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Abstract

In this paper, we investigate the interfacial stress effects on the macroscopic yield
function of ductile porous media containing nanosized spheroidal cavities. The solid
matrix is assumed rigid-ideal plastic and of von Mises type with associated flow
rule. We then perform limit analysis of a spheroidal unit cell containing a confocal
spheroidal (prolate or oblate) cavity and subjected to arbitrary mechanical loadings.
Voids size effects are captured by considering at the interface between the matrix
and the cavity a surface stress model which relates the jump of the traction vec-
tor to the interfacial residual stress and interfacial plastic strain. This accounts for
a thin shell of material in which occurs a strong plastic strain accumulation. We
then provide a closed-form two-field based estimate of the overall dissipation which
contains additional terms related to the interfacial plasticity. By taking advantage
of this result, we derive parametric equations of the macroscopic yield surface of
the nanoporous plastic material. The obtained estimates are assessed through com-
parisons with numerical data. Finally, it is shown that the resulting macroscopic
criterion of the nanoporous material exhibits specific features such as (i) a depen-
dence of the yield stress on the size of the spheroidal nanovoids, (ii) asymmetry
between the yield stress in uniaxial tension and compression, (iii) more pronounced
size effects for oblate voids than for prolate ones.
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1 Introduction

The elastic properties of solids are significantly affected by the presence of sur-
faces and interfaces (see [68,13,10,41] for experimental evidence and [48,14,11,59,66]
for numerical results). Surface effects are attributed to the presence of few lay-
ers of atoms which experience a different local environment than atoms in the
bulk and have a different equilibrium positions and energy. The classical three-
dimensional linear elasticity theory generally neglects these effects since the
considered objects and structural elements are, at less, microsized but never of
the size of one or few nanometers. For such nanosized objects, the interfacial
effects become predominant since the area of surface per unit of volume is
very high. Surface effects in standard elasticity theories are modeled by means
of the Gurtin and Murdoch stress interface model [36,37] which assumes a
jump of the traction vector while the displacement field is considered con-
tinuous across the surface (see also Povstenko [58], Steigman and Ogden [62]
for various extensions). The jump condition may comply with a generalized
Young-Laplace equation which extends to solid-solid interface the well known
equation that describes capillarity effects in fluid mechanics. Thus, the discon-
tinuity of the traction vector consists of two parts, the first one is attributed
to the presence of interfacial residual stresses, independent of the deformation,
and the second one being related to elastic deformation of the interface. Note
that various studies, based on ab initio calculations and molecular dynamics,
have been recently proposed for the identification of interfacial elastic coeffi-
cients and the residual stress that occur at the free surface of a monocrystalline
material [48,61,38,71]. Mention must be also done of studies evaluating the ef-
fects of surface free energy on the elastic behavior of nano-sized particles (see
for instance [17]).

Gurtin type stress surface model has been used to investigate the inclusions
size dependency of elastic properties of nanocomposites. For instance, [19,21,22]
have proposed to generalize the fundamental framework of micromechanical
procedure to take into account the surface/interface stress effect at the nano-
scale. Sharma and Ganti [60] generalize the Eshelby inclusion problem by in-
corporating the interface stress. Other works have proposed to derive bounds
for the size dependent effective properties of nanocomposites [42,6,7]. How-
ever, it can be noted that all these studies generally concern spherical or
cylindrical nano-inhomogeneities since the solution of the corresponding Es-
helby type problem is only known for this kind of inclusion shape. Mention
has to be made of the study by Ou et al. [54,55] who, by using displacement
harmonic potential functions methods, attempted to derive the elastic fields
around a nanosized spheroidal inclusion or cavity with surface effect. However,
their studies do not deliver closed form or semi analytic expressions. In fact, a
general micromechanics theory of elastic materials containing nanoinclusions,
based on the solution of the Eshelby ellipsoidal inhomogeneity problem with
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interfacial stress, is still lacking and is not the subject of the present study.

Surface effects on the yield strength and plastic behavior of nano objects and
nanostructured materials have also been observed (see for instance [46,69] for
experimental evidence and [15,26,56,57,16,70,34] for numerical simulations).
Few recent studies consider stress interfaces effects in the context of non-linear
composites or nanoporous ductile materials [72–74,18,34,50]. In particular, by
performing a limit analysis of a hollow sphere, Dormieux and Kondo [18] gen-
eralize the Gurson model [35] in order to predict void size effects. To this end,
they make use of a plastic version of the Gurtin stress interface model (see
for instance [50]) which relates the interfacial stress to the plastic deformation
at the cavity surface. The resulting model shows a void size dependency of
the macroscopic yield strength of nanoporous media: for nanosized spherical
cavities, the strength domain appears to be significantly larger than that pre-
dicted by the Gurson model.

Alternatively, for porous media, non-local plasticity theories have been used
in [64,45,67,40,43,44] for the plastic behavior of the solid matrix instead of the
von Mises model. In [45,67], the authors extend the Rice-Tracey or the Gurson
model by considering, for the solid matrix, the Taylor dislocation based theory
of plasticity introduced by [28]. In [40,43,44], the size effect is captured by the
Fleck & Hutchinson phenomenological strain gradient plasticity theory [24]
(see also [25] for a study of voids size effect on the plastic behavior of porous
ductile media). It is interesting to note that the result obtained by Dormieux
et al. [18] are qualitatively comparable to that earlier works mentioned above,
which also predict an increase of the elastic domain by decreasing the size of
the cavity. Still in the context of non-local plasticity theories, several studies
are devoted to the study of combined voids shape and voids size effects (see for
instance [39,40,43,44]). In all these studies, the void size effect is interpreted
as the dependence of the solid matrix plasticity with an internal length scale
which is physically attributed to the generation and the storage of geomet-
rically necessary dislocations (Nye [53], Cottrell [12], Ashby [2], Fleck et al.
[23], Gao et al. [27]). A priori, there is no direct link between the ”interfacial
stress” and the ”non local approaches”. However, and along the lines of Fleck
and Hutchinson [24], microstructural effects of plastic media occur when the
strain gradient are sufficiently large compared to dislocation spacing. Still,
according to these authors, ”the expanding void is surrounded by a shell of
hardened material due to the presence of both strain and strain gradient”. Note
that, based on [50], the use of the plastic version of the stress interface model
can be physically interpreted as the existence of a thin region surrounding the
interface in which intense gradient of plastic deformation will occur. Interface
stresses model can be seen as an alternative approach to account for plastic
strain accumulation at the cavity surface.

Such approach has been developed by [18] who restrict their analysis to the
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case of spherical cavities. In the present study, we provide an extension of
their approach to the case of spheroidal (prolate or oblate) cavities. By doing
so, we also extend the classical work of Gologanu et al. [31,32] by simultane-
ously accounting for combined voids shape and void size effects. The paper is
organized as follows. In section 2, we present the limit analysis of the hollow
spheroid in the presence of stress interface. In section 3, we recall the trial
velocity field already considered in [31,32] from which is computed a com-
pact expression of the interfacial plastic strain. A two-field estimate of the
macroscopic dissipation, including new terms related to the stress interface, is
derived in section 4 from which we determine the parametric equations of the
macroscopic yield surface of the nanoporous medium (see section 5). Finally,
in section 6, we provide various illustrations of the combined voids shape and
size dependency of the macroscopic criterion. In particular, the results of our
two-field estimate are compared to data obtained by numerical computation
of the macroscopic dissipation.

2 The limit analysis accounting for interfacial stress

2.1 Description of the unit cell

Let us consider a spheroidal cavity of semi-axes a1 and b1 embedded in a
confocal spheroid of semi-axes a2 and b2 (see figure 1). The axis of the spheroids
are aligned with 0x3, where (0, x1, x2, x3) is a cartesian coordinate system of
orthonormal basis (e1, e2, e3).

b2

x3

a2

x2

x1

b1

a1

x3

x2

x1

b2

a2
b1

a1

Fig. 1. The spheroidal unit cell with a confocal spheroidal void. Case of prolate
cavity (at the left) and prolate cavity (at the right).

