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Introduction

Micromechanics approaches based on limit analysis have been widely used for the modeling of ductile porous materials since the pioneering works of Rice and Tracey [START_REF] Rice | On a ductile enlargement of voids in triaxial stress fields[END_REF] and Gurson [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth. Part I. -Yield criterion and flow rules for porous ductile media[END_REF]. On its original form, the Gurson model provides the yield surface, the flow rule and the damage growth law for plastic materials containing spherical voids. It is based on the limit analysis of a hollow sphere made up of a von Mises rigid plastic material and subjected to an arbitrary loading. The Gurson model has been largely employed in the literature for the simulation of the macroscopic response of ductiles metals and particularly for the prediction of material failure (see [START_REF] Tvergaard | Material failure by void growth to coalescence[END_REF] and [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF] for a review of such applications). Various extensions of the Gurson model have then been provided in order to account for the void shape effects [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -case of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -case of axisymmetric oblate ellipsoidal cavities[END_REF][START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF][START_REF] Monchiet | An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields[END_REF], the initial plastic anisotropy [START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF][START_REF] Monchiet | Approximate criteria for anisotropic metals containing non spherical voids[END_REF], the matrix compressibility [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF][START_REF] Monchiet | Exact solution of a plastic hollow sphere with a mises-schleicher matrix[END_REF]... However, it is worthwhile noticing that, as already mentioned by Hutchinson [START_REF] Hutchinson | Plasticity at the micron scale[END_REF]: "Application of void growth prediction based on the conventional plasticity to submicron sized voids is probably unjustified ". Indeed, the plasticity at micron scale displays a strong size dependency, as shown experimentally by micro-twist [START_REF] Fleck | Strain gradient plasticity: theory and experiment[END_REF], micro indentation [START_REF] Nix | Indentation size effects in crystalline materials: a law for strain gradient plasticity[END_REF], micro bending [START_REF] Stolken | A microbend test method for measuring the plasticity length scale[END_REF]. Note also that experimental studies of Schlueter et al. [START_REF] Schlueter | Modeling of the damage in ductile steels[END_REF], Khraishi et al. [START_REF] Khraishi | Parametric-experimental study of void growth in superplastic deformation[END_REF], have reported a strong effect of the cavity size on their growth in plastic media. The size effect is interpreted as due to the dependence of the plastic solid with an internal lengthscale which is physically attributed to the generation and the storage of geometrically necessary dislocations (Nye [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF], Cottrell [START_REF] Cottrell | The Mechanical Properties of Matter[END_REF], Ashby [START_REF] Ashby | The deformation of plastically non-homogeneous alloys[END_REF], Fleck et al. [START_REF] Fleck | Strain gradient plasticity: theory and experiment[END_REF], Gao et al. [START_REF] Gao | Modeling plasticity at the micrometer scale[END_REF]). When the size of the cavities is comparable to or smaller than the internal length of the plastic solid, the application of the Gurson model appears to be questionable. This motivated many researchers to investigate the role of the cavity size on the macroscopic behavior of porous plastic materials. Among the first, Fleck and Hutchinson successively employed the couple-stress plasticity theory [START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF] or their more general strain gradient plasticity theory [START_REF] Fleck | Strain gradient plasticity[END_REF] to study the growth of an isolated spherical void embedded in an infinite solid. Note that, still in the context of an isolated void and on the basis of the Fleck and Hutchinson strain gradient plasticity model, Li and Huang [START_REF] Li | Combined effects of void shape and void size -oblate spheroidal microvoid embedded in infinite non-linear solid[END_REF] has studied the combined effect of void size and void shape by considering the case of a spheroidal cavity. Alternatively, Huang et al. [START_REF] Huang | Mechanism-based strain gradient plasticity II. Analysis[END_REF],

Liu et al. [START_REF] Liu | The size effect on void growth in ductile materials[END_REF][START_REF] Liu | A study of the void size effect based on the Taylor dislocation model[END_REF] have studied the growth of an isolated void by considering the Taylor dislocation based strain gradient plasticity theory introduced in [START_REF] Gao | Modeling plasticity at the micrometer scale[END_REF]. On a general matter, all these studies has reported a strong effect of the cavity size on their growth. More precisely, they found that, at micron scales, the smaller void is more difficult to grow than the larger one. Later, Li et al. [START_REF] Li | Scale-dependent plasticity of porous materials and void growth[END_REF] and Wen et al. [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF] respectively employed the Fleck and Hutchinson strain gradient theory and the Taylor dislocation model of Gao et al. [START_REF] Gao | Modeling plasticity at the micrometer scale[END_REF] to extend the Gurson model. The studies has reported a strong dependence of the yield locus of porous plastic material with the cavity size. In [START_REF] Li | Scale-dependent plasticity of porous materials and void growth[END_REF], the authors do not deliver a closed form expression of the macroscopic criterion while in [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF] the criterion takes the form of a parametric integral equation. Note that for various application to the prediction of failure in ductiles metals, it will be greatly appreciated to have a closed form expression of the macroscopic criterion which accounts for the void size effect.

