t gl Gy = dyhu + 2l 40)

Still in the case of linear elasticity, ®o is quadratic with the macro-
scopic strain while ‘¥; is independent of E and is quadratic with
respect to the gradient of strain. One recovers the first strain gradi-
ent model of Mindlin (1964). The components of strain gradient
elasticity can be found in Tran et al. (2012).

Various extensions of the second gradient theory have been
provided in the literature among which the Fleck and Hutchinson
model (Fleck and Hutchinson, 1993, 1997). The authors postulated
the following expression for the macroscopic power law type elas-
tic energy density:

(14m)2
l +m [Eo] @1

where I, and E, are material constants, m is the power law expo-
nent defined such that m =0 and £ is the normalized” elastic
energy density of the first strain gradient theory of Mindlin (1964)
for an incompressible material. Particularly, power law elasticity is

? The elastic energy density of the second gradient for an incompressible material
Is divided by u (the shear modulus) and multiplied by 2/3 in order to recover the
square of the von Mises equivalent strain for £ when the strain gradient effects
vanish.



retrieved when the energy density reduces to £ = E’} =2/3tr
(E-E).E being the deviatoric part of the macroscopic strann. The
Fleck and Hutchinson strain gradient model is not quadratic with
the gradient of strain (except for the linear case corresponding to
m = 1) that constitutes the main difference with the macroscopic
potential derived from asymptotic homogenization.

4. Analysis for power law elasticity
4.1. Power law elasticity

The potential (&) is chosen in the form:

wie) = {hm‘}z ! m(e.,)-n .
Ttr[z) + m‘(&q} in (b)

mel
in(a) (42)

where k; and i, (resp. ky and p,) are the compressibility and the
shear moduli of layer (a) (resp. layer (b)) and &, is the equivalent
strain (within von Mises meaning):

o = \f—iii‘ E= z——tr(z)l (43)

where I is the identity for second order tensors. The case of linear
elasticity is retrieved for m = 1 while the case of a rigid plastic
material corresponds to m =0 and simultaneously k; and ks tend
to infinity. The stress-strain relation is:

6 = kotr(e)l + 2py(eeq)™ 'E (44)

with #=ain layer (a) and § = b in layer (b). The tangent modulus
(needed for the second order homogenization problem) is given by:

dd

£ . m-3
C wn(c} = 3kpl +2;4,(e.,) 'K 4 (m 1) (e.,) EOT
(45)
The fourth order tensors J and K are given by:
J=;—lel, K=1-J, =;—[6g6;+6,6,,] (46)

The case of power law incompressible materials is retrieved when
ke = ks — +0c. When the hypothesis of incompressibility is consid-
ered, the power law corresponds to rigid viscoplastic materials in
the range of power law exponent 0 < m < 1 and corresponds to

#hom/#b
1
osk-------
07
06 | -
o.5° o..z oj4 o..s ojs 1

volume fraction f,

Fig. 2. Variations of @™ ju, with the volume fraction £ for various values of the
power law exponent. From the top: m = 09, m =08, m= 07, m =06, m= 05.

the case of rigid plastic materials for m = 0 while the strain is
replaced by the strain rate tensor. In such a case, the macroscopic
elastic energy must be interpreted as the effective dissipation.

4.2. The antiplane solution

The derivation of explicit solutions in the non linear case
requires the resolution of the non linear Eq. (26) giving the func-
tion %(E) as a functions of the macroscopic strain E. It is possible
to provide the analytic solutions under antiplane conditions, corre-
sponding to a macroscopic displacement U,(x;,x;) and
U; = U; =0. The resulting non null components of the macro-
scopic strain are E;z and Ey; while the components of macroscopic
strain gradient are E;22, Eyzz and Ey23 = Eq32. The details about the
derivation of functions x%(E) and macroscopic potentials can be
found in Appendix B. Additionally we assume that both constitu-
ents are incompressible. Note however that the case of compress-
ible materials can also be investigated by using the present
approach and the results remain quite similar. The macroscopic
potentials have the following expressions:

hom
\yo - 13I'l ‘::u
+m (47)

¥ = 'lhf:_' EjapEiag + %(Enu)z]

in which g*® and #™™ are given by:
on Hally
#e= (et +forg)”
-_2 e -mp® (fa B
e = 31313#.#»W=+—W1'['4 + ”]

where n=1/m and E,, is the macroscopic equivalent strain under
antiplane sollicitation:

(48)

It
Eq = \."5(532 + Efs) (49)