The assumption of confocality has been made in order to simplify analytical
computation of the macroscopic criterion in the framework of limit analysis
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methods. Note that it is the unique one that has been considered in literature
dealing with Gurson type approach. Despite its simplicity, the confocal cell
allows to represent microstructures of the type ”hollow spheroid assemblages”
(see for instance Benveniste and Milton [3]).

The volume of the cavity is V1 = 4πa1b
2
1/3 while the total volume of the

unit-cell is V2 = 4πa2b
2
2/3. The shape of the cavity is described by the as-

pect ratio a1/b1, with a1 > b1 corresponding to a prolate cavity while b1 > a1
to an oblate one. Let us denote by c the focal distance and by e1 the void
eccentricity, defined by:

c =
√
a21 − b21 =

√
a22 − b22 e1 =

c

a1
e2 =

c

a2
(prolate)

c =
√
b21 − a21 =

√
b22 − a22 e1 =

c

b1
e2 =

c

b2
(oblate)

(1)

We will use both cylindrical coordinates ρ, θ, z and (eρ, eθ, ez) the associated
orthonormal basis and the classical spheroidal coordinates λ, φ, θ (associated
orthogonal basis (eλ, eϕ, eθ) defined by:


x1 = b sin(φ) cos(θ)

x2 = b sin(φ) sin(θ)

x3 = a cos(φ)


ρ = b sin(φ)

θ = θ

z = x3 = a cos(φ)

(2)

and



eλ =
1

Lλ

{
a sin(φ) eρ + b cos(φ) e3

}
eφ =

1

Lλ

{
b cos(φ) eρ − a sin(φ) e3

}
eθ = eθ

(3)

with Lλ =
√
a2 sin2(φ) + b2 cos2(φ), λ ∈ [0,+∞[, φ ∈ [0, π] and eρ = cos(θ)e1+

sin(θ)e2, θ ∈ [0, 2π]. In the above equations: a = c cosh(λ) and b = c sinh(λ)
for a prolate void, while for the case of an oblate void a = c sinh(λ) and b =

c cosh(λ). The iso-λ surfaces define confocal spheroids with foci c =
√
|a2 − b2|

and eccentricity e = c/a, for a prolate void while e = c/b for an oblate one.
The porosity f is defined by: f = (a1b

2
1)/(a2b

2
2). The matrix of the spheroidal

unit cell is made of a rigid-plastic material obeying to the von Mises yield
criterion, σeq ≤ σ0, (σ0 being the yield stress in tension and σeq the von Mises
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equivalent stress σeq =
√

3
2
σ : σ) and the associated flow rule:

σ =
2σ0

3

d

deq
, with deq =

√
2

3
d : d, d =

1

2
(∇⊗ v + v ⊗∇) (4)

where v is the velocity field, d the strain rate tensor and deq the von Mises
equivalent strain rate. σ represents the deviatoric part of the local stress ten-
sor.

The surface between the void and the solid matrix, denoted Γ, is assumed to
be described by a stress-type interface model, which was introduced by [36] in
the context of elasticity and extended by [18,50] to plasticity. Stress interfaces
ensure the continuity of the velocity field while the traction vector, t = σ.n,
undergoes a jump which is governed by the Young-Laplace equation:

[t]Γ = − divs(τ ) (5)

In the above equation, divs(τ ) denotes the surface divergence of tensor τ such
that vector divs(τ ) = (τ ⊗ ∇) : P (n), with P (n) = I − n ⊗ n, I being
the second order identity tensor and n the normal unit vector taken on the
interface Γ and oriented from the void to the solid matrix. In (5), the notation
[t]Γ represents the jump of t across Γ defined as follows: [t]Γ = t+ − t−, where
t+ and t− are the values of the traction vector calculated on both sides of Γ.
When the interface Γ is the boundary between a void and a solid, t− = 0 and
relation (5) reduces to t+ = − divs(τ ).
In the Gurtin model [36], the interfacial stress τ has two contributions, the first
one is attributed to the presence of interfacial residual stresses, independent of
the deformation, while the second one is related to elastic deformation of the
interface. This model has been later extended in the context of plasticity by
Monchiet and Bonnet [51] along a method formalized by Benveniste [4] in the
context of linear elasticity. This method is based on the concept of equivalent
elastic interphase which accounts for the presence of a few layers of atoms
having a different local environment than atoms in the bulk. By considering
the appropriate values for the elasticity coefficients of the interphase, it can be
replaced by an idealized imperfect interface involving the jump of the traction
vector which is described by the Gurtin model. Later, [51] have extended the
work of [4] to the case of a plastic interphase. The interfacial model obtained
in this work induces a jump of the traction vector which is still given by
equation (5). However, in (5), the interfacial stress τ is related to the plastic
deformation of the interface. Its expression is:

τ = τrP (n) +
2τ0
3dseq

(ds + tr(ds)P (n)) (6)
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where τr is the interfacial residual stress, τ0 is a material parameter. Although
limited, the particular form τrP (n) (isotropic in the plane of the interface),
considered for the interfacial residual stress is able to represent some cases
of practical interest such as capillary forces. Note that recent ab initio based
calculations by [71] indicate a slight anisotropy for these residual stresses.
In (6), ds is the interfacial plastic strain rate which is defined as the restriction
of the total strain rate to the tangent plane of normal unit vector n. In (6),
dseq is the surface equivalent strain rate. The expressions of ds and dseq are:

ds = P (n).d.P (n)

dseq =
[
2

3

(
ds : ds + (trds)

2
)]1/2 (7)

Note that for a spheroidal surface n = eλ, P (n) = eθ ⊗ eθ + eφ ⊗ eφ and the
quantities ds and dseq read:

ds = dθθeθ ⊗ eθ + dφφeφ ⊗ eφ + dθφ(eθ ⊗ eφ + eφ ⊗ eθ)

dseq =
[
4

3
(d2θθ + d2φφ + d2θφ + dθθdφφ)

]1/2 (8)

2.2 Limit analysis taking into consideration interfacial stresses

As already mentioned, Hill-Mandel kinematic homogenization approach will
be used to derive the overall plastic potential of the porous solid. Thus, uni-
form strain rate boundary conditions are considered on external surface of the
hollow spheroid:

v(λ = λ2) = D.x (9)

where D is the macroscopic strain rate tensor.
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von Mises 

Matrix

v=D.x

void

stress 

interface

Fig. 2. Schematic showing the hollow spheroid with a stress interface.

The limit stress at the macroscopic scale, Σ, is:

Σ =
∂Π

∂D
(D) (10)

where Π(D), is the macroscopic dissipation given by:

Π(D) = inf
v∈K

1

V2

[∫
Ω−ω

σ0deqdV +
∫
Γ
[t]Γ .vdS

]
(11)

where the infimum is taken on K which is the space of admissible velocity
fields, i.e. of continuous and differentiable velocity fields that comply with
condition (9). The first integral in (11) is computed over the solid matrix,
defined by Ω−ω, where Ω is the domain corresponding to the unit cell, while
ω is the domain occupied by the void. The second integral in (11) is performed
over the surface Γ of the void. It is recalled that V2 = 4πa2b

2
2/3 is the volume

of Ω. Using the generalized Young-Laplace equation (5), it is readily seen that
the second integral is related to the interfacial residual stress and interfacial
plastic strain. It then follows that:

∫
Γ
[t]Γ .vdS = −

∫
Γ
divs(τ ).vdS (12)

Moreover, for any continuously differentiable two order tensor τ and vector v,

divs(τ .v) = divs(τ ).v + τ : ds (13)

The integral over Γ of the quantity divs(τ .v) being null over any closed surface,
it follows that:
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∫
Γ
divs(τ ).vdS = −

∫
Γ
τ : dsdS (14)

Finally, replacing τ by its expression (6), one obtains:

Π(D) = inf
[
1

V2

∫
Ω−ω

σ0deqdV +
1

V2

∫
Γ
τ0d

s
eqdS +

1

V2

∫
Γ
τr tr(d

s)dS
]

(15)

Note that this expression of Π(D) contains three terms: the first is classic in
the context of limit analysis of ductile porous media; the last two terms are
associated to interfacial plastic dissipations.
Note that, in the spheroidal coordinate system, the surface integral is defined
by:

∫
Γ

• dS =
∫ φ=π

φ=0

∫ θ=2π

θ=0
• b1Lλ1 sin(φ)dφdθ (16)

where Lλ1 is the value of Lλ for λ = λ1, i.e. Lλ1 =
√
a21 sin

2(φ) + b21 cos
2(φ);

for the definition of the volume integral in the expression of Π(D), the reader
is referred to [31,32].