In this paper we propose to derive an analytic model for ductile porous material containing spherical micro and sub-micron cavities. To reach this objective, we perform, in section 3, the limit analysis of a hollow sphere made up of a the strain gradient plasticity solid described by the Fleck and Hutchin-son's model [START_REF] Fleck | Strain gradient plasticity[END_REF] (briefly recalled in the next section). In section 4, we derive the complete set of equations of a plasticity model including the damage and cavity size growth law and a power-law hardening. As an illustration purpose we simulate the macroscopic response of the porous plastic solid for various macroscopic loading cases and initial cavity sizes.

Limit analysis of the hollow sphere accounting for local gradients

The Gurson models are well known for giving the macroscopic yield locus of plastic media containing spherical or cylindrical cavities. The approach is based on the limit analysis of a hollow sphere or cylinder (depicted on figure 1) made up of a rigid ideally plastic von Mises material. In order to incorpore the void size effects at the macroscopic scale we consider, for the solid matrix, the Fleck and Hutchinson strain gradient plasticity model [START_REF] Fleck | Strain gradient plasticity[END_REF] instead of the von Mises one.

In this section, we briefly recall here the main steps of the methodology followed by [START_REF] Li | Combined effects of void shape and void size -oblate spheroidal microvoid embedded in infinite non-linear solid[END_REF][START_REF] Li | Rve-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales[END_REF] for the limit analysis of a unit cell made up of a strain gradient perfectly plastic material1 . In the next of the paper, we only consider the case of a hollow sphere. The results for the cylindrical void are given in appendix A. We consider the spherical basis (e r , e θ , e φ ) and the associated coordinates system (r, θ, φ), with θ ∈ [0, 2π] and φ ∈ [0, π]. A hollow sphere, with an external radius b and a void of radius a, is subjected at its outer boundary to a 

v(r = b) = D.x ( 1 
)
where v is the velocity field and D denotes the macroscopic strain rate tensor.

The solid matrix is assumed to obey the strain gradient plasticity model of Fleck and Hutchinson [8]. This non local plasticity law is formulated with the strain rate d and the double gradient of velocity, η, given by:

d ij = 1 2 (v i,j + v j,i ), η ijk = v k,ij (2) 
With the above definitions, the strain rate tensor d is symmetric and the gradient of strain rate, η, is symmetric according to its two first indices (η ijk = η jik ). Due to the incompressibility of the matrix, the strain rate tensor is traceless, tr(d) = 0 while η ipp = 0. Following [START_REF] Fleck | Strain gradient plasticity[END_REF], the third order tensor η can be decomposed into: η = η (1) + η (2) + η (3) (3)

where the third order tensors η (i) for i = 1, 2, 3 are defined by:

η (1) ijk = 1 3 (η ijk + η ikj + η jki ) - 2 15 [ α i δ jk + α j δ ik + α k δ ij ] η (2) ijk = 1 3 (2η ijk -η ikj -η jki ) + 1 6 [ 2α k δ ij -α i δ jk -α j δ ik ] η (3) ijk = 3 10 [ α i δ jk + α j δ ik ] - 1 5 α k δ ij (4) 
with:

α i = η ppi = v i,pp (5) 
The local dissipation reads:

π(d, η) = σ 0 ξ eq = σ 0 √ d 2 eq + l 2 1 η (1)
ijk η

(1)

ijk + l 2 2 η (2) ijk η (2) ijk + l 2 3 η (3)
ijk η

(3) ijk [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF] where d eq is the von Mises equivalent strain rate, d eq = √ 2 3 d : d, while l 1 , l 2 , l 3 are the internal length scales of the material. Experimental investigations (see Fleck and Hutchinson [9], Stolken and Evans [START_REF] Stolken | A microbend test method for measuring the plasticity length scale[END_REF]), revealed that the order of magnitude of the constitutive coefficients of strain gradient plastic law, i.e. l 1 , l 2 , l 3 , is generally of the micrometer. In (6), the terms η

(i) ijk η (i)
ijk are the three isotropic invariants of the strain rate gradient tensor η. The modified equivalent strain rate ξ eq defining the local dissipation [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF] is the most general isotropic combination of quadratic terms in d and η.