A firstresultis that the macroscopic potential ‘¥, is a function of the
equivalent strain E, of degree m+ 1 while ‘¥, is a function of the
equivalent strain E., of degree m — 1. For a null strain of state, cor-
responding to E = 0, the potential ‘¥, is null and '¥; is also null
when m = 1. In the range m < 1, ¥, is singular. This singularity
is inherent to the use of the elastic power law at the microscopic
scale. Indeed, higher order homogenization problems use the tan-
gent elastic tensor that is singular when the strain is null. From a
physical point of view, the strain energy of a solid due to an external
loading must remain finite. It suggests that, when the strain tends
to zero, the gradient of strain must also tend to zero so that the total
strain energy of the solid remains finite.

Expressions in (47) introduce two coefficients, the effective
shear modulus *™ and the coefficient #*™ which depend on the
power law exponent, the volume fraction of the phase and the local
shear moduli. On Figs. 2 and 3, we represent the variations of these
two effective coefficients with the volume fraction f; for a contrast
Jis /i = 2 and for various values of the power law exponent in the
range [0.5, 1. When the volume fraction f; is equal to 0 or 1 the
unit cell is made up of a homogeneous material of shear modulus
Jiy, or yi, respectively. In these two particular cases, we retrieve for
the effective shear modulus ;™ the values y, and p. It is
observed on Fig. 3 that the effective modulus #*™ which enters
into the expression of ¥, is null in both cases corresponding to
fa =0 and f; = 1. Since the strain gradient effects at the macro-
scopic scale are due to the existence of a microstructure at the
lower scale, it is coherent that these effects vanish in the special
cases for which the unit cell becomes homogeneous. The higher
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Fig. 3. Variations of 5™/ i, with the volume fraction f, for various values of the
power law exponent. Fromthe top:m = 05 m=06, m= 07, m=08, m=0.9.

values of #™™ are then attained at intermediate values of the
volume fraction.

Another particular case for which the unit cell becomes homo-
geneous corresponds to i, = 4i,. It will be easily verified that in
this last case the effective modulus #*™ is also null. Consequently,
it would be expected to obtain more prominent microstructural
effects by increasing the contrast. This is confirmed on Figs. 4
and 5 in which we represent the effective moduli ™™ and ™™
as functions of the power law exponent in the range [0.1,100]
and for different values of the contrast. On Fig. 4 we observe that
the influence of the power law exponents on ™ is relatively
small. Conversely, the power law exponent has a great influence
on #*™ when m is small and this, particularly for high values of
the contrast. On another hand, it is also observed that for large val-
ues of m the microstructural effects vanish.

Another particular case of great importance is m= 0 corre-
sponding to a rigid ideally plastic material. However, some precau-
tion must be applied when taking the limit m — 0. This is
explained in details in the following.

hom /

H Hb

exponent m

Fig. 4. Variations of ™"/ u, as a function of the power law exponent m for three
values of contrast c =2, c=5, ¢ =10.

Tlhom / ™

exponent m

Fig 5. Variations of ™"/, as a function of the power law exponent m for three
values of contrast c= 2, ¢ =5, ¢ = 10.

When the limit m — 0 is taken in the expression of #*™ given
by (48), two expressions are obtained, depending on the choice
of the contrast ¢ = i,/ fi,. Indeed, for ¢ = 1 the limit is 7™ = +oc
but for ¢ = 1 the limit is *™ = 0. In fact, as shown below, the case
c# 1 and m= 0is not physically admissible.

By accounting for relations (24) together with (B.3) and (B.4),
the strain at the first order reads:

o in phase (a)
E(uI =) e

= inphase (b)

where index  takes the values 2 or 3. There are three limits for the

components of the strain when m — 0 (or equivalently n — ~)
depending on the value of c:

3%
e

(50)

0 in phase (b)

o ce1:d9 in phase (a)
e = 5)\:- in phase (b)

o cn1:d9 o {E,,, in phase (a)
=lihe = Ey, in phase (b)

B
oc>1:s‘,‘:’={f- in phase (a)

(51)

On another hand, the equilibrium at the interface between the
phases implies that a‘,z‘ is constant in the cell. When the limit
m=+oo is taken, the stress attains the saturation values 3u, and
3, respectively in phases (a) and (b) as illustrated on Fig. 6. How-
ever the stress strain curve is not bijective when m = +oc. For a
stress o5, equal to 3y, in layer a (resp. 3y, in layer b), the strain
admits an infinite number of possible values comprised in the range
[0. +=c]. Particularly, it can be null whenever the stress is equal to
34, thatis the case when ¢ > 1 in (51). Similarly, the strain is null
in phase b whenever the stress is equal to 3y, forc < 1in(51).The
only physical situation corresponding to a rigid plastic material is
¢ =1 for which the strain is constant and equal to the macroscopic
strain E,, in both layers. In other words, it is not possible, under
antiplane loading, to have the plastification of both layers having
two different yield stresses.