3 The choice of the trial velocity fields

A crucial step in the derivation of an approximate closed form expression of the
macroscopic potential of the ductile porous material lies in the choice of the
trial velocity field. Generally, this field is composed in two parts: one involving
a constant traceless tensor A, one, denoted vE, which is heterogeneous, i.e.

v = A.x+BvE (17)

We propose here to adopt, for vE, the velocity field considered by Gologanu et
al. [31,32] and Monchiet et al. [49]. This field has the property to comply with
uniform strain rate conditions on any iso-λ = cst spheroid. Gologanu et al. [33],
Monchiet et al. [51] considered more sophisticated trial velocity fields in order
to derive an improved estimate of the macroscopic yield locus of ductile porous
media. In these approaches, the trial velocity field introduce a larger number of
parameters which cannot be entirely determined by the boundary conditions.
Due to additional difficulties related to the consideration of interfacial stress
effects, we propose to restrict our analysis with the trial velocity fields first
considered in [31,32]. Its expression is:
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vEλ =
c3

bLλ

[
1 +

1

2
(1− 3α)(1− 3 cos2(φ))

]
vEφ =

3c3

4ab2Lλ

[(1− α)b2 − 2αa2] sin(2φ)

vEθ = 0

(18)

In which α depends on λ or equivalently e and is given by:

α =


ab2

c3
arctanh

{
c

a

}
− b2

c2
=

1− e2

e3
(arctanh(e)− e) (prolate void)

−ab2

c3
arctan

{
c

a

}
+

b2

c2
=

e− arcsin(e)
√
1− e2

e3
(oblate void)

(19)

For the explicit dependence of a and b on the coordinates λ and e, the reader
is referred to section 2.1. The verification of uniform strain rate boundary

10.80.60.40.2
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e
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prolate case

0

e

p
a

ra
m

e
te

r 
α

Fig. 3. α as function of e for a prolate and an oblate void.

conditions at the outer spheroid λ = λ2 leads to:

A = D −DmT2; B =
a2b

2
2

c3
Dm (20)

where T2 = T (λ2), with

T (λ) = 3
a2b

2
2

ab2

[
1

2
(1− α)It + αIn

]
(21)

and

It = e1 ⊗ e1 + e2 ⊗ e2, In = e3 ⊗ e3 (22)
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These tensors are the two projectors associated to the transverse isotropy
related to the Ox3 axis of the spheroidal cavity. They comply to: In.In = In,
It.It = It, In.It = 0 and I = In + It where is recalled that I is the second
order identity tensor. From equation (18), it is readily seen that the strain
rate field in the matrix is the sum of a homogenous deviatoric field A and a
non-homogeneous field dE:

d = A+BdE (23)

with dE given by:



dEλλ = −3c3

ab2
(1− α) +

3c3a

2b2L2
λ

(1− 3α) sin2(φ)

dEφφ =
3c3

2ab2
(1− α)− 3c3a

2b2L2
λ

(1− 3α) sin2(φ)

dEθθ =
3c3

2ab2
(1− α)

dEλφ =
3c3

4bL2
λ

(1− 3α) sin(2φ)

(24)

Note that the strain field dE can be put into the form the compact form:

dE =
c3

a2b22

[
T (λ)− 3

a2b
2
2

ab2
eλ ⊗ eλ

]
(25)

In relation (23), A and B are replaced by expressions (20) while relation (25)
is used for dE. The total strain rate, d, reads then:

d = D +Dm

[
T (λ)− T2 − 3

a2b
2
2

ab2
eλ ⊗ eλ

]
(26)

where it is recalled that T2 = T (λ2) and T (λ) is given by (21). Taking into
account this expression, the surface strain rate tensor, ds, defined by the first
relation in (7) reads:

ds = P (θ, φ).
[
D +Dm(T1 − T2)

]
.P (θ, φ) (27)

for which account has been taken of the identity P (φ, θ).eλ = 0 and T1 =
T (λ1). As it will be shown in the next section, the representation of the inter-
facial plastic strain rate tensor, in the form given by (27), is required for the
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computation of the integrals which enter into the definition of Π(D) given by
(11).

4 Closed-form expression of the macroscopic dissipation

The trial velocity field being entirely determined by the boundary conditions,
no minimization procedure is required for Π(D) which, according to (15), can
be put into the form:

Π(D) = Π1(D) + Π2(D) + Π3(D) (28)

where the quantities Π1(D), Π2(D) and Π3(D) read:

Π1(D) =
1

V2

∫
Ω−ω

σ0deqdV

Π2(D) =
1

V2

∫
Γ
τr tr(ds)dS

Π3(D) =
1

V2

∫
Γ
τ0d

s
eqdS

(29)

Expressions of these quantities will be provided in the following sections, 4.1,
4.2 and 4.3, respectively.

4.1 Approximate expression of Π1(D)

Based on the trial velocity field (17) (together with (18)), Gologanu et al.
[31,32] derived closed-form expressions of Π1(D) and then a two-field estimate
of the macroscopic criterion in the cases of a prolate and an oblate cavity. Al-
though the two approximate expressions obtained by these authors prove to
be accurate, comparatively to the exact two-field solution (evaluated numer-
ically without any approximations), we propose to use the unified expression
established in [49], valid for both cases of a prolate and an oblate cavity. The
latter, derived in the more general case of an anisotropic Hill plastic porous
medium with spheroidal cavities, reduced in the limit case of the von Mises
matrix to:

Π1(D) = σ0f

[
Y arcsinh

{
uY

X

}
−

√
X2 + u2Y 2

u

]u=u2

u=u1

(30)
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in which the quantities X and Y depend on the macroscopic strain rate tensor
as:

X =
[
(1− ζ)(Dq + (1− 3α2)Dm)

2 +D2
s +D2

t

]1/2
,

Y =
1

fκ
[3 + η(1− 3α2)]Dm +

η

fκ
Dq

(31)

Expressions of coefficients η, κ and ζ as well as u1 and u2 are reported in
appendix A. The invariant quantities, Dq, Ds and Dt, in agreement with the
void-induced transverse isotropy (with a symmetry axis Ox3), are defined as:



Dq =
2

3
D33 −

1

3
(D11 +D22)

Ds =
1√
3

√
(D22 −D11)2 + 4D2

12

Dt =
2√
3

√
D2

13 +D2
23

(32)

The macroscopic equivalent strain rate can then be decomposed as D2
eq =

D2
q +D2

s +D2
t .

4.2 Exact expression for Π2(D)

We now propose to compute the exact expression of the dissipation Π2(D)
associated to the interfacial residual stresses. Introducing expression (27) in
the second relation in (29) leads to:

Π2(D) =
τrS1

V2

[D +Dm(T1 − T2)] : P (33)

where the second order tensor P is defined by:

P =
1

S1

∫
Γ
P (θ, φ)dS =

1

2
(1 + γ)It + (1− γ)In (34)

and S1 is the area of the spheroid of coordinate λ = λ1:

S1 =


2πa21b1

c
arctan

{
c

b1

}
+ 2πb21 (prolate void)

2πa21b1
c

arctanh
{
c

b1

}
+ 2πb21 (oblate void)

(35)
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The parameter γ, which depends on the cavity shape, reads:

γ =
b21

a21 − b21

(
1− 4b21π

S1

)
(36)

For more details concerning the computation of the integral in (34), one may
refer to appendix B.

The value of γ for the particular cases of a spherical, cylindrical and penny-
shaped crack are provided in table 1. The variation of γ with the void eccentric-
ity e1 are given on figure 4. It can be noted that, for any value of eccentricity,
γ lies in the range [0, 1].

sphere cylinder crack

γ 1/3 0 1

Table 1
Values of γ for some particular cases of a spheroidal cavity.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.81 0.6 0.4 0.2

e e

oblate case

prolate case

p
a
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m
e
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r 
γ

Fig. 4. γ as function of e1 for a prolate and an oblate void.