All invariants are given:

η (1) ijk η (1) ijk = 1 3 (η ijk η ijk + 2η ijk η kji ) η (2) ijk η (2) ijk = 2 3 (η ijk η ijk -η ijk η kji ) + α k α k η (3) ijk η (3) ijk = 3 5 α i α i (7)
The macroscopic potential is defined by:

Π(D) = inf v * K.A.
[ 1

V ∫ Ω-ω π(d, η)dV ] (8) 
for any kinematically admissible (K.A.) velocity field v * , complying with the homogeneous strain rate boundary conditions [START_REF] Ashby | The deformation of plastically non-homogeneous alloys[END_REF]. Note first that the consideration of the local strain rate gradient into the definition of the dissipation allows to capture the void size effect for very small cavities. Note also that the macroscopic dissipation is only a function of the macroscopic strain rate tensor. Then, the overall behavior does not exhibit nonlocal effets. The incorporation of the macroscopic strain rate gradient effects on the overall behavior of ductile porous could be done by considering higher order type boundary conditions as already done by [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. However these effects do not address the issue of microscopic strain gradient on the growth of cavities, as done in the present paper. As mentioned in [START_REF] Li | Scale-dependent plasticity of porous materials and void growth[END_REF][START_REF] Li | Rve-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales[END_REF], the consideration of the standard homogeneous boundary conditions ( 1) is justified if the size of the representative volume element (modelized here by the hollow sphere) is very large compared with the internal length scales and the size of the microstructural elements (the cavities). In this configuration, there is a strict separation between the microscopic and macroscopic scales and standard homogenization principles can still be applied.

Closed form expression of the macroscopic criterion

We use, for the trial velocity field, the one considered by Gurson:

v * = D.x + b 3 r 2 D m e r ( 9 
)
where 

D
d ij = D ij + b 3 r 3 D m [ δ ij -3 x i x j r 2 ] (10) 
while the components of the double gradient of the velocity field are given by:

η ijk = - 3b 3 r 5 D m [ δ ij x k + δ ik x j + δ jk x i - 5 r 2 x i x j x k ] (11) 
For the calculation of the invariants in [START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF], it is convenient to note that the trial velocity ( 9) derivates from the harmonic potential Φ given by:

Φ = 1 2 D ij x i x j - b 3 r D m ( 12 
)
As a consequence, the double gradient of the velocity field reads

η ijk = Ψ ,ijk
and is invariant by any permutations of its indices i, j, k. Moreover, Ψ being harmonic, it follows that η ijj = η jij = η jji = Ψ ,ijj = 0. Vector α, defined by relation [START_REF] Cottrell | The Mechanical Properties of Matter[END_REF], is then null. It can be easily shown from (4) that η (2) = η (3) = 0 and η (1) = η. The macroscopic dissipation, defined by relation [START_REF] Fleck | Strain gradient plasticity[END_REF], reads:

Π(D) = 3σ 0 b 3 ∫ r=b r=a < ξ eq > S(r) r 2 dr (13)
with:

ξ eq = [ D 2 eq - 4b 3 r 3 D m D rr + 2b 6 r 6 ( 2 + 45l 2 1 r 2 ) D 2 m ] 1/2 (14) 
and < • > S(r) represents the integral over the unit sphere, defined as follows:

< • > S(r) = 1 4π ∫ φ=π φ=0 ∫ θ=2π θ=0 • sin(φ)dφdθ (15) 
Note that the main difference with the Gurson analysis lies in the term proportional to l 2 1 in the expression of ξ eq . It is not possible to derive the closed form expression of the integral in [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -case of axisymmetric oblate ellipsoidal cavities[END_REF]. Some approximations are then needed in order to obtained an analytic expression of the macroscopic criterion. The first, already used by Gurson himself, is the following:

A1: we replace in [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -case of axisymmetric oblate ellipsoidal cavities[END_REF], the integral < ξ eq > S(r) by

[ < ξ 2 eq > S(r) ] 1/2 .
This first approximation has the advantage of preserving the upper bound character of the approach. Since the integral of D rr over the unit sphere is null, the second term in the expression of ξ eq vanishes and the expression for Π(D) becomes:

Π(D) = 3σ 0 b 3 ∫ r=b r=a [ D 2 eq + 2b 6 r 6 ( 2 + 45l 2 1 r 2 ) D 2 m ] 1/2 r 2 dr (16)
Again, an approximation is needed for computing the integral in the above expression of Π(D).