Itis then not possible to detect the microstructural effects in the
plastic regime for an antiplane macroscopic loading. Such effects
will be investigated by considering another particular macroscopic
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loading. This is effected in the next section by considering the case
of plane strain conditions.

4.3. The solution under plane strain conditions

A second particular case for which explicit expressions of
the macroscopic potentials can be derived corresponds to a
macroscopic loading with plane strain conditions. We consider a
macroscopic displacement on the form: U; =0, Uz = Uz(x2,X3)
and Us = Us(xz,x3). The remaining non null components of the
macroscopic strain are Ey where the Greek letters indices take
the values 2 or 3. Also, the hypothesis of incompressible materials
is used (ks — +oc and ks — +4oc). This implies for the macroscopic
strain that Ey; = —Ex. The components of the macroscopic gradi-
ent of strain are then E,, with Ey, = —Ey, due to the incom-
pressibility. Again, the details leading to the analytic expressions
of the macroscopic potentials can be found in Appendix C.

Under plane strain conditions and for incompressible materials,
the macroscopic potential ‘¥, has the following expression:

W = falty + oty (53)
and:
Y

Eq = \3(E+E) (54)
The macroscopic potential '¥'; can be put into the form:

En:1'TA 0 C D)[Enz
v, =l_ Ena 0 A -D C||Ens (55)

2 | En> C D B 0| Enz
Enj D C 0 BJ|Ens

In which A B, C and D depend on the macroscopic strain and are
given by:

L R AN R RN

aR (56)
Cokr (m ~ 1)Enkn, D= RE'm
with:

1
R=ff (s - u.)’[}ff‘a{% (57)

All functions A, B, C, D are null when i; = iy or fo =0or fo = 0:
that corresponds to a homogeneous material at the local scale. ‘¥,
is a function of the macroscopic strain of degree m + 1 while ¥,
is a function of the macroscopic strain of degree m — 1. The macro-
scopic potential ‘P, is then singular when E; = 0 and m < 1. Itmust
be noticed that the limit case m — 0 can be applied here without
any ambiguity. Indeed, for the plane strain solution, the longitudi-
nal components of the local stress are null as it can be shown from
the results of Appendix C. The equilibrium at the interface between

Dy — 3ygbem P (52) the layers is therefore verified implicitly while, for the antiplane
T m = solution, the equilibrium is verified only if u, = yi,.
with: The variations of A, B, C and D with the macroscopic
. equivalent strain are represented from Figs. 7-11 for the following
values of the power law exponent: m=0 (plastic case),
Almy B/ Clm D/
10 x10 10 x10 0 x10 1
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6 6 4
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Fig. 7. Variations of A, B, C and D with the macroscopic equivalent strain for fu = f, = 0.5, u/u, =10, Exn = Ezs and for a power law exponent m = 0.
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Fig. 8. Variations of A, B, € and D with the macroscopi equivalent strain for £ = § = 05, /i, = 10, En = Exs and for a power law exponent m = 05.
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Fig. 9. Variations of A, B, C and D with the macroscopic equivalent strain for f, = f, = 0.5, pi,/u, =10, Ep, = E,; and for a power law exponent m = 15.
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Fig. 10. Variations of A, B, C and D with the macroscopic equivalent strain for fo = f = 05, u, /u, =10, Exn = Ex and for a power law exponent m = 2.
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Fig. 11. Variations of A, B, C and D with the macroscopic equivalent strain for f, = f =05, u, /u, =10, Ey, = E;; and for a power law exponent m = 3.

m=05, m=15, m=2andm= 3. Inthese illustrations, we con-
sider the macroscopic loading Ey, = Ey;. The volume fraction of the
phases are f, =f,=0.5 and we consider, for the contrast,
Jiy/ ti, =10, In cases m =0 and m = 0.5 the macroscopic potential
is singular at E,; = 0. The variations of A, B, C and D in the case
m =1 are not represented since they are independent of the mac-
roscopic equivalent strain. For the values of power law exponent
m=15 m=2 and m= 3, the macroscopic potential does not
exhibit a singularity at E, = 0. It is also observed that the values
of A, B, C and D decrease when increasing the value of the power
law exponent. It suggests that the microstructural effects vanish
for large values of the power law exponent but become more pre-
dominant for small values of m. This result has been already
observed in the case of antiplane macroscopic loading.