Interestingly, Π2(D), given by (33), can be put into the form:

Π2(D) =
τrS1

V1

D : N (37)

where V1 = 4πa1b
2
1/3 is the volume of the spheroidal cavity while the second

order tensor N is given by:

N =
[
I+

1

3
I ⊗ (T1 − T2)

]
: P (38)
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I, whose components are Iijkl = (δikδjl + δilδjk)/2, is the fourth order identity
tensor, δij being the Kronecker symbol. From the definition (21) of T (λ) and
the expression (34) of P , one obtains:

N =
1

2

[
1 + γ + (α1 − fα2)(1− 3γ)

]
It

+
[
1− γ − 1

2
(1− α1 − f(1− α2)(1− 3γ))

]
In

(39)

This tensor depends on the eccentricity e1, e2 (through α1, α2 and γ in (19)
and (36)) and of the porosity f . In the particular case of spherical void, N
reduces to 2

3
I. In the general case, it is convenient to express Π2(D) as function

of Dm, Dq, Ds and Dt, given in (32):

Π2(D) =
τrS1

V1

(g1Dm + g2Dq) (40)

with:

g1 = 2− 1

2
(1− 3γ)(1− 3α1 − f(1− 3α2)), g2 =

f

2
(1− 3γ) (41)

4.3 An upper bound for Π3(D)

We are now interested by the derivation of the dissipation Π3(D) associated
to the plastic deformation of the surface Γ. It is defined by the last relation in
(29), in which the interfacial equivalent strain rate, dseq, is given by (7). The
required expressions, (7) and (27), for the interfacial plastic strain rate leads
to:

dseq =
[
2

3
(D +Dm(T1 − T2)) : P(θ, φ) : (D +Dm(T1 − T2))

]1/2
(42)

where the fourth order tensor P(θ, φ) is given by:

P(θ, φ) = P (θ, φ)⊗P (θ, φ) + P (θ, φ)⊗ P (θ, φ) (43)

for which the following notation has been used (for any couple of second order
tensors a and b):

(a⊗b)ijkl =
1

2
(aikbjl + ailbjk) (44)
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At this stage, it is not possible to derive a closed-form expression of Π3(D),
even in the simplest case of a spherical void (see [18]). However, based on
the Cauchy-Schwartz inequality, one can establish an upper bound for Π3(D).
Indeed, for the positive and square integrable function dseq, one has:

1

S1

∫
Γ
dseqdS ≤

√
1

S1

∫
Γ
(dseq)

2dS (45)

The following approximation is then used:

Approximation A1 : In the expression of Π3(D) the integral of the interfacial
equivalent strain rate over the surface of the spheroidal cavity, i.e.

∫
Γ d

s
eqdS, is

replaced by S1

[
1
S1

∫
Γ(d

s
eq)

2dS
]1/2

.

With this approximation, an upper bound of the plastic dissipation Π3(D) is:

Π3(d) =
S1

V2

[
1

S1

∫
Γ
(dseq)

2dS
]1/2

=
S1

V2

[
2

3
(D +Dm(T1 − T2)) : P : (D +Dm(T1 − T2))

]1/2 (46)

where the fourth order tensor P is defined by:

P =
1

S1

∫
Γ
P(θ, φ)dS = (3γ + µ)E1 + 2µE2 +

2γ + µ

2
E3

+
[
5

2
(1− γ)− 2µ

]
E4 +

[
3

2
(1− γ)− µ

]
(E5 + E6)

(47)

En for n = 1..6 are the fourth order tensors of the Walpole basis [65] (the
elements of this basis are recalled in appendix B). Parameter µ is given by:

µ =
a2

a2 − b2
(1− 3γ) (48)

The details concerning the computation of the integral in (47) can be found
in appendix B.

The values of µ for a spherical or a cylindrical void, as well as for a penny-
shaped crack are provided in table 2. For any value of the eccentricity, coef-
ficient µ lies in the range [0, 1]. Its variation with respect to e1 is shown on
figure 5.
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Table 2
Values of µ for particular cases of a spheroidal cavity.

sphere cylinder crack

µ 8/15 1 0

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.81 0.6 0.4 0.2

e1 e1

oblate case

prolate case

p
a
ra

m
e
te

r 
µ

Fig. 5. Variations of µ with the eccentricity e1 in the case of prolate and an oblate
void.

Finally, Π3(D) can be put into the form:

Π3(D) =
τ0S1

V1

√
2

3
D : S : D (49)

where the fourth order tensor S is defined by:

S = f2
[
I+ I ⊗ (T1 − T2)

]
: P :

[
I+ (T1 − T2)⊗ I

]
(50)

and the components of S are provided in appendix B. As already done for
Π1(D) and Π2(D), we now express Π3(D) as function of the strain rate in-
variants introduced in (32):

Π3(D) =
τ0S1

V1

√
h1D2

m + h2D2
q + 2h3DmDq + h4D2

s + h5D2
t (51)

where the coefficients hn are given by:
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h1 = (3γ + 3µ− 2)U2 + 2(3γ − 1)U + 4

h2 = f2(3γ + 3µ− 2)

h3 = f(3γ + 3µ− 2)U + f(3γ − 1)

h4 =
f 2

2
(2γ + µ)

h5 =
f 2

2
(5− 4µ− 5γ)

(52)

with U = 1− 3α1 − f(1− 3α2), γ being given by (36) and µ by (48).

5 An estimate of the macroscopic yield surface

5.1 The parametric equations

The macroscopic yield surface of the nanoporous medium is obtained from
equation (10) in which the macroscopic dissipation Π(D) is obtained as the
sum of Π1(D), Π2(D) and Π3(D) whose expressions are given by (30), (40)
and (51) respectively.
Equation (10) defines a hyper-surface of dimension 5 in the space of macro-
scopic stress. Note that Π1(D), Π2(D) and Π3(D) and then Π(D) depends on
the macroscopic strain rate tensor, D, only through the invariants Dm, Dq, Ds

and Dt. The yield surface can then be deduced from the following parametric
equations:



Σm =
1

3

∂Π

∂Dm

Σq =
∂Π

∂Dq

Σs =
∂Π

∂Ds

Σt =
∂Π

∂Dt

(53)

where Σm, Σq, Σs and Σt are the invariants of the macroscopic stress defined
by:
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Σm =
1

3
(Σ11 + Σ22 + Σ33)

Σq = Σ33 −
1

2
(Σ11 + Σ22)

Σs =

√
3

2

√
(Σ22 − Σ11)2 + 4Σ2

12

Σt =
√
3
√
Σ2

13 + Σ2
23

(54)

Relations (53) corresponds to a surface of dimension 3 in the space of dimen-
sion 4 defined by (Σm,Σq,Σs,Σt). Unfortunately, for general loading case, it is
not possible to derive a closed-form solution of the system given by (53), even
for cylindrical or spherical voids. However, we succeed to identify closed-form
expressions in some particular cases of macroscopic stress loading or values of
the material parameters σ0, τ0 and τr. These solutions are presented in the
next section.

The impossibility to obtain an explicit expression of the macroscopic yield
surface does not matter by itself since relations (53) provide a set of para-
metric equations which are sufficient for the representation of the yield sur-
face. Introducing the following three non dimensional variables ξ1 = Dq/Dm,
ξ2 = Ds/Dm and ξ3 = Dt/Dm, relations (53) can be rewritten as:



Σm = G1(ξ1, ξ2, ξ3)

Σq = G2(ξ1, ξ2, ξ3)

Σs = G3(ξ1, ξ2, ξ3)

Σt = G4(ξ1, ξ2, ξ3)

(55)

Functions Gn(ξ1, ξ2, ξ3) for n = 1, 2, 3, 4 are explicitly given in appendix C.
The macroscopic yield surface can then be obtained by varying ξ1, ξ2 and ξ3
from −∞ to +∞.