A2:

We replace the integral in ( 16) by an integral on the form:

Π(D) = 3σ 0 b 3 ∫ r=b r=a [ D 2 eq + 4η 2 b 6 r 6 D 2 m ] 1/2 r 2 dr (17)
where coefficient η is a constant which will be given in the following.

The integral in ( 17) is exactly the one performed by Gurson in [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth. Part I. -Yield criterion and flow rules for porous ductile media[END_REF] when η = 1 (More details about its computation can be found in [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth. Part I. -Yield criterion and flow rules for porous ductile media[END_REF] or in [START_REF] Leblond | Mécanique de la rupture fragile et ductile[END_REF]). The closed form of ( 17) is then easily obtained by using the following appropriate transformation D m → ηD m in the result of Gurson. This closed form is:

Π(D) = σ 0 [ 2ηD m arcsinh ( 2ηD m uD eq ) - √ 4η 2 D 2 m + u 2 D 2 eq
] u=f u=1 [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF] and leads to the following expression for the macroscopic yield surface:

Φ(Σ, f, η) = Σ 2 eq σ 2 0 + 2f cosh ( 3 2η Σ m σ 0 ) -1 -f 2 = 0 (19) 
We now propose to evaluate coefficient η. It can be found by studying the particular case of a pure hydrostatic loading. Indeed, by putting D eq = 0 in [START_REF] Huang | Mechanism-based strain gradient plasticity II. Analysis[END_REF], one obtains:

Π(D) = 6σ 0 |D m | ∫ r=b r=a [ 1 + 45l 2 1 2r 2 ] 1/2 dr r (20)
by using the change of variable u = a/r, the above integral can be put into the form:

Π(D) = 6σ 0 |D m | ∫ u=1 u=f 1/3 [ 1 + u 2 α 2 ] 1/2 du u ( 21 
)
with:

α = 1 3 √ 2 5 a l 1 (22) 
The computation of the integral in [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF] gives:

Π(D) = -6σ 0 |D m |   arcsinh ( α u ) - √ 1 + u 2 α 2   u=1 u=f 1/3 (23) 
On the other hand, by taking the limit D eq → 0 in the approximate expression of Π(D), given by ( 18), one has:

Π(D) = -2σ 0 η|D m | ln(f ) (24) 
Expressions ( 24) and ( 23) are equivalent, by taking the following expression for η:

η = 3 ln(f )   arcsinh ( α u ) - √ 1 + u 2 α 2   u=1 u=f 1/3 ( 25 
)
where it is recalled that α is given by [START_REF] Li | Combined effects of void shape and void size -oblate spheroidal microvoid embedded in infinite non-linear solid[END_REF].

To summarize, the new macroscopic criterion for plastic porous material [START_REF] Khraishi | Parametric-experimental study of void growth in superplastic deformation[END_REF] only differs from the Gurson criterion by the presence of coefficient η within the hyperbolic cosine. This coefficient, given by ( 25) together with relation [START_REF] Li | Combined effects of void shape and void size -oblate spheroidal microvoid embedded in infinite non-linear solid[END_REF], introduces the size effect since the non dimensional parameter α depends on the cavity radius a. When a is large behind the intrinsic length l 1 , coefficient α takes also large values and coefficient η tends to 1. So, in this case, one recovers the yield surface given by the Gurson model [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth. Part I. -Yield criterion and flow rules for porous ductile media[END_REF]. It must be emphasized that the macroscopic yield surface has no dependence from the two other constitutives coefficients l 2 and l 3 which enter the strain gradient plasticity model of Fleck and Hutchinson [START_REF] Fleck | Strain gradient plasticity[END_REF]. The reason is mainly due to the choice of the trial velocity field used to perform the limit analysis of the hollow sphere. This field is the one already considered by Gurson and it has the property (as already mentioned in the text) to derivate form an harmonic potential. This has the consequence that the two isotropic invariants η

(2) ijk η

(2) ijk and η

(3)

ijk η (3)
ijk , in the expression of the dissipation, are null and the latter is then not affected by the material parameters l 2 and l 3 . In fact, by choosing the trial field considered by Gurson, the expression of the strain gradient only depends on the hydrostatic strain rate, D m . So, the considered field cannot account for the strain gradients which will occur at the vicinity of the void when the cell is submitted to a macroscopic shear strain loading. In fact, a possible way to investigate the role of this strain gradients and the parameters l 2 and l 3 on the macroscopic criterion is to consider more refined velocity fields as already done in [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields[END_REF].