5. Conclusion

In this paper we have investigated the microstructural effects in
non linear composites. This analysis has been conducted in the
framework of periodic homogenization combined with the method
based on matched asymptotic series. The microstructural effects
are introduced by keeping the second order term of the series
which explicitly induces the effect of the macroscopic strain

gradient. All the calculations have been performed in the case of
a stratified composite and by choosing stress strain relations for
the phases which derive from microscopic strain potentials.

The consideration of stratified composites allows to produce
various analytical expressions for the macroscopic potential. By
including the higher order term which comes from the series
expansion, it is proved that the macroscopic potential is of
Mindlin (1964) type since it is quadratic with respect to the mac-
roscopic gradient of strain. However, due to the non linearity in the
local response of the phase, the macroscopic potential has a non
linear dependence with the applied macroscopic strain. This non
linearity introduces some couplings between the macroscopic
strain and the gradient of macroscopic strain which do not exist
in the second gradient theory of Mindlin (1964).

In the second part of the paper we analyze these microstruc-
tural effects in the case of non linear constituents characterized
by power law constitutive equations. The explicit expressions of
the macroscopic potential are provided under macroscopic anti-
plane and plane strain conditions. It has been shown that the
microstructure effects become very significant for high values of
the contrast and for small values of the power law exponent m
(in the range 0 < m < 1). Conversely, for large values of the power
law exponent (in the range m > 1) the microstructural effects



vanish. The analytic results have also shown an unusual behavior
for the macroscopic potential which becomes singular when the
macroscopic strain is null. This is attributed to the use of power
law which gives a tangent tensor which is singular when the strain
is null. The analysis of microstructural effects can also be per-
formed by considering a more realistic non linear local behavior
such as elastoplasticity.

The extension of the present work to other geometries such as
composites with fibers must be deweloped in a numerical
approach. When dealing with standard non linear homogenization,
the first order cell problem can be solved at each increment of the
applied macroscopic strain. Such an approach has been often con-
sidered in the literature (Feyel, 1999; Chosh etal., 2001). Consider-
ing now the microstructural effects, we may solve the second order
cell problem enforced with the gradient of first order microscopic
fields, but the gradient is taken with respect to the macroscopic
space variable. The resolution of this cell problem is possible only
if the fundamental solution (obtained at the first order) is com-
puted but also the derivative of this solution with respect to the
applied macroscopic strain, which is not usually produced by
standard numerical methods. Therefore, new numerical strategies
must be developed to compute this derivative, this will be the sub-
jectof a future work.

Appendix A. Detailed calculation of g, and ey

When the derivatives with respect to y, and y, vanish in (19),
the equilibrium equation becomes:

sl -l (2)
0= (&

Note that ¢}’ (y) takes the constant values g and o} in each layer
which are given by (25). Consequently, we have:

(A1)

aa;“’ aal) adaly .
) =l fog (A2)
It follows that the equilibrium can be put into the form:
d (ll
(yl +&F(y) = (A3)
where F(y) is given by (23) and g, reads:
- fh o 2 % (A4)

Accounting for the definition (25) and expression (9) for £%(y), it
follows that:

a6
)= C..(y)"““ 0) = Cin0)ms + Cun ) ZEF ) (AS)
It leads to:
o,
& =f,,f,[C' M]End + [f k1 *thn : * (A.6)
On another hand, since aﬁ” is constant in the cell. we have:
Cips = qf:,, ‘%‘= Ciipe %% (A7)

which provides the expression for the derivative of %, with respect
to Epgt

TH e D[ G~ G

A8
Ey (A8)

where Dy is given by (29). Accounting for relations (A.6) and (A 8),
we obtain expression g, in (28). On another hand, e, is given by:

=32 [g:‘ "“i]

Accounting for (A8 ), we retrieve the expression of ey given in (28).