Remark 1: The term corresponding to Π2(D) is linear with respect to the
macroscopic strain rate tensor, D; this introduces the constant tensor τrS1

V1
N

in equation (10). The derivatives of Π1(D) and Π3(D) according to D are
null for D = 0. Consequently, the interfacial residual stress, through the term
τrS1

V1
N , induces a change in position of the center of the macroscopic yield

surface. Since tensor N is axisymmetric (it has only two components along It
and In), the residual stress translates the macroscopic yield locus along the
direction related to the macroscopic stress defined by Σm and Σq. The position
of the center in the space (Σm,Σq,Σs,Σt) is denoted (Cm, Cq, 0, 0) where Cm
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and Cq are given by:

Cm =
τrS1

3V1

g1, Cq =
τrS1

V1

g2 (56)

Coefficients g1 and g2 are given by relations (41). Note also that Cq is null in
the case of a spherical void (corresponding to γ = 1/3) which suggests that
the interfacial residual stress τr only induces a translation of the macroscopic
yield locus along the axis related to Σm.

Remark 2: By replacing ξ1 by −ξ1 in the parametric equations (55), Σm and Σq

are changed in −Σm and −Σq when τr = 0. This suggests that the macroscopic
yield surface, in the plane (Σm,Σq), is symmetric with respect to its center
(Cm, Cq). The representation of this yield surface can then be restricted to the
half plane (Σm > 0,Σq) in the absence of residual stresses.

Remark 3: By replacing ξ2 by −ξ2 in the parametric equations (55), Σm is
changed in −Σm while Σs remains unchanged. It follows that the yield locus is
symmetric with respect to axis Σs = 0 in the plane (Σm,Σs). Noting also that
Σs is positive by definition, the yield locus is represented in the quart plane
(Σm > 0,Σs > 0). This remark also holds for the component Σt at the place
of Σs.

Remark 4: In the particular case of spherical voids, expressions of G1, G2, G3,
G4 are given in appendix C. This leads to a parametric equation for the mean
stress Σm and equivalent stress Σeq:



Σm =
2σ0

3

[
arcsinh

(
2u

fξ

) ]1
f
+

2τr
a1

+
τ0
a1

4√
4 +

3f2

5
ξ2

Σeq = −σ0


√
4u2 + f 2ξ2

uξ

1
f

+
τ0
a1

9ξf2

5

√
4 +

3f 2

5
ξ2

(57)

where ξ = Deq/Dm and a1 is the radius of the nanovoid.
By incorporating the effects of interfacial residual stress, (57) extends the
results established by Dormieux and Kondo [18] who investigated the case of
spherical voids.

5.2 Closed form expression of the yield function in some particular cases

• Case 1: τ0 = 0
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In this case, the term related to the interfacial plastic strain dissipation,
Π3(D), vanishes in the expression of Π(D). The macroscopic criterion takes
then the form (see appendix D for more details):

(Σq − Cq − ηT )2

(1− ζ)σ2
0

+
Σ2

s

σ2
0

+
Σ2

t

σ2
0

+2(1 + g)(f + g) cosh
(
κT

σ0

)
− (1 + g)2 − (f + g)2 = 0

(58)

with T = Σm −Cm − 1
3
(1− 3α2)(Σq −Cq). It is recalled that coefficients η, ζ,

κ and g are given in appendix A.
For the particular case of spherical voids (for which a1 = b1, ζ = 0, η = 0,
κ = 3/2 and α2 = 1/3), note that the above expression coincides with that
given by [18] when the pore space is filled by a fluid and capillary effects
develop in the solid/fluid interface (here τr = γsf , the quantity γsf denoting
the surface tension):

Σ2
eq

σ2
0

+ 2f cosh

(
3
Σm − 2τr/a1

2σ0

)
− 1− f2 = 0 (59)

Note that (59) reduces to the well-known result of Gurson [35] when τr = 0
or for large values of cavity radius a1. In the same vein, when τr = 0 and cav-
ities are spheroidal, (58) reduces to the one established in [49] for a von Mises
Matrix (obtained as a particular case of a plastically anisotropic matrix) 1 .

• Case 2: ∂Π1(D)
∂(D)

<< ∂Π2(D)
∂(D)

and ∂Π1(D)
∂(D)

<< ∂Π3(D)
∂(D)

Introducing (37) and (49) into relation (10) yields:

Σ =
S1

V1

τrN +
2τ0
3

S : D√
2
3
D : S : D

 (60)

with N given by (39) and S is provided in appendix B.
(60) leads to the following macroscopic elliptic criterion:

3

2

[
Σ− τrS1

V1

N
]
: S−1 :

[
Σ− τrS1

V1

N
]
=
(
τ0S1

V1

)2

(61)

which is anisotropic due to the presence of directional tensors N and S.
In the case of a hollow sphere, one has S1 = 4πa21, V1 = 4πa31/3, N = 2/3I

1 Note that the latter has the same form as the GLD-model [31,32] but with other
definitions of the coefficients η, ζ, κ, g.
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and S = 2J + 3f2

5
K in which J = 1

3
I ⊗ I, K = I− J, I being the fourth order

symmetric identity. The macroscopic criterion then reduces to:

5

27f 2
Σ2

eq +
1

4

(
Σm − 2τr

a1

)2

=
(
τ0
a1

)2

(62)

• Case 3: Dm = Dq = Dt = 0

The hollow spheroid is subjected to the following macroscopic shear strain

rate loading: D = D12e1
s
⊗ e2 or D = D11(e1 ⊗ e1 − e2 ⊗ e2). In that cases,

Ds = 2|D12|/
√
3 or Ds = 2|D11|/

√
3, respectively. The macroscopic criterion

corresponding to this shear loading reads:

Σs = (1− f)σ0 +
τ0S1

V1

f

√
γ +

µ

2
(63)

It is noted that this result provides an additional interfacial term, τ0S1

V1
f
√
γ + µ

2
,

comparatively to the GLD-model [31,32] or result by [49]. Note also that the
interfacial residual stress τr does not affect the above shear strength Σs.

• Case 4: Dm = Dq = Ds = 0

This is similar to the above one and corresponds to the following macroscopic

shear strain rate loading, D = D13e1
s
⊗ e3 or D = D23e2

s
⊗ e3, for which

Dt = 2|D13|/
√
3 and Dt = 2|D23|/

√
3 respectively. The macroscopic shear

strength corresponding to this loading is then given by:

Σt = (1− f)σ0 +
τ0S1

V1

f

√
5

2
(1− γ)− 2µ (64)

6 Illustrations and validations with numerical calculations

In this section, we propose to illustrate the salient features of the new macro-
scopic criterion of a ductile material containing spheroidal nanocavities. In
particular, the combined effects of voids size and voids shape will be analyzed.
These illustrations are considered for an axisymmetric loading represented by
the values of the stress components Σq = Σ33−Σ11 and Σm = (2Σ11+Σ33)/3.
We assume that Σs = Σt = 0, which consists to impose Ds = Dt = 0 in the
expressions of the macroscopic dissipation and then to put ξ2 = ξ3 = 0 in
the parametric equations (55). The macroscopic criterion is then described by
two parametric equations evolving the macroscopic stress invariants Σm and
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Σt and the parameter ξ1.
We will also check the accuracy of the approximate criterion by comparing
its predictions to numerical solutions. Indeed, equations (55) have been de-
rived from (53) in which a number of approximations has been used in order
to obtain a closed-form expression of the macroscopic dissipation Π(D). The
accuracy of the approximate criterion needs then to be assessed through com-
parisons with the exact two-field criterion computed numerically. We will first
deal with a spherical and then a cylindrical void; the cases of an arbitrary
prolate and oblate cavity is thereafter investigated. Finally, we will focus on
the case of a penny-shaped crack for which particular attention is needed when
computing the limit of Π2(D) and Π3(D) when the aspect ratio tends to zero.