Our model requires the knowledge of coefficient l 1 . From a more general point of view, experimental studies showed that for most metallic materials, coefficients l 1 , l 2 and l 3 are given by (see Begley and Hutchinson [START_REF] Begley | The mechanics of size-dependent indentation[END_REF] or Hutchinson [START_REF] Hutchinson | Plasticity at the micron scale[END_REF]):

l 1 = l SG , l 2 = l RG 2 , l 3 = 5 24 l RG ( 26 
)
values for which, the modified equivalent strain can be put into the form:

ξ eq = √ d 2 eq + l 2 SG η (1) ijk η (1) ijk + 2 3 l 2 RG χ ij χ ij ( 27 
)
where χ ij is the gradient of rotation. The case l SG = 0 corresponds to the particular case of the couple stress plasticity theory of Fleck and Hutchinson [START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF] while for l SG = l RG = 1 the material depends on both stretch and gradient of rotation. In the particular case of the couple stress theory, one has l 1 = 0, while the non dimensional parameter α tends to infinity and η = 1. Therefore, the porous plastic material does not exhibit a void size dependency when the matrix is described by the couple stress plasticity theory of Fleck and Hutchinson [START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF]. Based on various available experimental data, Hutchinson [START_REF] Hutchinson | Plasticity at the micron scale[END_REF] has concluded that the characteristic length l SG lies between 0.25 and 1µm, while l RG ≃ 1µm. For the different applications proposed in this section and also in the next section, we considered l SG = 0.5µm.

The derivation of a closed-form expression of the macroscopic criterion [START_REF] Khraishi | Parametric-experimental study of void growth in superplastic deformation[END_REF] has required two approximations (A1 and A2). As already mentioned, the first one preserves the upper bound character of the approach; however, the second one (A2) is "uncontrolled". However, it will be shown now that these approximations do not alter significantly the macroscopic criterion. In order to validate our criterion, we propose to check its accuracy by comparison with the criterion obtained by computing numerically the integrals in [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -case of axisymmetric oblate ellipsoidal cavities[END_REF]. On fig- the trial velocity field [START_REF] Fleck | Strain gradient plasticity: theory and experiment[END_REF]. A good agreement between the approximate and numerical criterion is observed for all values of the porosity and of the size of the cavities. The results show an important effect of the cavity radius a on the macroscopic yield locus: the yield strength domain increases when the void size decreases. These effects are particularly important for high stress triaxiality T = Σ m /Σ eq . However, for purely deviatoric loading cases (Σ m = 0) the void size does not affect the yield stress for which the new criterion ( 19) retrieves the Gurson one. It must be emphasized that the present results differ from the one provided by Wen et al. [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF]. Indeed, the results obtained by Wen et al [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF] exhibit an increase of the yield stress when decreasing the void size effect for purely deviatoric loadings, which is not observed in the present study. These differences can be attributed to the considered strain gradient plasticity model for the solid matrix. Indeed, Wen et al [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF] use the Taylor dislocation based strain gradient plasticity model of Gao et al. [START_REF] Gao | Modeling plasticity at the micrometer scale[END_REF] instead of the Fleck and

Hutchinson model [START_REF] Fleck | Strain gradient plasticity[END_REF] considered in this paper. 

Plastic model accounting for void size

In order to complete the set of equations for the ductile porous metal, we now provide the evolution law for the plastic strain, the porosity and the cavity size.

The criterion [START_REF] Khraishi | Parametric-experimental study of void growth in superplastic deformation[END_REF] has been established in the context of perfect plasticity.

The model derived from this criterion will not account for elasticity deformation and plastic strain hardening. To circumvent these incapacities, we follow the heuristical extension of Gurson [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth. Part I. -Yield criterion and flow rules for porous ductile media[END_REF], widely used in the literature (see for instance Tvergaard [START_REF] Tvergaard | Material failure by void growth to coalescence[END_REF], Benzerga and Leblond [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF]). Along the lines of these authors, the total strain rate is written as the sum of an elastic part D e and a plastic part D p . Here the elastic part D e is related to the macroscopic stressrate Σ by Hooke's law. In order to account for the plastic strain hardening, the yield stress σ 0 is replaced by τ (p) where p is the cumulated plastic strain which is identified from the following plastic dissipation identity:

(1 -f )τ (p) ṗ = Σ : D p (28)
Other various heuristical modifications of the original Gurson model have been also proposed, in order to take into account void interaction or void coalescence (see [START_REF] Tvergaard | On localization in ductile materials containing spherical voids[END_REF][START_REF] Tvergaard | Analysis of cup-cone fracture in round tensile bar[END_REF]), but they are not considered in this paper. With the definition of the macroscopic criterion Φ(Σ, f, η) given by ( 19), the flow rule is:

D p = Λ ∂Φ ∂Σ = Λ 3Σ τ 2 D p m = Λ 1 3 ∂Φ ∂Σ m = Λ f ητ sinh ( 3 2η Σ m τ ) ( 29 
)
where Λ, the plastic multiplier, has to be determined from the consistency condition Φ = 0 (the details of its calculation can be found in the appendix B).

Taking into account the incompressibility of the matrix, the porosity evolution law which characterizes the damage growth, takes the form:

ḟ = 3(1 -f )D p m ( 30 
)
The new criterion (19) also depends on the cavity radius through the parameter η which is defined by [START_REF] Liu | The size effect on void growth in ductile materials[END_REF]. For completing the model, it is also necessary to derive the rate law of η:

η = - η f ln(f ) ḟ + 1 f ln(f )   √ 1 + f 2/3 α 2   ḟ + 3 α ln(f )   √ 1 + u 2 α 2   u=1 u=f 1/3 α (31)
in which the rate law of α is:

α = √ 2 45 ȧ l 1 = α ȧ a (32) 
Due to the matrix incompressibility, it is possible to connect the cavity growth to the damage growth. Then denoting by ω the volume of the cavity and Ω the total volume of the porous solid, the matrix incompressibility is ω = Ω. In the other hand:

ḟ = ω Ω - ω Ω 2 Ω = f (1 -f ) ω ω = 3f (1 -f ) ȧ a (33) 
Accounting for the above result in relation [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF], one obtains:

α = α 3f (1 -f ) ḟ = α f D p m ( 34 
)
Eliminating α in [START_REF] Nix | Indentation size effects in crystalline materials: a law for strain gradient plasticity[END_REF], leads to:

η = 3 f ln(f )   √ 1 + 1 α 2 -f √ 1 + f 2/3 α 2 -(1 -f )η   D p m ( 35 
)
Relations [START_REF] Monchiet | Exact solution of a plastic hollow sphere with a mises-schleicher matrix[END_REF] and [START_REF] Stolken | A microbend test method for measuring the plasticity length scale[END_REF] give the rate law for the two internal variables which appears in the expression of the macroscopic criterion [START_REF] Khraishi | Parametric-experimental study of void growth in superplastic deformation[END_REF]. As an illustration purpose, we propose to simulate the stress strain response for an axisymmetric loading case. The non zero components of the macroscopic stress tensor are:

Σ 11 = Σ m - 1 3 Σ eq = 3T -1 3 Σ eq , Σ 33 = Σ m + 2 3 Σ eq = 3T + 2 3 Σ eq ( 36 
)
where it is recalled that T = Σ m /Σ eq . For the proposed application, we assume that Σ 33 > Σ 11 since Σ eq = Σ 33 -Σ 11 . By fixing the stress triaxiality T the material is subjected to a radial stress loading in the plane (Σ eq , Σ m ). The stress loading path can then been parameterized by the equivalent stress Σ eq .

A power law type hardening law for the matrix material is considered:

τ (p) = σ 0 ( 1 + p p 0
) n [START_REF] Tvergaard | On localization in ductile materials containing spherical voids[END_REF] with p 0 = σ 0 /E, E being the Young modulus of the matrix and n the strain hardening exponent. In our calculation, we use the values E = 200000M P a, σ 0 = 400M P a and n = 0.1. Furthermore the value ν = 0.3 has been considered