(A9)

Appendix B. Antiplane solution

The non linear Eq. (26) reads fori=1,2,3:
A (o) ™12 o\ %
S (e8n)” Felegt % (o) A

=20 () (Ba-37,) - 2m() ™ (Bt 1)

(B.1)

(EIJ “I. ) 2#.(5(,,) (Eu + ;T)b)

in which £%; and c"’, are given by:

i=1:

oy
_k"f_._

i=3: 2p,0eQ,)"

[4a2 4 o\ 2
0 1,3 (E ) + —(E N _3)
) 3(” ¥y, 3\U ®2
o 4 a2 4 as'\?
("]‘_Vlgfr 3(5"+ ) +-3-(Eu +7ft)
The solutions to these equations are:
=0, op=aFpn, o =afn (B.3)
where the constant x is given by:
=2 B4
4 ‘f"f I3 +m: 4
with n = 1/m. The computation of dy is trivial and leads to:
4+1
Yo = l n mE- (B.5)
in which g*™ is given by:
Mh— . Hally [86]

AT R

For the computation of ‘¥z, we first have to calculate g, and ey. To
this end, itis easier to use expressions (A.6) and (A.9) together with
(B.3). It leads to:

€y = dE]U
& =fJb[C=u, - ('m] Eug + a[fcd,,, +thu]flk1

Let us recall that g, is null in any case. Since Ey, is non null only for
J. k=23, the components g, are given by using indices 2, 3:

8x =fnfb[d - .m]ElrJ + 1[’ apy +fbc'w]5w
The tangent modulus Cj, reads:

(B.7)

(B.8)

o = 3kl + 2 ED (1 _T)-_ [K,,.HZ‘_’"E!_E,,E]

(B.9)
where the non null components Ey are Ey; and Eu. It can be easily
verified that the components q,,, are null. Similarly, all compo-
nents C‘ are also null. Then g, is null. It follows that ‘¥, reads:

¥, =‘2—4[r.L:,,,+f.L:,,ﬂ]Ewsl,., (8.10)



The components L, are given by:
qm w quHCl.up
The only non null components of Cyy, are Cueyy which read:

(B.11)

m-1
Capnt =%[3k-—2ﬂ.£:-'(1 _Z}L) ]Ju (B.12)
On another hand:
m-1
(‘m, = Kadis 1 + 2[1,!:" (1 —;T.) X [Kmi +2(':£2 EﬂEn]
(B.13)

It appears that Q%, = 1/k, since the term proportional to 4, is null
fori=1and j=2,3. The components Cj,, read:

Cipe = 3kl + 2085 (1 - T.)._IK“"‘

Accounting for (B.10)-(B.12) and (B.14), and taking the limit
kg — +oc one has:

(B.14)

m-1
e = LED (1 - —) (Tagys +Jupa) (B.15)
Similarly, we have for l.,,,,:
b 1 o m-1
"W = 2;4,!::,' (1 +m) (Fapya +1¢m) (B.16)

It leads to the following expression for the macroscopic potential:

Vo= Bl -5) 41 (1435 B+ 3 Bun®
(B.17)
Finally, 2 can be replaced by its expression (B.4) into the potential.
Appendix C. Solution under plane strain conditions
The non linear Eq. (26) reads fori=1,2,3:

1 b () R S

() ()

(i) () 5

These equations admit the trmal solution a; = a3 = a3 = 0. Conse-
quently, & =E and & =E. The macroscopic potential @, reads
then:

(€.1)

0 3flllu+3fh b f:‘"

14+mj ™™ €2)
with:
ry
3(Es +En) (€3)
From expressions (A.6) and (A9), we have:
81=0 8 =fub[Cps ~ o] Eus. €5 =0 (c4)

Under plane strain conditions, the tangent modulus Cj,, reads:

i = 3k + 21ET" [Kw + 2(—"',:.1ﬁfvﬁn] (C5)

The components of Cj, are:

_ =1 2(m - I)
Ch = ke + 20,ET; [K.u + ?-—E,su] (C.6)
It follows that, by assuming the same compressibility in each layer

(the case of incompressibility will be after considered by taking the
limit k = kg = ky — +0), g, reads:

= 2 folt~ p)Ery " [Ew p2m E,,E,,E,, ] (€7

The macrosoopic potential ‘¥ is:

s = o 103 + 0|88, (C8)
The components of Cfy; are:
Chu = [~ Zeez |5, + iz 5y c9)

It follows that:

1
Q= 3
] ”—‘E:.ru

(C.10)

and also:
1

Qb = —5 (C11)

a8 [I.E:i o

The macroscopic potential reads then:
1 [k fuJ

Y, = s b

2 W[“'+” £:8x

where g, is given by ( C.7). Replacing g, by its expression (C.7) leads
to (55).

(€12)
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