6.1 Case of spherical nano-voids

6.1.1 Assessment from atomistic simulations

In order to investigate the role of the interfacial stress on the macroscopic
yielding of plastic materials containing nanovoids we propose a qualitative
evaluation of the the interfacial parameters τ0 and τr. To this end, we refer
to the recent study of Mi et al. [47] who quantify the effect of void radius
on the yield strength of a porous cubic single crystal aluminium by making
use of atomistic simulations (see also Traiviratana et al. [63] who provide
similar results). In this work, they consider a unit cell containing a spherical
cavity submitted to a uniaxial tension E33, other components of the macro-
scopic strain remaining equal to zero. Four size for the cavity radius has been
considered while the volume fraction of cavity is kept constant and equal to
f = 0.0042. The numerical data in [47] have been reported on figure 6 (the
circles) and show the values of the yield strength on the macroscopic yield
stress for Σ11 as function of the radius of the cavity. It must be noted that
these results show a strong effect of the cavity radius on the macroscopic yield
strength.

We now propose to compare the results obtained by atomistic simulations
with the macroscopic model defined by the parametric equations (57). Under
uniaxial tension, the strain rate tensor and the stress tensor are on the form:
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D =


0 0 0

0 0 0

0 0 D33

 , Σ =


Σ11 0 0

0 Σ11 0

0 0 Σ33

 (65)

For such loading case, Dm = D33/3 while Deq = 2D33/3. Parameter ξ, which
appears in equations (57), takes then the value ξ = 2. In other hand, the yield
stress Σ33 is given by Σ33 = Σm+2Σeq/3 where Σm and Σeq are given by (57).
It must be noted that the dependence of Σ33 with the void radius is on the
form Σ33 = P +Q/a1 for which the two constants P and Q are given by:


P =

2σ0

3

arcsinh(u
f

)
−

√
u2 + f 2

u

1
f

Q =
2τr
a1

+
2τ0
a1

√
1 +

3f2

5

(66)

and which are evaluated with the numerical data provided in the paper of Mi
et al. [47]. This computation leads to: P = 2.266 GPa and Q = 1.089 GPa.
The volume fraction is known and equal to f = 0.0042, the value of σ0 is
deduced from the first relation in (66), it gives σ0 ≃ 0.59 GPa. In (66), the
value of Q depends on two unknown material parameters, τ0 and τr. In order
to obtain a qualitative evaluation of τ0 and τr, we first consider the particular
case τr = 0 and then τ0 = 0. The values of the porosity being very small, it is
possible, for this qualitative evaluation of the surface parameters, to neglect
the term 3f 2/4 under the square root in the expression of Q. This coefficient
is then approximated by:

Q =
2τr
a1

+
2τ0
a1

(67)

Note that in the above expression the effect of τ0 and τr on coefficient Q is
the same. If τr = 0, one has τ0 = 0.545 N/m. The second case, τ0 = 0, leads
to the same value for τr. Note that the computation of both τ0 and τr could
be done by performing the atomistic simulation in the case of uniaxial com-
pression, indeed, it will be recalled that the term containing τr introduces an
asymmetry between tension and compression.

In figure 6, the numerical data obtained from atomistic simulations (the cir-
cles) are compared to the parametric criterion (57) with the calibrated material
parameters τ0 and τr (the full line). Just as information, we also represent the
prediction of the Gurson model, which do not account for the size effect, and
which corresponds to Σ33 = P . It must be noted that the model can reproduce
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the dependence of the yield strength with the cavity radius in the particular
case of spherical shape.

0 0.5 1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

5.5

6

Gurson

Σ11 (in GPa)

Radius a1

Fig. 6. Yield strength for Σ11 as function of the radius of the cavity. Comparison
between the numerical date obtained form atomistic simulation by Mi et al. [47]
(circles), the macroscopic model Σ11 = P +Q/a1 with optimized value values for P
and Q (the full line) and the Gurson prediction (dashed line).

6.1.2 Representation of the macroscopic criterion
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k=0

k=0.25
k=0.5

Σq/σ0

Σm/σ0

Fig. 7. Yield loci for spherical nanovoids. Comparison between the approximate
criterion (dashed line) and the exact, numerical two-field criteria (full line with
circles) for a porosity f = 0.1 and for various values of k = τ0/(a1σ0).
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Figure 7 illustrates the particular case of spherical nano-cavities for which
the approximate yield surface is given by the parametric equation (55). Two
values of the non dimensional parameter k = τ0/(a1σ0), namely k = 0.25 and
k = 0.5, as well as a fixed porosity f = 0.1 and τr = 0 are considered. By
using the values τ0 = 0.54N/m and σ0 = 0.59GPa, the cases k = 0.25 and
k = 0.5 correspond to a cavity of radius 1.83nm and 3.66nm respectively. The
results show an important effect of the parameter k on the macroscopic yield
locus: the yield strength domain increases when the voids size decreases. In
this figure, a very good agreement is also observed between the approximate
criterion and the results obtained by numerically evaluating the macroscopic
dissipation (15).

6.2 Case of cylindrical nano-cavities

The case of a hollow cylinder corresponds to the limits a1 → ∞ and a2 → ∞,
that is e1 → 1 and e2 → 1. On figure 8 is represented the macroscopic yield
function in the plane (Σm,Σq) for a porosity f = 0.1 and for various values of
the non dimensional parameter k = τ0/(b1σ0); the residual stress τr = 0 for
this illustration. These results show an important effect of the cavity size on
the macroscopic yield locus, similar to that observed for spherical voids.
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k=0.25

k=0.5

Σq/σ0

Σm/σ0

Fig. 8. Yield loci for the ductile material with a cylindrical nanovoid for a porosity
f = 0.1 and for various values of k = τ0/(b1σ0).
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Fig. 9. Yield loci for a prolate cavity with an aspect ratio a1/b1 = 2 (at the left)
a1/b1 = 5 (at the right) and a porosity f = 0.1. Comparison between the approxi-
mate (full line with points) and the exact, numerical, two-field criteria (circles) for
various values of k = τ0/(b1σ0).

6.3 Ductile materials with spheroidal nanovoids

On Figure 9, is represented the macroscopic yield surface for the case of a
prolate void. On the left, this yield surface is plotted for an aspect ratio
a1/b1 = 2 and a porosity f = 0.1, while, at the right, the figure corresponds
to a1/b1 = 5 and the same porosity. k is the non dimensional parameter de-
fined as k = τ0/(b1σ0). To check the accuracy of the approximate criterion
(full line with the points), we compare the results with numerical data of the
exact two-field criterion (circles): a very good agreement is observed. Figure
10 displays similar results for the case of an oblate cavity. At the right, the
aspect ratio is a1/b1 = 1/2 while at the left, an aspect ratio of a1/b1 = 1/5 is
considered. A very good agreement between the ”approximate”and the ”exact”
two-field criterion is observed for low values of the parameter k = τ0/(b1σ0).
When increasing k, some slight differences are noted in the region of positive
values of Σq and high values of the mean stress Σm. Beyond that differences, it
can be also noted that the approximate criterion seems to preserve the upper
bound character of the limit analysis-based approach, since the predictions of
the approximate two-field criterion are larger than the numerical ones.

We now represent on figure 11 the yield strength of the nanoporous medium
as function of the parameter k = τ0/(b1σ0). At the right, we represent the
deviatoric yield strength, Σq (other components of the macroscopic stress are
null), obtained by putting ξ2 = ξ3 = 0 and ξ1 = +∞ in the parametric equa-
tions (55). A porosity f = 0.1 is considered and we compare the predictions
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Fig. 10. Yield loci for a oblate cavity with an aspect ratio a1/b1 = 1/2 (at the left)
a1/b1 = 1/5 (at the right) and a porosity f = 0.1. Comparison between the approx-
imate (full line with points) and the exact, numerical, two-field criteria (circles), for
various values of k = τ0/(b1σ0).

for a prolate cavity (with the aspect ratio a1/b1 = 5) with those obtained
for an oblate one (with the aspect ratio a1/b1 = 1/5). Also, in each case, the
approximate value for the plastic limit is compared to the numerical exact
one. The symbols used on figure 11 are the same as that of figures 9 and 10:
the full line with the points corresponds to the approximate solution, whereas
the circles are associated to the numerical two-field estimate. On the left, we
present similar results for Σm (other components of the macroscopic stress are
null), obtained by putting ξ1 = ξ2 = ξ3 = 0 in the parametric equations (55).
As expected, the yield strength increase when decreasing the voids size. It is
worth noticing that the voids size effects seem to be more important in the
case of an oblate cavity than for a prolate one. The reason is that for the same
void porosity, the area of the void surface is greater for an oblate cavity than
for a prolate one.