for the Poisson's coefficient, the initial porosity being f 0 = 0.001. On figure 4 we represent the stress-strain response for a triaxiality T = 1 for the Gurson model and for the new model accounting for the void size effects. For the latter, the following various values of the initial cavity radius has been considered: a 0 = 0.1µm, a 0 = 0.5µm and a 0 = 1µm. On this figure it is observed that all curves are very close; the void size effect is then not prominent for this value of stress triaxiality. Figure 5 shows the values of porosity f for the Gurson model and for various initial void radius still for the case of triaxiality T = 1. It is observed that the void size has a great influence on damage growth. On figures 6 and 7 we display similar results for the triaxiality T = 3. Comparatively to the case T = 1, the void size effect is prominent on the macroscopic stress strain response which predicts an important reduction of softening (for a 0 = 1µm and a 0 = 0.5µm) or an absence of softening (for a 0 = 0.1µm). Figure 7 also exhibits a great influence of the cavity size. More generally, for both values of triaxiality, it is noted that the growth rate of smaller cavities is slower than that of larger ones. This result is in agreement with the numerical studies of [START_REF] Fleck | Strain gradient plasticity: theory and experiment[END_REF][START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Li | Scale-dependent plasticity of porous materials and void growth[END_REF][START_REF] Li | Rve-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales[END_REF]. Physically, this reduction of rate of growth can be explained by the presence of a strong strain gradient which makes the material more hardened at the vicinity of the cavity. Note that an alternative method for incorporating the void size effects in the Gurson limit analysis approach has been recently developed by Dormieux and Kondo [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF]. Void size effects are captured by considering at the interface between the matrix and the cavity a plastic version of the Gurtin and Murdoch [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF] surface stress model which relates the jump of the traction vector to the interfacial residual stress and interfacial plastic strain rate. This interface tends to account for the thin shell of hardened solid which surrounds the cavity. Interestingly, the results obtained in [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF] are comparable with those predict by Wen et al [START_REF] Wen | The modified Gurson model accounting for the void size effect[END_REF]: an increase of the elastic domaine for any value of stress triaxiality. However, the flow rule, the damage and cavity radius rate law have not been derived in [START_REF] Dormieux | An extension of Gurson model incorporating stresses effects[END_REF] and are then lacking for a full comparison of the models. Note also that the full validation of the present model can be made by computing numerically the solution of the cell problem for the considered boundary conditions. Such kind of results has been provided by Trillat and Pastor [START_REF] Trillat | Limit analysis and Gurson's model[END_REF] in the context of a von Mises matrix and would need an extension in the case of a strain gradient plastic matrix. 

Conclusion

This paper has dealt with a micromechanical based modification of the Gurson criterion incorporating the void size effect. The latter is captured within the standard Gurson's limit analysis approach by considering, for the solid matrix, the Fleck and Hutchinson's strain gradient plasticity model [START_REF] Fleck | Strain gradient plasticity[END_REF]. A closed form approximate expression of the macroscopic yield surface has been derived and assessed through its comparison with numerical data. The results have shown an increase of the yield stress for smaller cavities which is particularly pronounced for high values of stress triaxiality. For larger values of the cavity radius, the new criterion coincides with the one of Gurson.

In a second part of the paper, we provide the damage and void size rate law, incorporating a power-law strain hardening of the solid matrix. The stress-strain response of the ductile porous material containing micro and sub-micron cavities has been simulated for two radial stress loading paths. Those results have shown a strong dependence of void size effects which can be summarized as follows: (i) for smaller cavities the stress and strain response show a reduction or an absence of softening which is observed for the Gurson model, (ii) the smaller cavities growth slower than larger voids. These results, already reported by various numerical studies in the literature (see [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Li | Scale-dependent plasticity of porous materials and void growth[END_REF][START_REF] Li | Rve-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales[END_REF]) are well reproduced here by our analytic micromechanical-based model. Note that the main feature of the present study is to deliver a closed form expression of the macroscopic plastic criterion as well as the rate law for the internal variables. This is greatly appreciated in the scope of many applications to structural design.

A Macroscopic yield criterion for cylindrical cavities

In this section we perform the limit analysis of the hollow cylinder made up of a rigid strain gradient plastic material. We follow the same methodology that one depicted in section (3) devoted to the case of a hollow sphere. Since many calculations are similar to that already provided for the hollow sphere, we do not detailed some calculations.

We denote by a the radius of the cavity and by b the external radius. We use the cylindrical coordinate system (ρ, θ, z) and the associated basis (e ρ , e θ , e z ).

The homogeneous strain rate boundary conditions ( 1) is considered on the external surface r = b. The velocity field used by Gurson [14] is also considered here (see also [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF]): The components of the microscopic strain rate are:

v = A.x + 3 2 D m b 2 ρ e ρ (A
d ij = Ψ ,ij = A ij - 3D m 2 b 2 ρ 2 k ij + 3D m b 2 ρ 4 y i y j (A.4)
where k ij are the components of the two order tensor I 2 and y i = x i -x 3 δ i3 .