For completeness, we now propose to evaluate the effect of the interfacial
residual stresses on the macroscopic yield surface of the nanoporous material.
To this end, we come back to the case τ0 = 0 which leads to the closed-form
expression (58). On figure 12, on the left, are represented the yield surfaces
for a prolate cavity with an aspect ratio a1/b1 = 1/2, a porosity f = 0.1 and
two values for the non dimensional parameter kr = τr/(b1σ0). On the right,
are represented similar results for the case of an oblate cavity having an as-
pect ratio a1/b1 = 1/5. A significant influence of the residual stress on the
yield strength is observed. More precisely, the residual stresses induce a trans-
lation of the center of the macroscopic yield surface along both axis related
to the macroscopic stress invariants Σm and Σq. This imply an asymmetry of
the macroscopic yield strength between tension and compression. Again, it is
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observed that the interfacial stress effects are more pronounced for an oblate
cavity than for a prolate one (for the same reasons mentioned above).
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6.4 The particular case of nano penny-shaped cracks

We consider now the case of a nanosized penny-shaped crack, corresponding
to an oblate spheroidal nanocavity with an aspect ratio ϵ = a1/b1 → 0 or
equivalently with an eccentricity e1 → 1. Since the volume V1 of the cavity
tends to zero, the ratio τ0S1

V1
which appears in expression of Π2(D) and Π3(D),

respectively given by (40) and (51), diverge. In the other hand, coefficients hn

for n = 1..5 which enters under the square root in (51) (and given by (52)) as
well as the coefficients gn which appears in (40) (and given by (41)) tend to zero
when the limit e1 → 1 is considered. However, it can be shown that Π2(D) and
Π3(D) have a finite limit when e1 → 1. Indeed, in the case of a penny-shaped
crack, coefficients hn are proportional to ϵ2 and gn are proportional to ϵ while
the ratio τ0S1

V1
is proportional to 1

ϵ
. By computing carefully the expressions of

the dissipation Π2(D) and Π3(D), we get:

Π2(D) =
3τr
2b1

(g̃1Dm + g̃2Dq)

Π3(D) =
3τ0
2b1

√
h̃1D2

m + h̃2D2
q + 2h̃3DmDq + h̃4D2

s

(68)

where coefficients g̃n for n = 1, 2 are obtained by taking the limit of gn/ϵ for
ϵ → 0, while h̃n for n = 1, 2, 3, 4 are obtained as the limit of hn/ϵ

2 for ϵ → 0.
Note that term involving Dt does not appear in Π3(D) (68); this is due to the
fact that the limit h5/ϵ

2 for ϵ → 0 is zero. The final expressions for g̃n and h̃n

are:



g̃1 =
3π

2
− (1− 3α2)d

g̃2 = d

h̃1 = 24 +
9π2

4
− 3π(1− 3α2)d+ (1− 3α2)

2d2

h̃2 = d2

h̃3 =
1

2
(3π − 2d(1− 3α2))d

h̃4 = d2

(69)

in which d is the crack density parameter, d = b31/(a2b
2
2), introduced first

by Bristow [8] and later considered by Budiansky and O’Connell [9] when
studying elastic properties of cracked media. In figure 13, we represent the
macroscopic criterion for a penny-shaped crack having a density parameter
d = 0.2; various values of the non dimensional parameter k = τ0/(b1σ0) and
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τr = 0 are considered. Again, it can be observed that the approximate criterion
(full line with points) compare well with the exact two-field criterion (circles).

7 Conclusion

The present paper has been devoted to the study of anisotropic ductile nanoporous
materials. Particular emphasis has been put on interfacial stress and its in-
fluence on the overall yield criterion. The combined effects of void shape and
size are investigated by considering prolate and oblate cavities with surface
stresses. The theoretical development has been carried out by making use of
limit analysis of a spheroidal unit cell made up of a von Mises solid matrix
containing a confocal spheroidal cavity. To this end, the trial velocity field,
introduced by Gologanu et al. [31,32], has been considered in order to derive
the macroscopic yield criterion.
An original aspect of the analysis lies in the incorporation of a stress interface
(between void and matrix) which accounts for a jump of the traction vector
across the surface of the void. To this end, we took advantage of the plas-
tic version of the Gurtin model, recently proposed by Monchiet and Bonnet
[50], in which the jump of the traction vector at the void-matrix interface re-
sults from two contributions: surface residual stresses and plastic deformation
at the void surface. In addition to the classical volumetric dissipation in the
matrix, two different contributions to the macroscopic dissipation have been
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identified; they correspond to interfacial residual stresses and plastic strain
rates, respectively. Closed-form expressions of these interfacial contributions
have been derived. This allowed to determine approximate parametric equa-
tions of the macroscopic yield function which, interestingly, points out the
crucial role of the ratio between the void surface and the cell volume. These
results extend those recently established by [18] which deal with ductile mate-
rials containing spherical nanovoids and in which voids size effects have been
also demonstrated. In addition to the above results, numerical calculations,
based on the considered two-field trial velocity have been performed in order
to derive an upper bound for the macroscopic yield criterion. Illustrations has
been provided for various shape of the cavity and various values of the mate-
rial parameters which enter into the stress interface model. It has been shown
that the stress interface has a significant effect on the macroscopic yield sur-
face of the ductile material containing spheroidal nanocavities. In particular,
the surface plastic deformation induces, at the macroscopic level, an increase
of the yield strength. Concerning the interfacial residual stress, it leads to a
change in position of the macroscopic yield surface, resulting in an asymmetry
between tension and compression. Note that a good agreement has been noted
between the predictions of the approximate parametric equations and that of
the numerical upper bound. Finally, it has been shown that the surface effects
on the macroscopic yield strength are more pronounced for an oblate cavity
than for a prolate one.
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A Coefficients in Π1(D)

In this appendix are provided the coefficients which enter in the closed-form
expression of the plastic dissipation Π1(D) given by (30). Expressions of co-
efficients η and ζ are
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η =
κ2(1 + g)(f + g)(α2 − α1)

(1− f)
; ζ =

κ2(1 + g)(f + g)(α2 − α1)
2

(1− f)2
(A.1)

where g is defined by:

g =
c3

a2b22
=

e32√
1− e22

(A.2)

and coefficient κ is defined by:

κ =
1

ln(f)

∫ e2

e1

[
3(1 + 3α2) +

6(1− 3α)

3− 2e2

]
3− 2e2

e(1− e2)
de (prolate)

κ =
1

ln
(
g+f
1+g

) ∫ e2

e1

[
3(1 + 3α2) +

6(1− 3α)(1− e2

3− e2

]
3− e2

e(1− e2))
de (oblate)

(A.3)

u1 and u2 are given by:

u1 =
f

1 + g
, u2 =

f

f + g
(A.4)

where g = 0 for the case of a prolate cavity and g is given by (A.2) for the
case of an oblate cavity.

B Computation of P , P and S

Performing the integral for θ over [0, 2π] in (34), it comes:

∫ θ=2π

θ=0
P (θ, φ) = π(1 + w2)It + π(1− w2)In (B.1)

where w is defined by:

w =
b cos(φ)

Lλ

(B.2)

For computing the second integral in (34), according to φ over the interval
[0, π], one can use the following result:

2π

S1

∫ φ=π

φ=0
w2b1Lλ1 sin(φ)dφ = γ (B.3)
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Tensor P is a transversely isotropic (with respect to the Ox3 axis) and symmet-
ric fourth order tensor. This tensor is then a priori defined by 5 independent
coefficients. Moreover, by considering the following equalities:

P 1111 + P 1122 + P 1133 =
1

3
P 11 =

1− γ

6

2P 1133 + P 3333 =
1

3
P 33 =

γ

3

P 1111 + P 1212 + P 1313 =
2

5
P 11 =

1− γ

5

2P 1313 + P 3333) =
2

5
P 33 =

2γ

5

(B.4)

One has only to compute one component of P for having all other ones. For
instance we compute P 3333 and we choose to define it as 2µ:

P 3333 = 2µ =
1

S1

∫ φ=π

φ=0

∫ θ=2π

θ=0
2(1− w2)2b1Lλ1 sin(φ)dφ (B.5)

Expression of µ is given by (48). After some algebraic calculations, it is easy
to compute all the components of tensor P from (B.4) and to put the results in
the form given by (47) where the tensor of the Walpole basis are recall below:


E1 =

1
2
It ⊗ It, E2 = In ⊗ In

E3 = It⊗It − E1, E4 = It⊗In + In⊗It

E5 = In ⊗ It, E6(ξ) = It ⊗ In

(B.6)

Finally, the components of tensor S, given by (50), in the Walpole basis, are:

S =
∑
n

snSn (B.7)

with:
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s1 = 3γ[1− 3α1 + 3fα2][1− α1 + fα2]

+µ(1− 3α1 + 3fα2)
2

+6[1− α1 + fα2][α1 − fα2]

s2 =
3γ

2
[1− 3α1 − 3f(1− α2)][1− α1 − f(1− α2)]

+
µ

2
(1− 3α1 − 3f(1− α2))

2

+3[α1 + (1− α2)f ][1− α1 − f(1− α2)]

s3 = f 2
(
γ +

µ

2

)
s4 = f 2

(
5

2
(1− γ)− 2µ

)
s5 =

3γ

2
[1− 3α1 − 3f(1− α2)][1− α1 + fα2] +

3fγ

2

+
µ

2
[1− 3α1 + 3fα2][1− 3α1 − 3f(1− α2)]

+3[α1 + f(1− α2)][1− α1 + fα2]−
3f

2

s6 = s5

(B.8)

C Expression of functions Gn(ξ1, ξ2, ξ3)

Starting from:



∂Π

∂Dn

(D) = σ0f
[
arcsinh

(
uY

X

) ]u=u2

u=u1

∂Y

∂Dn

−σ0f

[√
X2 + u2Y 2

X

]u=u2

u=u1

∂X

∂Dn

,

+
τrS1

V1

∂W

∂Dn

+
τ0S1

V1

∂Z

∂Dn

(C.1)

with n = m, q, s, t and:
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W = g1Dm + g2Dq

Z =
√
h1D2

m + h2D2
q + 2h3DmDq + h4D2

s + h5D2
t

(C.2)

and X, Y are given by (31). By denoting ξn the triplet (ξ1, ξ2, ξ3), it follows
that:



G1(ξn) =
σ0U(ξn)

fκ

[
1 +

η

3
(1− 3α2)

]

− 1

3
σ0(1− ζ)V(ξn)

[
ξ1 + (1− 3α2)

]
(1− 3α2)

+
τrS1

3V1

g1 +
τ0S1

3V1

h1 + h3ξ1
Z(ξn)

G2(ξn) =
σ0ηU(ξn)

fκ
− σ0(1− ζ)V(ξn)

[
ξ1 + (1− 3α2)

]

+
τrS1

V1

g2 +
τ0S1

V1

h2ξ1 + h3

Z(ξn)

G3(ξn) = −σ0V(ξn)ξ2 +
τ0S1

V1

h4

Z(ξn)
ξ2

G4(ξn) = −σ0V(ξn)ξ3 +
τ0S1

V1

h5

Z(ξn)
ξ3

(C.3)

with:



U(ξn) = f
[
arcsinh

(
uY(ξn)

X (ξn)

) ]u2

u1

V(ξn) = f


√
X 2(ξn) + u2Y2(ξn)

uX 2(ξn)

u2

u1

(C.4)

and:



X (ξn) =

[
(1− ζ)

(
ξ1 + (1− 3α2)

)2

+ ξ22 + ξ23

]1/2

Y(ξn) =
1

fκ
[3 + η(1− 3α2)] +

η

fκ
ξ1

Z(ξn) =
√
h1 + h2ξ21 + 2h3ξ1 + h4ξ22 + h5ξ23

(C.5)

Consider the particular case of a spherical nanovoids for which the different co-
efficients, which enters into the definition of functions G1(ξn),G2(ξn),G3(ξn),G4(ξn),
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read:

η = ζ = 0, κ =
3

2
, α2 =

1

3
, g1 = 2, g2 = 0,

h1 = 4, h2 = h3 = h4 =
3f 2

5
, S1 = 4πa21, V1 =

4

3
πa31

(C.6)

Consequently:



G1(ξn) =
2σ0U(ξ)

3f
+

2τrS1

3V1

+
τ0
a1

4√
4 +

3f 2

5
ξ2

G2(ξn) = −σ0V(ξ)ξ1 +
τ0
a1

9f 2

5

√
4 +

3f 2

5
ξ2
ξ1

G3(ξn) = −σ0V(ξ)ξ2 +
τ0
a1

9f 2

5

√
4 +

3f 2

5
ξ2
ξ2

G4(ξn) = −σ0V(ξ)ξ3 +
τ0
a1

9f 2

5

√
4 +

3f 2

5
ξ2
ξ3

(C.7)

in which:



U(ξ) = f
[
arcsinh

(
2u

fξ

) ]1
f

V(ξ) = f


√
ξ2 +

4u2

f2

uξ2


1

f

(C.8)

with ξ =
√
ξ21 + ξ22 + ξ23 . The mean stress Σm is given Σm = G1(ξn) (G1(ξn)

being given by the first relation in (C.7)). The equivalent stress Σeq is obtained
as a combination of the last three equations in (C.7):

Σeq =
√
[G2(ξn)]

2 + [G3(ξn)]
2 + [G4(ξn)]

2

= −σ0V(ξ)ξ +
τ0
a1

9f 2

5

√
4 +

3f 2

5
ξ2
ξ (C.9)
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D Derivation of the macroscopic criterion for τ0 = 0

We put τ0 = 0 in the expressions of functions G1(ξn),G2(ξn),G3(ξn),G4(ξn)
given by (C.3). It leads to:



G1(ξn) =
σ0U(ξn)

fκ

[
1 +

η

3
(1− 3α2)

]

− 1

3
σ0(1− ζ)V(ξn)

[
ξ1 + (1− 3α2)

]
(1− 3α2) +

τrS1

3V1

g1

G2(ξn) =
σ0ηU(ξn)

fκ
− σ0(1− ζ)V(ξn)

[
ξ1 + (1− 3α2)

]
+

τrS1

V1

g2

G3(ξn) = −σ0V(ξn)ξ2

G4(ξn) = −σ0V(ξn)ξ3

(D.1)

Let us introduce:

G∗
1(ξn) = G1(ξn)−

τrS1

3V1

g1

G∗
2(ξn) = G2(ξn)−

τrS1

V1

g2

(D.2)

From the two first relations in (D.1), it can be easily shown that:

U(ξn) =
fκ

σ0

[
G∗
1(ξn)−

1

3
(1− 3α2)G∗

2(ξn)
]

(D.3)

Note also that, from equations (55) and (56), one has:

G∗
1(ξn) = Σm − Cm, G∗

2(ξn) = Σq − Cq (D.4)

It follows that (D.3) can be rewritten as:

U(ξn) =
fκT

σ0

(D.5)
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with T = Σm−Cm− 1
3
(1−3α2)(Σq−Cq). Using again relations (55) and (56),

the last three equations in (D.1) can be read:



Σq − Cq − ηT = −σ0(1− ζ)V(ξn)
[
ξ1 + (1− 3α2)

]
Σs = −σ0V(ξn)ξ2

Σt = −σ0V(ξn)ξ3

(D.6)

which, by combination, leads to (see equations (C.4) and (C.5) for the defini-
tions of V(ξn) and X (ξn)):

V(ξn)X (ξn) =
1

σ0

[
(Σq − Cq − ηT )2

1− ζ
+ Σ2

s + Σ2
t

]1/2
(D.7)

The last step of the demonstration consist to use the following identity:

V2(ξn)X 2(ξn) +
2f 2

u1u2

cosh

(
U(ξn)
f

)
− f 2

u2
1

− f2

u2
2

= 0 (D.8)

which is obtained by eliminating Y(ξn) in (C.4). Replacing u1 and u2 by their
expressions given by (A.4) and considering relations (D.5) and (D.7), it easy
to recover (58).
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