The components of the double gradient of the velocity field are given by:

η ijk = Ψ ,ijk = -3D m b 2 ρ 4 (k ij y k + k ik y j + k jk y i ) + 12D m b 2 ρ 6 y i y j y k (A.5)
As for the case of the hollow sphere, the double gradient of velocity is invariant by any permutations of its indices i, j, k and η ijj = η jij = η jji = 0. It follows that η (2) = η (3) = 0 and η (1) = η. The macroscopic dissipation, defined by and < • > C(ρ) represents the integral over the unit sphere, defined as follows:

< • > C(ρ) = 1 2π ∫ θ=2π θ=0
•dθ (A.9)

We replace in (A.6), the integral < ξ eq > C(ρ) by where k and µ are respectively the compressibility and shear modulus, J = I ⊗ I/3, K = I -J where I is the fourth order identity tensor. The consistency condition Φ = 0 reads:

Φ ,Σ : Σ + [Φ ,τ A τ + Φ ,α A α + Φ ,f A f ] Λ = 0 (B.2)
with:

A τ = 1 τ dτ dp Σ : Φ ,Σ A f = (1 -f )Φ ,Σm A η = 3 f ln(f )   √ 1 + 1 α 2 -f √ 1 + f 2/3 α 2 -(1 -f )η   Φ ,Σm (B.
3)

It follows that: 

Λ = 1 H Σ Φ ,Σ : Σ, H Σ = Φ ,τ A τ + Φ ,α A α + Φ ,f A f (B.
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 1 Fig. 1. The hollow sphere and the hollow cylinder homogeneous strain rate conditions:

  and D m denote respectively the deviatoric and mean parts of the macroscopic strain rate tensor and are defined by D = D -D m I and D m = tr(D)/3, I being the second order identity tensor. It must be recalled that the trial velocity field (9) complies with the matrix incompressibility and with the uniform strain rate boundary conditions (1). The components of the microscopic strain rate are:
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 3 we represent the macroscopic criterion for the porosities f = 0.01 and f = 0.1 respectively and for various values of the void radius a. For comparison purpose we also represent the Gurson criterion on each figure. The full line corresponds to the approximate criterion given by equation (19) together with the definition (25) for coefficient η. The circles correspond to the criterion obtained by computing numerically the macroscopic dissipation with
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 02 Fig.2. Macroscopic yield surface for the porosity f = 0.01 and for a 0 = 0.5µm, a 0 = 1µm and a 0 >> l SG(Gurson).
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 3 Fig.3. Macroscopic yield surface for the porosity f = 0.1 and for a 0 = 0.5µm, a 0 = 1µm and a 0 >> l SG(Gurson).
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 456 Fig. 4. Normalized equivalent stress vs the effective strain for various values the initial cavity size and the Gurson model. Case of a triaxiality T = 1.
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 7 Fig. 7. Porosity vs the effective strain for various values the initial cavity size and the Gurson model. Case of a triaxiality T = 3.

  which I 2 = e 1 ⊗ e 1 + e 2 ⊗ e 2 = e ρ ⊗ e ρ + e θ ⊗ e θ and its recalled that D m = tr(D)/3. As for the case of the spherical cavity, the above velocity derivates from an harmonic potential Ψ given by:

relation ( 8

 8 second order tensor H(θ) is defined by:H(θ) = I 2 -e ρ ⊗ e ρ (A.8) 

[

  > C(ρ) = 0, the crossed term in (A.7) vanishes. The expression of the macroscopic dissipation then becomes: case of a spherical cavity, no analytic expression of the above integral can be found. We then replace it by: has the following expression:B Expression of the plastic multiplierThe Hooke's hypoelastic law gives: Σ = C : D e , with: C = 3kJ + 2µK (B.1)

4 )

 4 Due to the equality:Σ = C : (D -D p ) = C : D -ΛC : Φ ,Σ (B.5)it is possible to express the plastic multiplier Λ as function of D:

Li et al. [23], Li and Steinmann[START_REF] Li | Rve-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales[END_REF] have performed the limit analysis in the context of a strain gradient viscoplastic material, the case of the perfectly plastic material considered in this paper corresponds to limit case for which the viscoplastic power-law exponent tends to infinity.

and leads to the following expression for the macroscopic yield surface:

The same procedure is employed for evaluating coefficient ζ. First, by integrating the macroscopic dissipation (A.11), for A eq = 0, we obtain:

In other hand, the calculation of (A.10) for A eq = 0 gives: [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF] with: