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ABSTRACT

We use the Kossakowski-Lindblad-Davies formalism to consider an open system de-
fined as the Markovian extension of one-mode quantum oscillator S, which is perturbed
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1 Introduction

A quantum Hamiltonian system with time-dependent repeated harmonic interaction was
proposed and investigated in [TZ]. The corresponding open system can be defined through
the Kossakowski-Lindblad-Davies dissipative extension of the Hamiltonian dynamics. In
our previous paper [TZ1] the existence and uniqueness of the evolution map for density
matrices of the open system are established and its dual W ∗-dynamics on the CCR C∗-
algebra was described explicitly.

The aim of this paper is to apply the formalism developed in [TZ1] to analysis of
dynamics of subsystems, including their long-time asymptotic behaviour and correlations.

Let a and a∗ be the annihilation and the creation operators defined in the Fock space
F generated by a cyclic vector Ω (vacuum). That is, the Hilbert space F is the com-
pletion of the algebraic span Ffin of vectors {(a∗)mΩ}m>0 and a, a∗ satisfy the Canonical
Commutation Relations (CCR)

[a, a∗] = 1, [a, a] = 0, [a∗, a∗] = 0 on Ffin. (1.1)

We denote by {Hk}Nk=0 the copies of F for an arbitrary but finite N ∈ N and by H (N)

the Hilbert space tensor product of these copies:

H
(N) :=

N⊗

k=0

Hk = F
⊗(N+1) . (1.2)

In this space we define for k = 0, 1, 2, . . . , N the operators

bk := 1⊗ . . .⊗ 1⊗ a⊗ 1⊗ . . .⊗ 1 , b∗k := 1⊗ . . .⊗ 1⊗ a∗ ⊗ 1 ⊗ . . .⊗ 1 , (1.3)

where operator a (respectively a∗) is the (k+ 1)th factor in (1.3). They satisfy the CCR:

[bk, b
∗
k′] = δk,k′1, [bk, bk′] = [b∗k, b

∗
k′ ] = 0 (k, k′ = 0, 1, 2, . . . , N) (1.4)
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on the algebraic tensor product (Ffin)
⊗(N+1).

Recall that non-autonomous system with Hamiltonian for time-dependent repeated
harmonic perturbation proposed in [TZ] has the form

HN(t) := Eb∗0b0 + ǫ

N∑

k=1

b∗kbk + η

N∑

k=1

χ[(k−1)τ,kτ)(t) (b
∗
0bk + b∗kb0) . (1.5)

Here t ∈ [0, Nτ), the parameters: τ, E, ǫ, η are positive, and χ[x,y)(·) is the characteristic
function of the semi-open interval [x, y) ⊂ R. It is obvious that HN(t) is a self-adjoint
operator with time-independent domain

D0 =
N⋂

k=0

dom (b∗kbk) ⊂ H
(N) . (1.6)

The model (1.5) presents the system S + CN , where S is the quantum one-mode cavity,
which is repeatedly perturbed by a time-equidistant chain of subsystem: CN = S1 + S2 +
. . . + SN . Here {Sk}k≥1 can be considered as “atoms” with harmonic internal degrees
of freedom. This interpretation is motivated by certain physical models known as the
“one-atom maser” [BJM], [NVZ]. The Hilbert space HS := H0 corresponds to subsystem
S and the Hilbert space Hk to subsystems Sk (k = 1, . . . , N), respectively. Then (1.2) is

H
(N) = HS ⊗ HCN , HCN :=

N⊗

k=1

Hk . (1.7)

By (1.5) only one subsystem Sn interacts with S for t ∈ [(n− 1)τ, nτ). In this sense, the
interaction is tuned [TZ]. The system S+CN is autonomous on each interval [(n−1)τ, nτ)
governed by the self-adjoint Hamiltonian

Hn := E b∗0b0 + ǫ

N∑

k=1

b∗kbk + η (b∗0bn + b∗nb0) , n = 1, 2, . . . , N , (1.8)

on domain D0. Note that if
η2 6 E ǫ , (1.9)

Hamiltonians (1.5) and (1.8) are semi-bounded from below.

We denote by C1(H
(N)) the Banach space of the trace-class operators on H (N). Its

dual space is isometrically isomorph to the Banach space of bounded operators on H (N):
C
∗
1(H

(N)) ≃ L(H (N)). The corresponding dual pair is defined by the bilinear functional

〈φ |A〉H (N) = TrH (N)(φA) for (φ,A) ∈ C1(H
(N))× L(H (N)) . (1.10)

The positive operators ρ ∈ C1(H
(N)) with unit trace is the set of density matrices.

Recall that the state ωρ over L(H (N)) is normal if there is a density matrix ρ such that

ωρ( · ) = 〈ρ | · 〉H (N) . (1.11)
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1.1 Master equation

To make the system S + CN open, we couple it to the boson reservoir R, [AJP3]. More
precisely, we follow the scheme (S +R) + CN , i.e. we study repeated perturbation of the
open system S +R [NVZ].

Evolution of normal states of the open system (S +R) + CN can be described by the
Kossakowski-Lindblad-Davies dissipative extension of the Hamiltonian dynamics to the
Markovian dynamics with the time-dependent generator [AL], [AJP2]

Lσ(t)(ρ) := −i [HN(t), ρ] + (1.12)

+Q(ρ)− 1

2
(Q∗(1)ρ+ ρQ∗(1)) ,

for t > 0 and ρ ∈ domLσ(t) ⊂ C1(H
(N)). Here the first operator Q : ρ 7→ Q(ρ) ∈

C1(H
(N)) in the dissipative part of (1.12) has the form:

Q(·) = σ− b0 (·) b∗0 + σ+ b∗0 (·) b0 , σ∓ > 0 , (1.13)

and the operator Q∗ is its dual via relation 〈Q(ρ) |A〉H (N) = 〈ρ |Q∗(A)〉H (N) :

Q∗(·) = σ− b∗0 (·) b0 + σ+ b0 (·) b∗0 . (1.14)

By virtue of (1.5), for t ∈ [(n− 1)τ, nτ), the generator (1.12) takes the form

Lσ,n(ρ) := −i[Hn, ρ] + Q(ρ)− 1

2
(Q∗(1)ρ+ ρQ∗(1)) . (1.15)

The mathematical problem concerning the open quantum system is to solve the Cauchy
problem for the non-autonomous quantum Master Equation [AJP2]

∂tρ(t) = Lσ(t)(ρ(t)) , ρ(0) = ρ . (1.16)

For the tuned repeated perturbation, this solution is a strongly continuous family {T σ
t,0}t≥0,

which is defined by composition of the one-step evolution semigroups:

T σ
t,0 = T σ

t,(n−1)τ T
σ
n−1 . . . T

σ
2 T σ

1 ,

where t = (n− 1)τ + ν(t), n 6 N, ν(t) < τ . Here we put

T σ
k := T σ

k (τ), T σ
k (s) := esLσ,k (s > 0), (1.17)

and then T σ
t,(n−1)τ = T σ

n (ν(t)) holds. The evolution map is connected to solution of the

Cauchy problem (1.16) by
T σ
t,0 : ρ 7→ ρ(t) = T σ

t,0(ρ). (1.18)

The construction of unique positivity- and trace-preserving dynamical semigroup on
C1(H

(N)) for unbounded generator (1.15) is a nontrivial problem. It is done in [TZ1]
under the conditions (1.9) and

0 6 σ+ < σ− . (1.19)

for the coefficients in (1.13, 1.14). Then, {T σ
k (s)}s>0 for each k (1.17) is the Markov

dynamical semigroup, and (1.18) is automorphism on the set of density matrices.
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1.2 Evolution in the dual space

In order to control the evolution of normal states, it is usual to consider the W ∗-dynamical
system (L(H (N)), {T σ ∗

t,0 }t>0), where {T σ ∗
t,0 }t>0 are weak*-continuous evolution maps on

the von Neumann algebra L(H (N)) ≃ C
∗
1(H

(N)) [AJP1]. They are dual to the evolution
(1.18) on C1(H

(N)) by the relation (1.10):

〈T σ
t,0(ρ) | A〉H (N) = 〈ρ | T σ ∗

t,0 (A)〉H (N) for (ρ, A) ∈ C1(H
(N))× L(H (N)) , (1.20)

which uniquely defines the map A 7→ T σ ∗
t,0 (A) for A ∈ L(H (N)). The corresponding dual

time-dependent generator is formally given by

L∗
σ(t)(·) = i [HN(t), · ] + (1.21)

+Q∗(·)− 1

2
(Q∗(1)(·) + (·)Q∗(1)) for t > 0 .

When t ∈ [(k − 1)τ, kτ), the above generator has the form

L∗
σ,k(·) = i[Hk, ·] + Q∗(·)− 1

2
(Q∗(1)(·) + (·)Q∗(1)) . (1.22)

We adopt the notations

T σ ∗
k = T σ

k (τ)
∗ , T σ ∗

t, (n−1)τ = T σ
n (ν(t))

∗ , and T σ
k (s)

∗ := esL
∗

σ,k (s > 0) , (1.23)

dual to (1.17) for t = (n− 1)τ + ν(t), n 6 N , ν(t) < τ . Then, we obtain

T σ ∗
t,0 (A) = T σ ∗

1 T σ ∗
2 ... T σ ∗

n−1T
σ ∗
t,(n−1)τ (A) for A ∈ L(H (N)) . (1.24)

Let A (F ) (or CCR(C) ) denote the Weyl CCR-algebra on F . This unital C∗-algebra
is generated as operator-norm completion of the linear span Aw of the set of Weyl oper-
ators

ŵ(α) = eiΦ(α) (α ∈ C ), (1.25)

where Φ(α) = (αa+ αa∗)/
√
2 is the self-adjoint Segal operator in F . [The closure of the

sum is understood.] Then CCR (1.1) take the Weyl form

ŵ(α1)ŵ(α2) = e−i Im(α1α2)/2 ŵ(α1 + α2) for α1, α2 ∈ C . (1.26)

We note that A (F ) is contained in the C∗-algebra L(F ) of all bounded operators on F .
Similarly we define the Weyl CCR-algebra A (H (N)) ⊂ L(H (N)) over H (N). This

algebra is generated by operators

W (ζ) =
N⊗

j=0

ŵ(ζj) for ζ =




ζ0
ζ1
·
·
·
ζN




∈ C
N+1 . (1.27)
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By (1.3), the Weyl operators (1.27) can be rewritten as

W (ζ) = exp[i
(
〈ζ, b〉+ 〈b, ζ〉

)
/
√
2] , (1.28)

where the sesquilinear form notations

〈ζ, b〉 :=
N∑

j=0

ζ̄jbj , 〈b, ζ〉 :=
N∑

j=0

ζjb
∗
j (1.29)

are used. Let us recall that A (H (N)) is weakly dense in L(H (N))[AJP1].

Explicit formulae for evolution operators (1.23) acting on the Weyl operators has been
established in [TZ1]. For n = 1, 2, . . . .N , let Jn and Xn be (N + 1)× (N + 1) Hermitian
matrices:

(Jn)jk =

{
1 (j = k = 0 or j = k = n)

0 otherwise
, (1.30)

(Xn)jk =





(E − ǫ)/2 (j, k) = (0, 0)

−(E − ǫ)/2 (j, k) = (n, n)

η (j, k) = (0, n)

η (j, k) = (n, 0)

0 otherwise

. (1.31)

We define the matrices

Yn := ǫI +
E − ǫ

2
Jn +Xn (n = 1, . . . , N) , (1.32)

where I is the (N +1)× (N +1) identity matrix. Then Hamiltonian (1.8) takes the form

Hn =
N∑

j,k=0

(Yn)jkb
∗
jbk. (1.33)

We also need the (N + 1) × (N + 1) matrix P0 defined by (P0)jk = δj0δk0 (j, k =
0, 1, 2, . . . , N). Then one obtains the following proposition which is proved in [TZ1]:

Proposition 1.1 Let n = 1, 2, . . . , N and ζ ∈ CN+1. Then for s > 0, the dual Markov
dynamical semigroup (1.23) on the Weyl C∗-algebra has the form

T σ∗
n (s)(W (ζ)) = Ωσ

n,s(ζ)W (Uσ
n (s)ζ) , (1.34)

where

Ωσ
n,s(ζ) := exp

[
− 1

4

σ− + σ+

σ− − σ+

(
〈ζ, ζ〉 − 〈Uσ

n (s)ζ, U
σ
n (s)ζ〉

)]
(1.35)

and

Uσ
n (s) = exp

[
i s
(
Yn + i

σ− − σ+

2
P0

)]
(1.36)
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under the conditions (1.9) and (1.19). Therefore, the k-step evolution (t = kτ, k 6 N in
(1.24)) of the Weyl operator is given by

T σ ∗
kτ,0(W (ζ)) = exp

[
− σ− + σ+

4(σ− − σ+)

(
〈ζ, ζ〉 − 〈Uσ

1 . . . Uσ
k ζ, Uσ

1 . . . Uσ
k ζ〉

)]

× W (Uσ
1 . . . Uσ

k ζ) , (1.37)

where T σ ∗
kτ,0 = T σ ∗

1 T σ ∗
2 . . . T σ ∗

k and Uσ
n := Uσ

n (τ).

Remark 1.2 The explicit expression of the matrix Uσ
n (t) in (1.36) is given by Uσ

n (t) =
eitǫV σ

n (t), where

(V σ
n (t))jk =





gσ(t)zσ(t) δk0 + gσ(t)wσ(t) δkn (j = 0)

gσ(t)wσ(t) δk0 + gσ(t)zσ(−t) δkn (j = n)

δjk (otherwise)

. (1.38)

Here Eσ := E + i (σ− − σ+)/2 and

gσ(t) := eit(Eσ−ǫ)/2, wσ(t) :=
2iη√

(Eσ − ǫ)2 + 4η2
sin t

√
(Eσ − ǫ)2

4
+ η2 , (1.39)

zσ(t) := cos t

√
(Eσ − ǫ)2

4
+ η2 +

i(Eσ − ǫ)√
(Eσ − ǫ)2 + 4η2

sin t

√
(Eσ − ǫ)2

4
+ η2 . (1.40)

Note that the relation zσ(t)zσ(−t) − wσ(t)2 = 1 holds for any σ± > 0, whereas one has
|gσ(t)|2(|zσ(t)|2 + |wσ(t)|2) < 1 and zσ(−t) 6= zσ(t) for 0 6 σ+ < σ−.

Hereafter, together with (1.37) we also use the following short-hand notations:

gσ = gσ(τ), wσ := wσ(τ), zσ = zσ(τ) and V σ
n := V σ

n (τ) . (1.41)

Remark 1.3 Dual dynamical semigroups (1.34) and the evolution operator (1.37) are
examples of the quasi-free maps on the Weyl C∗-algebra. Using the arguments of [DVV],
we have shown in [TZ1] that they can be extended to the unity-preserving completely
positive linear maps on L(H (N)) under the conditions (1.9) and (1.19).

The aim of the rest of the paper is to study evolution of the reduced density matrices
for subsystems of the total system (S +R) + CN .

In Section 2, we consider the subsystem S. This includes analysis of convergence to
stationary states in the infinite-time limit N → ∞. We also perform a similar analysis for
the subsystems S+Sm and Sm+Sn. Section 3 is devoted to a more complicated problem
of evolution of reduced density matrices for finite subsystems, which include S and a part
of CN . This allows us to detect an asymptotic behaviour of the quantum correlations
between S and a part of CN caused by repeated perturbation and dissipation for large N
in terms of those for small N with the stable initial state.

For the brevity, we hereafter supress the dependence on N of the Hilbert space H (N)

as well as of the Hamiltonian HN(t) and the subsystem CN , when it will not cause any
confusion.
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2 Time Evolution of Subsystems I

2.1 Subsystem S

We start by analysis of the simplest subsystem S. Let the initial state of the total system
S + C be defined by a density matrix ρ ∈ C1(HS ⊗HC). Then for any t > 0, the evolved
state ωt

S(·) on the Weyl C∗-algebra A (HS) of subsystem S is given by the partial trace:

ωt
S(A) = ωρ(t)(A⊗ 1) = TrHS⊗HCN

(T σ
t,0(ρS ⊗ ρC)A⊗ 1) for A ∈ A (HS) , (2.1)

where ρ(t) = T σ
t,0ρ and 1 ∈ A (HC). Recall that for a density matrix ̺ ∈ C1(HS ⊗ HC),

the partial trace of ̺ with respect to the Hilbert space HC is a bounded linear map
TrHC

: ̺ 7→ ̺̂∈ C1(HS) characterised by the identity

TrHS⊗HC
(̺ (A⊗ 1)) = TrHS

(̺̂A) for A ∈ L(HS) . (2.2)

If one puts
ρS(t) := TrHC

(T σ
t,0(ρ)) , (2.3)

then one gets the identity

ωt
S(A) = TrHS

(ρS(t)A) =: ωρS(t)(A) , (2.4)

by (2.1), i.e., ρS(t) is the density matrix defining the normal state ωt
S .

In the followings, we mainly consider the initial density matrices of the form:

ρ = ρS ⊗ ρC for ρS = ρ0 , ρC =
N⊗

k=1

ρk with ρ1 = ρ2 = . . . = ρN . (2.5)

Note that the characteristic function EωS
:C→C of the state ωS on the algebra A (HS) is

EωS
(θ) = ωS(ŵ(θ)) (2.6)

and that (2.6) can uniquely determine the state ωS by the Araki-Segal theorem [AJP1].

Lemma 2.1 Let A = ŵ(θ). Then evolution of (2.1) on the interval [0, τ) yields

Eωt
S
(θ) = exp

[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1− |gσ(t)zσ(t)|2 − |gσ(t)wσ(t)|2

)]

×ωρ0

(
ŵ(eiτǫgσ(t)zσ(t)θ)

)
ωρ1

(
ŵ(eiτǫgσ(t)wσ(t)θ)

)
, t ∈ [0, τ) . (2.7)

Proof : By (1.27), we obtain that W (θe) = ŵ(θ) ⊗ 1 ⊗ . . . ⊗ 1 for the vector e =
t(1, 0, . . . , 0) ∈ CN+1 , where t(. . .) means the vector-transposition, cf (1.27). Then (2.1)-
(2.4) yield

ωt
S(ŵ(θ)) = ωρ(t)(ŵ(θ)⊗ 1 ⊗ . . .⊗ 1) = ωρS(t)(ŵ(θ)) . (2.8)
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By virtue of duality (1.20) and (1.37) for k = 1, we obtain

ωρS(t)(ŵ(θ)) = ωρS⊗ρC((T
σ ∗
t,0 W )(θe)) = ω⊗N

j=0 ρj
((T σ ∗

t,0 W )(θe))

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1− 〈Uσ

1 (t)e, U
σ
1 (t)e〉

)]
ω⊗N

j=0 ρj

(
W (θ Uσ

1 (t)e)
)
.

Taking into account (1.38) and (2.6), one obtains for (2.8) the expression which coincides
with assertion (2.7). �

Similarly, for t = mτ we obtain the characteristic function

Eωmτ
S

(θ) = ωρS⊗ρC(T
σ ∗
mτ,0(W (θe)) = exp

[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1− 〈Uσ

1 . . . Uσ
me, U

σ
1 . . . Uσ

me〉
)]

×ω⊗N
j=0 ρj

(
W (θ Uσ

1 . . . Uσ
me)

)
= (2.9)

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1− 〈Uσ

1 . . . Uσ
me, U

σ
1 . . . Uσ

me〉
)] N∏

j=0

ωρj

(
ŵ(θ (Uσ

1 . . . Uσ
me)j)

)
,

where we have used (1.27) and (1.37). By (1.38) we obtain

(Uσ
1 . . . Uσ

m e)k =





eiNτǫ(gσ(τ)zσ(τ))m (k = 0)

eiNτǫgσ(τ)wσ(τ)(gσ(τ)zσ(τ))m−k (1 6 k 6 m)

0 (m < k 6 N) .

(2.10)

Then taking into account |gσzσ| < 1 (Remark 1.2), we find

〈e, e〉 − 〈Uσ
1 . . . Uσ

m e , Uσ
1 . . . Uσ

m e〉 (2.11)

= (1− |gσzσ|2m)
[
1− |gσwσ|2

1− |gσzσ|2
]
.

By setting m = N , (2.6), (2.9)-(2.11) yield the following result.

Lemma 2.2 The state of the subsystem S after N-step evolution has the characteristic
function

EωNτ
S
(θ) = ωρS(Nτ)(ŵ(θ)) (2.12)

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+
(1− |gσzσ|2N)

(
1− |gσwσ|2

1− |gσzσ|2
)]

×ωρ0

(
ŵ(eiNτǫ(gσ)N(zσ)Nθ)

) N∏

k=1

ωρk

(
ŵ(eiNτǫ(gσ)N−k+1(zσ)N−kwσθ)

)
.

To consider the asymptotic behaviour of the state ωNτ
S for large N , we assume that

the state ωρk on A (F ) is gauge-invariant, i.e.,

e−i φ a∗aρk e
i φ a∗a = ρk (φ ∈ R) (2.13)

for each component of the initial density matrix ρC (2.5).
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Theorem 2.3 Let ωρk be gauge-invariant for k = 1, 2, . . . , N and suppose that the product

D(θ) :=
∞∏

s=0

ωρ1(ŵ((g
σzσ)sθ)) , (2.14)

converges for any θ ∈ C and let the map R ∋ r 7→ D(r θ) ∈ C be continuous. Then for
any initial normal state ω0

S(·) = ωρ0(·) of the subsystem S, the following properties hold.
(a) The pointwise limit of the characteristic functions (2.12) exists

E∗(θ) = lim
N→∞

ωρS(Nτ)(ŵ(θ)) , θ ∈ C . (2.15)

(b) There exists a unique density matrix ρS∗ such that the limit (2.15) is a characteristic
function of the gauge-invariant normal state: E∗(θ) = ωρS∗

(ŵ(θ)).
(c) The states {ωmτ

S }m>1 converge to ωρS∗
for m → ∞ in the weak*-topology.

Proof: (a) By (1.25) and by the gauge-invariance (2.13), one gets ωρk(ŵ(e
iφθ)) = ωρk(ŵ(θ))

for every φ ∈ R. Hence, for 1 6 k 6 N the characteristic functions Eωρk
(θ) depend only

on |θ|, and we can skip the factor eiNτǫ in the arguments of the factors in the right-hand
side of (2.12). Note that for N → ∞ the factor ωρ0 converges to one, since the normal
states are regular and |gσzσ| < 1 (see Remark 1.2). Hence, the pointwise limit (2.15)
follows from (2.12) and the hypothesis (2.14). It does not depend on the initial state ωρ0

of the subsystem S and the explicit expression of (2.15) is given by

E∗(θ) = exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1− |gσwσ|2

1− |gσzσ|2
)]

D(gσwσθ) . (2.16)

(b) The limit (2.16) inherits the properties of characteristic functions Eωmτ
S

(θ) = ωmτ
S (ŵ(θ)):

(i) normalisation: E∗(0) = 1 ,
(ii) unitary : E∗(θ) = E∗(−θ) ,

(iii) positive definiteness:
∑K

k,k′=1 zkzk′e
−i Im(θkθk′)/2 E∗(θk − θk′) > 0 for any K > 1 and

zk ∈ C (k = 1, 2, . . . , K) ,
(iv) regularity: the continuity of the map r 7→ D(rθ) implies that the function r 7→ E∗(r θ)
is also continuous.
Then by the Araki-Segal theorem, the properties (i)-(iv) guarantee the existence of the
unique normal state ωρS∗

over the CCR algebra A (HS) such that E∗(θ) = ωρS∗
(ŵ(θ)).

Taking into account (a) and (2.16) we conclude that in contrast to the initial state ω0
S the

limit state ωρS∗
is gauge-invariant.

(c) The convergence (2.14) can be extended by linearity to the algebraic span of the set
of Weyl operators {ŵ(α)}α∈C. Since it is norm-dense in C∗-algebra A (HS), the weak*-
convergence of the states ωmτ

S to the limit state ωρS∗
follows (see [BR1], [AJP1]). �

Remark 2.4 (a) By Theorem 2.3 (a)-(b), one has ρS∗ = ρS∗ (τ), i.e. the limit state ωρS∗

is invariant under the one-step evolution T σ
τ,0. Comparing (2.7) and (2.16) one finds that
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ρS∗ 6= ρS∗ (ν) for 0 < ν < τ . Instead, the evolution for repeated perturbation yields the
asymptotic periodicity:

lim
n→∞

(ωρS∗ (t)
(ŵ(θ))− ωρS∗ (ν(t))

(ŵ(θ)) = 0 , for t = (n− 1)τ + ν(t) . (2.17)

(b) Let ρ1 in (2.5) correspond to the quasi-free gauge-invariant Gibbs state for the inverse
temperature β > 0 and let ωρ0(·) be any initial normal state of the subsystem S. Since

ωρ1(ŵ(θ)) = exp
[
− 1

4
|θ|2 coth β

2

]
(2.18)

holds, we obtain for (2.14):

D(θ) = exp
[
− 1

4

|θ|2
1− |gσzσ|2 coth

β

2

]
. (2.19)

Put λσ(τ) := |gσwσ|2(1 − |gσzσ|2)−1 ∈ [0, 1) (Remark 1.2). Then for the characteristic
function of the limit state in Theorem 2.3, we get

ωρ∗(ŵ(θ)) = exp

[
−|θ|2

4

(
(1− λσ(τ))

σ− + σ+

σ− − σ+

+ λσ(τ) coth
β

2

)]
. (2.20)

If wσ = 0 (i.e. λσ(τ) = 0), the subsystem S seems to interact only with reservoir R,
and it evolves to a steady state with characteristic function

E∗0(θ) = exp

[
−|θ|2

4

σ− + σ+

σ− − σ+

]
, 0 ≤ σ+ < σ− , (2.21)

which corresponds to the quasi-free Gibbs state for the inverse temperature β∗0 := ln(σ−/σ+).
This reflects thermal equilibrium between S and R. In this sense, β∗0 is the inverse tem-
perature of the external reservoir R [NVZ].

If wσ 6= 0, the steady state (2.20) of subsystem S has the characteristic function

E∗(θ) = exp

[
−|θ|2

4
coth

βσ
∗ (τ)

2

]
, (2.22)

where the inverse temperature βσ
∗ (τ) is defined by

coth
βσ
∗ (τ)

2
= (1− λσ(τ)) coth

β∗0

2
+ λσ(τ) coth

β

2
.

Note that βσ
∗ (τ) satisfies either β∗0 6 βσ

∗ (τ) 6 β or β∗0 > βσ
∗ (τ) > β.
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2.2 Correlations: subsystems S + Sn and Sm + Sn

To study quantum correlations induced by repeated perturbation, we cast the first glance
on the bipartite subsystems S + Sn and Sm + Sn. We consider the initial density matrix
(2.5) satisfying

ωρ0(ŵ(θ)) = exp
[
− |θ|2

4
coth

β0

2

]
, ωρj(ŵ(θ)) = exp

[
− |θ|2

4
coth

β

2

]
. (2.23)

From (1.20) and (1.37), we have:

Proposition 2.5 For evolved density matrix ρ(Nτ) = T σ
Nτ,0 ρ the characteristic function

of the state ωρ(Nτ)(·) is

ωρ(Nτ)(W (ζ)) = 〈ρ | T σ ∗
Nτ,0(W (ζ))〉H = exp

[
− 1

4
〈ζ,Xσ(Nτ)ζ〉

]
, (2.24)

where Xσ(Nτ) is the (N + 1)× (N + 1) matrix given by

Xσ(Nτ) = Uσ ∗
N . . . Uσ ∗

1

[(
− σ− + σ+

σ− − σ+
+

1 + e−β

1− e−β

)
I +

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
P0

]

×Uσ
1 . . . Uσ

N +
σ− + σ+

σ− − σ+
I. (2.25)

Remark 2.6 In the theory of quantum correlation and entanglement for quasi-free states
the matrix Xσ(t) is known as the covariant matrix for Gaussian states, see [AdIl], [Ke].
Indeed, differentiating (2.24) with respect to components of ζ and ζ at ζ = 0, one can
identify the entries of Xσ(t) with expectations of monomials generated by the creation and
the annihilation operators involved in (1.28), (1.29).

Subsystem S + Sn. For 1 < n 6 N the initial state ω0
S+Sn

(·) on the Weyl C∗-algebra
A (H0 ⊗ Hn) ≃ A (H0) ⊗ A (Hn) of this composed subsystem is given by the partial
trace

ω0
S+Sn

(ŵ(α0)⊗ ŵ(α1)) = ωρ(ŵ(α0)⊗
n−1⊗

k=1

1⊗ ŵ(α1)⊗
N⊗

k=n+1

1)

= exp
[
− |α0|2

4
coth

β0

2

]
exp

[
− |α1|2

4
coth

β

2

]
. (2.26)

This is the characteristic function of the product state corresponding to two isolated sys-
tems with different temperatures. Put ζ (0,n) := t(α0, 0, . . . , 0, α1, 0, . . . , 0) ∈ CN+1, where
α1 occupies the (n+ 1)th position. . Then we get

ωNτ
S+Sn

(ŵ(α0)⊗ ŵ(α1)) = ωρ(Nτ)(W (ζ (0,n))) . (2.27)

For the components of the vector Uσ
1 . . . Uσ

Nζ
(0,n), we get from Remark 1.2 that

(Uσ
1 . . . Uσ

N ζ (0,n))k = (2.28)
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eiNτǫ [(gσzσ)N α0 + (gσzσ)n−1gσwσ α1], (k = 0)

eiNτǫ[(gσzσ)N−kgσwσα0 + (gσzσ)n−k−1(gσwσ)2 α1], (1 6 k < n)

eiNτǫ [(gσzσ)N−ngσwσ α0 + gσzσ(−τ)α1], (k = n)

eiNτǫ (gσzσ)N−kgσwσα0 (n < k 6 N).

Substitution of these expressions into (2.24) and (2.25) allows to calculate off-diagonal
entries of the matrix Xσ(Nτ) for ζ = ζ (0,n), which correspond to the cross-terms involving
α0 and α1.

Because of |gσzσ| < 1 (Remark 1.2), these non-zero off-diagonal entries will disappear
when N → ∞ for a fixed n. Hence, in the long-time limit the composed subsystem S+Sn

evolves from the product of two initial equilibrium states (2.26) to another product-state.
On the other hand, the cross-terms will not disappear in the limit N, n → ∞, when N−n
is fixed [TZ]. It is interesting that in this case the steady state of the subsystem S keeps
a correlation with subsystem Sn in the long-time limit.

Subsystem Sm + Sn. We suppose that 1 6 m < n 6 N . Then the initial state ω0
Sm+Sn

(·)
on A (Hm⊗Hn) ≃ A (Hm)⊗A (Hn) of this composed subsystem is given by the partial
trace

ω0
Sm+Sn

(ŵ(α1)⊗ ŵ(α2)) = ωρ(

m−1⊗

k=0

1⊗ ŵ(α1)⊗
n−1⊗

k=m+1

1⊗ ŵ(α2)⊗
N⊗

k=n+1

1)

= exp
[
− |α1|2

4
coth

β

2

]
exp

[
− |α2|2

4
coth

β

2

]
. (2.29)

This is the characteristic function of the product-state corresponding to two isolated
systems with the same temperature.

We define the vector ζ (m,n) := t(0, 0, . . . , 0, α1, 0, . . . , 0, α2, 0, . . . , 0) ∈ CN+1, where α1

occupies the (m+ 1)th position and α2 occupies the (n + 1)th position, then

ωNτ
Sm+Sn

(ŵ(α1)⊗ ŵ(α2)) = ωρ(Nτ)(W (ζ (m,n))) . (2.30)

Again with help of Remark 1.2, we can calculate the components of Uσ
1 . . . Uσ

N ζ (m,n) as

(Uσ
1 . . . Uσ

N ζ (m,n))k = (2.31)





eiNτǫ (gσzσ)m−1 gσwσ[α1 + (gσzσ)n−mα2] (k = 0)

eiNτǫ (gσzσ)m−k−1(gσwσ)2 [α1 + (gσzσ)n−m α2] (1 6 k < m)

eiNτǫ [gσzσ(−τ)α1 + (gσwσ)2 (gσzσ)n−m−1 α2] (k = m)

eiNτǫ (gσzσ)n−k−1 (gσwσ)2 α2 (m < k < n)

eiNτǫ gσzσ(−τ)α2 (k = n)

0 (n < k 6 N)

.

The correlation between Sm and Sn, i.e. the corresponding off-diagonal elements of
Xσ(Nτ) are non-zero when w 6= 0, and large for small n −m and they decrease to zero
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as n −m increase. Note that in contrast to the case S + Sn (2.28) the last components
n < k 6 N in (2.31) as well as the state (2.30) do not depend on N . This reflects the fact
that correlation involving Sm and Sn via subsystem S is switched off after the moment
t = nτ . If w = 0, then (2.31) implies that Xσ(Nτ) is always diagonal and that dynamics
(2.30) keeps Sm + Sn uncorrelated.

3 Time Evolution of Subsystems II

The arguments of Section 2.2 indicate that the components in the subsystems S + SN +
. . .+SN−n have large mutual correlations for small n at t = Nτ even when N large. And
those correlation seems asymptotically stable as N → ∞.

In this section, we consider the correlation among those components simultaneously for
product initial densities. For this aim, let us divide the total system into two subsystems
Sn,k and Cn,k at the moment t = kτ , where

Sn,k = S + Sk + Sk−1 + . . .+ Sk−n+1, (3.1)

and
Cn,k = SN + . . .+ Sk+1 + Sk−n + . . .+ S1. (3.2)

Here, n ∈ N is supposed to be fixed small and N ∈ N large enough. We may imagine that
the “cavity” S and “atoms” S1, . . . ,SN are lined as

SN , . . . ,Sk+1, S, Sk, . . . ,Sk−n+1, Sk−n, . . . ,S1

at this moment. The interaction between S and each of S1, . . . ,Sk has already ended, and
they are correlated. While Sk+1, . . . ,SN have not interacted with S, yet. Let us regard
that Sn,k is the “state” at t = kτ of the time developing single object S∼n. That is, S∼n

has S,Sk, . . . ,Sk−n as its components at the time t = kτ . And it develops changing its
components as well as the correlation among them. As the time pass from t = (k − 1)τ
to kτ , the “atom” Sk enters into S∼n and the “atom” Sk−n leaves from S∼n. It is also
possible to regard S∼n as the view from the window which is made to look the “cavity”
and the n “atoms” just have interacted with the “cavity”.

We are interested in S∼n, since it might be interpreted as a simplified mathematical
model of physical objects in equilibrium with the reservoir or of metabolizing life forms
which maintain their life by interacting with the environment, i.e., the macroscopic many
body systems which are macroscopically stable but exchange their constituent particles
as well as energy with the reservoir microscopically.

Below we consider the large-time asymptotic behavior of state for S∼n, i.e., for the
subsystem Sn,k with fixed n and large and variable k for the initial state (2.5) with general
density matrices ρ0, ρ1 ∈ C1(F ).

To express the state of S∼n at t = kτ , we decompose the Hilbert space H into a
tensor product of two Hilbert spaces

H = HSn,k

⊗
HCn,k

.
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Here HSn,k
is the Hilbert space for the subsystem (3.1) and HCn,k

for (3.2):

HSn,k
= H0

⊗( k⊗

j=k−n+1

Hj

)
, HCn,k

=
( k−n⊗

j=1

Hj

)⊗( N⊗

l=k+1

Hl

)
. (3.3)

If ρ ∈ C1(H ) is the initial density matrix of the total system Sn,k + Cn,k, the reduced
density matrix ρS∼n

(kτ) of S∼n at t = kτ is given by the partial trace

ρS∼n
(kτ) = TrHCn,k

(T σ
kτ,0 ρ) = TrHc1

(
TrHc2

(T σ
kτ,0 ρ)

)
, (3.4)

for k > n as in (2.2), where we decompose HCn,k
as

HCn,k
= Hc1

⊗
Hc2 , Hc1 =

k−n⊗

j=1

Hj , Hc2 =

N⊗

l=k+1

Hl .

3.1 Preliminaries

Here we introduce notations and definitions to study evolution of subsystems in somewhat
more general setting than in the previous sections.

In order to avoid the confusion caused by the fact that every Hj coincides with F

in our case, we treat the Weyl algebra on the subsystem and the corresponding reduced
density matrix of ρ ∈ C1(H ) in the following way. On the Fock space F⊗(m+1) for
m = 0, 1, . . . , N , we define the Weyl operators

Wm(ζ) := exp
(
i
〈ζ, b̃〉m+1 + 〈b̃, ζ〉m+1√

2

)
, (3.5)

where ζ ∈ Cm+1, b̃0, . . . , b̃m and b̃∗0, . . . , b̃
∗
m are the annihilation and the creation operators

in F⊗(m+1), which are constructed as in (1.3) satisfying the corresponding CCR and

〈ζ, b̃〉m+1 =

m∑

j=0

ζ̄j b̃j , 〈b̃, ζ〉m+1 =

m∑

j=0

ζj b̃
∗
j .

By A (F⊗(m+1)), we denote the C∗-algebra generated by the Weyl operators (3.5).
To discuss the dynamics of our open system, it is convenient to introduce the modified

Weyl operators (cf. Proposition 1.1)

W σ
m(ζ) := exp

[ σ− + σ+

4(σ− − σ+)
〈ζ, ζ〉m+1

]
Wm(ζ) , (3.6)

for m = 0, 1, 2, . . ., where ζ ∈ Cm+1 and 〈 · , · 〉n+1 denotes the inner product on Cm+1. We
also use the notation

ŵσ(θ) := W σ
0 (θ) for θ ∈ C. (3.7)
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Below, we adopt the abreviations:

A
(m) = A (F⊗(m+1)) and C

(m) = C1(F
⊗(m+1)) (3.8)

for theWeyl C∗ algebra on F⊗(m+1) and the algebra of all trace class operators on F⊗(m+1)

for m = 0, 1, 2, . . ., respectively. Note that the bilinear form

〈 · | · 〉m : C
(m) × A

(m) ∋ (ρ, A) 7→ Tr[ρA] ∈ C (3.9)

yields the dual pair (C (m),A (m)). Indeed, the following properties hold:

(i) 〈ρ |A〉m = 0 for every A ∈ A (m) implies ρ = 0;

(ii) 〈ρ |A〉m = 0 for every ρ ∈ C (m) implies A = 0;

(iii) |〈ρ |A〉m| 6 ‖ρ‖C1‖A‖L.
These properties are a direct consequence of the fact that A (m) is weakly dense in
L(F⊗(m+1)) the dual space of C (m). Below we shall use the topology σ(C (m),A (m)) in-
duced by the dual pair (C (m),A (m)) on C (m). We refer to it as the weak∗-A (m) topology,
see e.g. [Ro], [BR1].

Note that for the initial normal product state (2.5) the calculation of the partial trace
over Hc2 in (3.4) is straightforward:

TrHc2
(T

σ (N)
kτ,0

N⊗

j=0

ρj) = T
σ (k)
kτ,0

k⊗

j=0

ρj . (3.10)

Here T
σ (m)
kτ,0 stands for the evolution map (1.18) on C (m), for k 6 m 6 N .

To check (3.10), it is enough to show

〈T σ (N)
kτ,0

N⊗

j=0

ρj|Wk(ζ)⊗ 1〉N = 〈T σ (k)
kτ,0

k⊗

j=0

ρj |Wk(ζ)〉k (3.11)

for any ζ ∈ C
k+1, where 1 is the unit in algebra A (N−k−1). Let ζ̃ ∈ C

N+1 be defined by
ζ̃j = ζj for 0 6 j 6 k, ζ̃j = 0 for k < j 6 N . Then Wk(ζ)⊗ 1 = WN (ζ̃) holds. Remark
1.2 readily yields

U
σ(N)
1 . . . U

σ(N)
k ζ̃ = (U

σ(k)
1 . . . U

σ(k)
k ζ) ˜ .

Together with (1.37), it follows that

T
σ (N)∗
kτ,0 (WN(ζ̃) ) =

(
T

σ (k)∗
kτ,0 Wk(ζ)

)
⊗ 1,

which implies

〈
N⊗

j=0

ρj | T σ (N)∗
kτ,0 (Wk(ζ)⊗ 1)〉N = 〈

k⊗

j=0

ρj | T σ (k)∗
kτ,0 Wk(ζ)〉k . (3.12)
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This proves (3.11) and thereby the assertion (3.10).

Here we have used the notation U
σ(k)
ℓ for the (k+1)×(k+1) matrix whose components

are given by

(U
σ(k)
ℓ )ij =





eiτǫgσ(τ)(δj0z
σ(τ) + δjℓw

σ(τ)) (i = 0)

eiτǫgσ(τ)(δj0w
σ(τ) + δjℓz

σ(−τ)) (i = ℓ)

eiτǫδij (otherwise)

, (3.13)

for ℓ = 1, 2, . . . , k (c.f. Remark 1.2 ). Then the one step evolution T
σ(k)
ℓ on C (k) is given

by
〈T σ(k)

ℓ ρ |Wk(ζ)〉k = 〈ρ | T σ(k)∗
ℓ Wk(ζ)〉k

where

T
σ(k)∗
ℓ Wk(ζ) = exp

[
− σ− + σ+

4(σ− − σ+)

(
〈ζ, ζ〉k+1 − 〈Uσ(k)

ℓ ζ, U
σ(m)
ℓ ζ〉k+1

)]
Wk(U

σ(k)
ℓ ζ) , (3.14)

ρ ∈ C (k) and ζ ∈ Ck+1 (see Proposition 1.1).

To calculate the partial trace (3.4) with respect to Hc1, we introduce the imbedding:

rm+1,m : C
m+1 ∋ ζ =




ζ0
ζ1
ζ2
·
·
·
ζm




7−→




ζ0
0
ζ1
ζ2
·
·
·
ζm




= rm+1,mζ ∈ C
m+2 (3.15)

form = 0, 1, 2, . . . , N and the partial trace over the second component Rm,m+1 : C (m+1) →
C (m) characterised by

〈Rm,m+1ρ|ŵ(ζ0)⊗ ŵ(ζ1)⊗ . . .⊗ ŵ(ζm)〉m = 〈ρ|ŵ(ζ0)⊗1⊗ ŵ(ζ1)⊗ . . .⊗ ŵ(ζm)〉m+1 (3.16)

for ρ ∈ C (m+1). Therefore, its dual operator R∗
m,m+1 has the expression:

R∗
m,m+1Wm(ζ) = Wm+1(rm+1,mζ) for ζ ∈ C

m+1 . (3.17)

Lemma 3.1 For m ∈ N and ℓ = 1, 2, . . . , m,

U
σ(m+1)
ℓ+1 rm+1,m = rm+1,mU

σ(m)
ℓ , (3.18)

holds.
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Proof : In fact, for the vector ζ = t(ζ0, ζ1, · · · , ζm) ∈ C
m+1, one obtains

(U
σ(m+1)
ℓ+1 rm+1,mζ)j = (rm+1,mU

σ(m)
ℓ ζ)j

=





eiτǫgσ(τ)(zσ(τ)ζ0 + wσ(τ)ζℓ) (j = 0)

0 (j = 1)

eiτǫζj−1 (2 6 j 6 ℓ)

eiτǫgσ(τ)(wσ(τ)ζ0 + zσ(−τ)ζℓ) (j = ℓ+ 1)

eiτǫζj−1 (ℓ + 2 6 j 6 m+ 1)

by explicit calculations. This proves the claim (3.18). �

For k ∈ N and m = 0, 1, 2, . . . , k − 1, let the maps rk,m : Cm+1 → Ck+1 and Rm,k :
C (k) → C (m) be defined by composition of the one-step maps (3.15), (3.16):

rk,m = rk,k−1 ◦ rk−1,k−2 ◦ . . . ◦ rm+1,m ,

and
Rm,k = Rm,m+1 ◦Rm+1,m+2 ◦ . . . ◦Rk−1,k ,

respectively. This definition together with (3.16) and (3.17) imply that R∗
m,k : A (m) →

A (k) and

R∗
m,k ŵ(ζ0)⊗ ŵ(ζ1)⊗ . . .⊗ ŵ(ζm) = ŵ(ζ0)⊗ 1⊗ . . .⊗ 1⊗ ŵ(ζ1)⊗ . . .⊗ ŵ(ζm) . (3.19)

Hence, by (3.16) the map Rm,k, which is predual to (3.19), acts as the partial trace over

the components with indices j = 1, 2, . . . , k − m of the tensor product
⊗k

j=0 ρj ∈ C (k).
Therefore, the map Rn,k coincides with the partial trace Trc1 in (3.4). Then Rn,k combined
with (3.10) gives the expression

ρS∼n
(kτ) = Rn,kT

σ(k)
kτ,0 (

k⊗

j=0

ρj) for k > n+ 1 . (3.20)

We summarise the action of the above maps (3.15), (3.17)-(3.14) on the modified Weyl
operators (3.6) by

Lemma 3.2 Let k ∈ N. Then,

(i) R∗
m,m+1(W

σ
m(ζ)) = W σ

m+1(rm+1,mζ) , (3.21)

(ii) R∗
m,m+k(W

σ
m(ζ)) = W σ

m+k(rm+k,mζ) (3.22)

holds for m = 0, 1, 2, . . ., ζ ∈ Cm+1; and

(iii) T
σ(m)∗
ℓ (W σ

m(ζ)) = W σ
m(U

σ(m)
ℓ ζ) , (3.23)

(iv) T
σ(m)∗
1 T

σ(m)∗
2 . . . T

σ(m)∗
ℓ (W σ

m(ζ)) = W σ
m(U

σ(m)
1 . . . U

σ(m)
ℓ−1 U

σ(m)
ℓ ζ) , (3.24)

(v) U
σ(m+k)
ℓ+k rm+k,m = rm+k,mU

σ(m)
ℓ (3.25)

holds for m ∈ N, ζ ∈ Cm+1 and ℓ = 1, 2, . . . , m.

18



Note that the claim (v) in the above is an obvious extension of Lemma 3.1. This lemma
yields the following statement.

Lemma 3.3 For m, k ∈ N, ℓ = 1, 2, . . . , m,

R∗
m,m+kT

σ(m)∗
ℓ = T

σ(m+k)∗
ℓ+k R∗

m,m+k (3.26)

holds on A (m). Therefore

Rm,m+kT
σ(m+k)
ℓ+k = T

σ(m)
ℓ Rm,m+k (3.27)

and
Rm,m+kT

σ(m+k)
k T

σ(m+k)
k−1 . . . T

σ(m+k)
1

= (Rm,m+1T
σ(m+1)
1 ) . . . (Rm+k−2,m+k−1T

σ(m+k−1)
1 )(Rm+k−1,m+kT

σ(m+k)
1 ) (3.28)

hold on C (m+k).

Proof : The identity (3.26) follows from Lemma 3.2 by considering the action on the
modified Weyl operators. By taking its adjoint, (3.27) follows. A simple application of
induction over k yields the last identity. �

Let us concentrate on the evolution of the subsystem S, first. To this aim, we introduce
the map T [ · | · ] : C (0) × C (0) → C (0) to express the one-step evolution

T [ρ0|ρ1] = R0,1T
σ(1)
1 (ρ0 ⊗ ρ1) for ρ0, ρ1 ∈ C

(0) , (3.29)

of the density matrix ρ0 under the influence of ρ1, see (3.20). We also denote by

T [ρ] := e−iǫτa∗aρeiǫτa
∗a for ρ ∈ C

(0) , (3.30)

the “free” one-step evolution of density matrix corresponding to any of subsystems Sk,
c.f. (1.8). Then one obtains the following assertion.

Lemma 3.4 For any ℓ,m ∈ N fulfilling ℓ 6 m, ζ ∈ Cm, θ ∈ C and ρ0, ρ1, . . . , ρℓ ∈ C (0),
the following properties hold:

(i) T ∗⊗m[W σ
m−1(ζ)] = W σ

m−1(e
iǫτζ), (T −1)∗⊗m[W σ

m−1(ζ)] = W σ
m−1(e

−iǫτζ) ;

(ii) T R0,1 = R0,1T ⊗2;

(iii) 〈T [ρ0|ρ1] | ŵσ(θ)〉0 = 〈ρ0 | ŵσ(eiǫτgσ(τ)zσ(τ)θ)〉0〈ρ1 | ŵσ(eiǫτgσ(τ)wσ(τ)θ)〉0 ;
(iv) T ⊗(m+1)T

σ(m)
ℓ = T

σ(m)
ℓ T ⊗(m+1), (T −1)⊗(m+1)T

σ(m)
ℓ = T

σ(m)
ℓ (T −1)⊗(m+1) ;

(v) T
(
T [ρ0|ρ1]

)
= T [T ρ0|T ρ1], T −1

(
T [ρ0|ρ1]

)
= T [T −1ρ0|T −1ρ1] ;

(vi) Rℓ−1,ℓT
σ(ℓ)
1 [ρ0 ⊗ ρ1 ⊗ . . .⊗ ρℓ] = T [ρ0|ρ1]⊗ T [ρ2]⊗ . . .⊗ T [ρℓ].

Here (·)⊗(m+1) denotes the (m+ 1)-fold tensor product of the corresponding operator (·).
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Proof : (i) Since
〈ρ | T ∗[ŵσ(θ)]〉0 = 〈T ρ | [ŵσ(θ)]〉0

= Tr(ρeiǫτa
∗aŵσ(θ)e−iǫτa∗a) = Tr(ρŵσ(eiǫτθ)) = 〈ρ | ŵσ(eiǫτθ)〉0

holds for ρ ∈ C (0), we obtain the desired equality for m = 1. The equalities for m > 1
follow from (1.27) and the definition of tensor product of (T ±1)∗.
(ii) Taking into account (i) of Lemma 3.2 and the above (i), we get

(T R0,1)
∗ŵσ(θ) = R∗

0,1T ∗ŵσ(θ) = R∗
0,1ŵ

σ(eiǫτθ) = W σ
1 (e

iǫτr1,0θ)

= T ⊗2∗W σ
1 (r1,0θ) = T ⊗2∗R∗

0,1ŵ
σ(θ) = (R0,1T ⊗2)∗ŵσ(θ).

(iii) By virtue of (3.15) and (3.13) one obtains

U
σ(1)
1 r1,0θ =

(
eiτǫgσzσ, eiτǫgσwσ

eiτǫgσwσ, eiτǫgσzσ(−τ)

)(
θ
0

)

=

(
eiτǫgσzσθ
eiτǫgσwσθ

)
,

which impllies
〈T [ρ0|ρ1] | ŵσ(θ)〉0 = 〈R0,1T

σ(1)
1 [ρ0 ⊗ ρ1] | ŵσ(θ)〉0

= 〈ρ0 ⊗ ρ1 | T σ(1)∗
1 R∗

0,1ŵ
σ(θ)〉1 = 〈ρ0 ⊗ ρ1 |W σ

1 (U
σ(1)
1 r1,0θ)〉1

= 〈ρ0 | ŵσ(eiǫτgσzσθ)〉0〈ρ1 | ŵσ(eiǫτgσwσθ)〉0 . (3.31)

(iv) By applying the adjoint operators

(T ±1)⊗(m+1)∗, T
σ(m)∗
ℓ

to the modified Weyl operators, we get

(T ±1)⊗(m+1)∗T
σ(m)∗
ℓ = T

σ(m)∗
ℓ (T ±1)⊗(m+1)∗

from (iii) of Lemma 3.2 and the above (i). Then, duality derives the assertion.
(v) These identities follow from the above (ii), (iv) and the definition (3.29).
(vi) Let ζ ∈ C

ℓ. By (3.15) and (3.13), we obtain

U
σ(ℓ)
1 rℓ,ℓ−1ζ = eiτǫ t(gσzσζ0, g

σwσζ0, ζ1, · · · , ζℓ−1) ,

where t(· · · ) is the vector transposition. Then we get

〈Rℓ−1,ℓT
σ(ℓ)
1 (ρ0 ⊗ ρ1 ⊗ . . .⊗ ρℓ) |W σ

ℓ−1(ζ)〉ℓ−1

= 〈ρ0 ⊗ ρ1 ⊗ . . .⊗ ρℓ | T σ(ℓ)∗
1 R∗

ℓ−1,ℓW
σ
ℓ−1(ζ)〉ℓ = 〈ρ0 ⊗ ρ1 ⊗ . . .⊗ ρℓ |W σ

ℓ (U
σ(ℓ)
1 rℓ,ℓ−1ζ)〉ℓ

= 〈ρ0 | ŵσ(eiǫτgσ(τ)zσ(τ)ζ0)〉0〈ρ1 | ŵσ(eiǫτgσ(τ)wσ(τ)ζ0)〉0〈ρ2 | ŵσ(eiǫτζ1)〉0 . . . 〈ρℓ | ŵσ(eiǫτζℓ−1)〉0
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= 〈T [ρ0|ρ1] | ŵσ(ζ0)〉0〈ρ2 | T ∗[wσ(ζ1)]〉0 . . . 〈ρℓ | T ∗[wσ(ζℓ−1)]〉0
= 〈T [ρ0|ρ1]⊗ T [ρ2]⊗ . . .⊗ T [ρℓ] |W σ

ℓ−1(ζ)〉ℓ−1 ,

where we used (iii) and (i) at the fourth equality. These finish the proof of the lemma. �
Note that (3.31) coincides with (2.7).
Next, we consider the multi-step evolution for the subsystem S. To this aim, we define

T (k) : C (0)(k+1) → C (0) by

T (k)[ρ0|ρ1, . . . , ρk] = R0,kT
σ(k)
k T

σ(k)
k−1 . . . T

σ(k)
1 (ρ0 ⊗ ρ1 ⊗ . . .⊗ ρk), (3.32)

for k ∈ N and ρ0, ρ1, . . . , ρk ∈ C (0), c.f. (3.20), (3.29).
The following lemma holds.

Lemma 3.5 For any θ ∈ C, k ∈ N and ρ0, ρ1, . . . , ρk, . . . ∈ C (0), the following properties
hold:

(i) T (1)[ρ0|ρ1] = T [ρ0|ρ1] ;

(ii) T (k+1)[ρ0|ρ1, . . . , ρk+1] = T [T (k)[ρ0|ρ1, . . . , ρk]|T kρk+1]

= T (k)[T [ρ0|ρ1]|T ρ2, . . . , T ρk+1] ;

(iii) T
(
T (k)[ρ0|ρ1, . . . , ρk]

)
= T (k)[T ρ0|T ρ1, . . . , T ρk] ;

T −1
(
T (k)[ρ0|ρ1, . . . , ρk]

)
= T (k)[T −1ρ0|T −1ρ1, . . . , T −1ρk] ;

(iv) Rm,k+mT
σ(k+m)
k . . . T

σ(k+m)
1 [ρ0 ⊗ ρ1 ⊗ . . .⊗ ρk+m]

= T (k)[ρ0|ρ1, . . . , ρk]⊗ T k[ρk+1]⊗ . . .⊗ T k[ρk+m] for m = 0, 1, 2, . . . ;

(v) 〈T (k)[ρ0|ρ1 | . . . , ρk] | ŵσ(θ)〉0 = 〈ρ0 | ŵσ(eikǫτ(gσzσ)kθ)〉0

×
k∏

j=1

〈ρj | ŵσ(eikǫτ(gσzσ)k−jgσwσθ)〉0.

Proof : (i) This is obvious by definition.
(ii) By Lemma 3.3, we get

R0,kT
σ(k)
k T

σ(k)
k−1 . . . T

σ(k)
1 = (R0,1T

σ(1)
1 )(R1,2T

σ(2)
1 ) . . . (Rk−1,kT

σ(k)
1 ).

Then, definition (3.32) and Lemma 3.4(vi) yield

T (k)[ρ0|ρ1, . . . , ρk] = (R0,1T
σ(1)
1 )(R1,2T

σ(2)
1 ) . . . (Rk−1,kT

σ(k)
1 )(ρ0 ⊗ ρ1 ⊗ . . .⊗ ρk)

= T [T [. . .T [T [ρ0|ρ1]|T ρ2] . . . |T k−2ρk−1]|T k−1ρk],

which iplies the claim.
(iii) This can be derived by induction using above (ii) and Lemma 3.4(iv).
(iv) Due to Lemma 3.3, we have

Rm,k+mT
σ(k+m)
k T

σ(k+m)
k−1 . . . T

σ(k+m)
1 (ρ0 ⊗ ρ1 ⊗ . . .⊗ ρk+m)
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=
(
Rm,m+1T

σ(m+1)
1

)(
Rm+1,m+2T

σ(m+2)
1

)
. . .

. . .
(
Rm+k−1,m+kT

σ(m+k)
1

)
(ρ0 ⊗ ρ1 ⊗ . . .⊗ ρk+m).

Using successively Lemma 3.4(vi) and the result (ii) of the present lemma, one obtains
the assertion.
(v) By virtue of Lemma 3.4(ii) and of the result (i) above, one can prove the case k = 1.
Let us assume the validity for k > 1. Then the validity of the case k+ 1 follows from the
(ii) above and the formula

〈T (k+1)[ρ0|ρ1, . . . , ρk+1] | ŵσ(θ)〉0 = 〈T [T (k)[ρ0|ρ1, . . . , ρk]|T kρk+1] | ŵσ(θ)〉0

= 〈T (k)[ρ0|ρ1, . . . , ρk] | ŵσ(eiǫτgσzσθ)〉0 〈T kρk+1 | ŵσ(eiǫτgσwσθ)〉0
= 〈ρ0 | ŵσ(eikǫτ (gσzσ)keiǫτgσzσθ)〉0

×
k∏

j=1

〈ρj | ŵσ(eikǫτ(gσzσ)k−jgσwσeiǫτgσzσθ)〉0〈ρk+1 | ŵσ(ei(k+1)ǫτgσwσθ)〉0 ,

which proves the assertion (v) by induction. �

Here, we comment that Lemma 3.5 (v) is a revisit to the evolution of the subsystem
S in Lemma 2.2.

3.2 Reduced density matrices of finite subsystems

In this section, we consider evolution of subsystems Sn,k (3.1) and S∼n. Our aim is to
study the large-time asymptotic behaviour of their states, when initial density matrix is
given by (2.5).

For the density matrix ρ1 in (2.5), we assume the condition:

[H] D(θ) =

∞∏

l=0

〈ρ1 | ŵ((gσzσ)lθ)〉0 converge for any θ ∈ C

and the map R ∋ t 7→ D(tθ) ∈ C is continuous.

Here, we do not assume gauge invariance of ρ1. (c.f. Theorem 2.3)
Under the condition [H], one obtains the following theorem:

Theorem 3.6 There exists a unique density matrix ρ∗ on F such that T [ρ∗ | ρ1] = T ρ∗
holds. And ρ∗ also satisfies

(1) ωρ∗(ŵ(θ)) = exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1− |gσ(τ)wσ(τ)|2

1− |gσ(τ)zσ(τ)|2
)]

D(gσ(τ)wσ(τ)θ);

(2) T (k)[ ρ∗| ρ1, . . . , ρ1] = T kρ∗ for k > 1;

(3) For any density matrix ρ0 in (2.5), the convergence limk→∞ T −k
(
T (k)[ρ0 | ρ1, . . . , ρ1]

)
=

ρ∗ holds in the weak∗-A (0) topology on C (0).
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Remark 3.7 (a) The weak*-A (0) topology on C (0) induced by the pair (C (0),A (0)) (3.9)
is coarser than the weak*-L(F ) topology, which coincides with the weak and the norm
topologies on the set of normal states [Ro, BR1].
(b) When ρ1 is gauge-invariant, the characteristic function in (1) coincides with (2.16)
and the present theorem reduces to Theorem 2.3. Especially, the free evolution T [ρ∗ | ρ1] =
T [ρ∗] reduces to the invariance T [ρ∗ | ρ1] = ρ∗.

Proof : First, we note that limk→∞〈ρ0|wσ((gσzσ)kθ)〉0 = 1 because of |gσzσ| < 1 and of
the weak continuity of the state ωρ0 = 〈ρ0| · 〉0. Then by Lemma 3.5 (iii),(v) and Lemma
3.4(i), we get

lim
k→∞

〈T −k
(
T (k)[ρ0 | ρ1, . . . , ρ1]

)
|ŵσ(θ)〉0

= lim
k→∞

〈T −k[ρ0]|ŵσ(eikǫτ(gσzσ)kθ)〉0

×
k∏

j=0

〈T −k[ρ1]|ŵσ(eikǫτ (gσzσ)k−jgσwσθ)〉0 (3.33)

=
∞∏

l=0

〈ρ1|ŵσ((gσzσ)lgσwσθ)〉0

= exp
[ |θ|2

4

σ− + σ+

σ− − σ+

|gσwσ|2
1− |gσzσ|2

]
D(gσwσθ) ,

which means that lim
k→∞

〈T −k
(
T (k)[ρ0 | ρ1, . . . , ρ1]

)
|ŵσ(θ)〉0 is equal to the right-hand side

of (1) in the theorem. (Recall (3.6) and (3.7).) The right-hand side of (1) satisfies: (i)
normalization, (ii) unitarity and (iii) positivity, and (vi) regularity, since it is a limit of
characteristic functions, under condition [H]. Hence from the Araki-Segal theorem as in
Section 2.1, there exists a state ω∗ on the CCR-algebra A (F ) such that its characteristic
function is given by the right-hand side of (1). Moreover, the continuity assumption about
the function D yields that the state ω∗ is normal by the Stone-von Neumann uniqueness
theorem [BR2]. Hence, there exists a density matrix ρ∗ such that ω∗ = ωρ∗ , which conclude
(1). Now, (3) is obvious.

Free evolution T [ρ∗ | ρ1] = T ρ∗ can be derived from (1) by the use of Lemma 3.4
(iii),(i) and (3.6), (3.7). Indeed, one has

〈T [ρ∗|ρ1]|ŵσ(θ)〉0 = 〈ρ∗|ŵσ(eiǫτgσzσθ)〉0〈ρ1|ŵσ(eiǫτgσwσθ)〉0

= exp
[ σ− + σ+

4(σ− − σ+)
(|gσzσθ|2 + |gσwσθ|2)

]

×〈ρ∗|ŵ(eiǫτgσzσθ)〉0〈ρ1|ŵ(eiǫτgσwσθ)〉0 (3.34)

= exp
[ σ− + σ+

4(σ− − σ+)

(
|gσwσθ|2 + |gσwσ|2

1− |gσzσ|2 |g
σzσθ|2

)]

×D(gσwσeiǫτgσzσθ)〈ρ1|ŵ(eiǫτgσwσθ)〉0
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= exp
[ σ− + σ+

4(σ− − σ+)

|gσwσ|2
1− |gσzσ|2D(eiǫτgσwσθ)

= exp
[ σ− + σ+

4(σ− − σ+)
|θ|2

]
〈ρ∗|ŵ(eiǫτθ)〉0 = 〈T [ρ∗]|ŵσ(θ)〉0 = ωT [ρ∗](ŵ

σ(θ)) ,

where we used the equality D(gσzσθ)〈ρ1|ŵ(θ)〉0 = D(θ).
Now the assertion (2) follows directly from T [ρ∗ | ρ1] = T ρ∗, by using Lemma 3.5(ii)(iii).
To prove the uniqueness of ρ∗, let ρ♠ be another density matrix satisfying T [ρ♠ | ρ1] =

T ρ♠. Then, ρ♠ satisfies the property (2) and

ρ♠ = lim
k→∞

T −k[T (k)[ρ0 | ρ1, . . . , ρ1]] ,

which coincides with ρ∗ by (3). Hence, one gets ρ♠ = ρ∗. �

Now we consider the large-time behaviour of the states (3.4) of subsystems S∼n. Let
ρ1 be a density matrix on F satisfying the condition [H]. Then we have the following
theorem.

Theorem 3.8 For any density matrix ρ0 on F and n,m ∈ N, m > n, the limit:

(T −k)⊗(m+1)Rm,m+kT
σ(m+k)
(n+k)τ,0

(
ρ0 ⊗ ρ

⊗(m+k)
1

)
−→ T

σ(m)
nτ,0

(
ρ∗ ⊗ ρ⊗m

1

)
as k → ∞ ,

holds in the weak*-A (m) topology on C (m). Here ρ∗ is the density matrix on F given in
Theorem 3.6.

Proof : By Lemma 3.3, Lemma 3.5(iv) and Lemma 3.4(iv), we obtain

(T −k)⊗(m+1)Rm,m+kT
σ(m+k)
(n+k)τ,0

(
ρ0 ⊗ ρ

⊗(m+k)
1

)

= (T −k)⊗(m+1)T σ(m)
n . . . T

σ(m)
1 Rm,m+kT

σ(m+k)
k . . . T

σ(m+k)
1

(
ρ0 ⊗ ρ

⊗(m+k)
1

)

= (T −k)⊗(m+1)T σ(m)
n . . . T

σ(m)
1

(
T (k)[ρ0|ρ1, . . . , ρ1]⊗ (T k[ρ1])

⊗m
)

= T σ(m)
n . . . T

σ(m)
1 (T −k)⊗(m+1)

(
T (k)[ρ0|ρ1, . . . , ρ1]⊗ (T k[ρ1])

⊗m
)

= T
σ(m)
nτ,0

(
T −k[T (k)[ρ0|ρ1, . . . , ρ1]]⊗ ρ⊗m

1

)
.

Since one has
lim
k→∞

T −k
(
T (k)[ρ0|ρ1, . . . , ρ1]

)
= ρ∗

in the weak*-A (0) topology, we obtain also the weak*-A (m) convergence

(T −k[T (k)[ρ0 | ρ1, . . . , ρ1]])⊗ ρ⊗m
1 −→ ρ∗ ⊗ ρ⊗m

1 as k → ∞ .

By the duality (3.9), one also gets the continuity of T
σ(m)
nτ,0 and hence, the weak*-A (m)

convergence

T
σ(m)
nτ,0

(
T −k[T (k)[ρ0 | ρ1, . . . , ρ1]]⊗ ρ⊗m

1

)
−→ T

σ(m)
nτ,0

(
ρ∗ ⊗ ρ⊗m

1

)
as k → ∞ ,

claimed in the theorem. �

Let us put m = n in the theorem. Then by (3.20), we obtain the limit of the reduced
density matrix ρS∼n

(·) for the subsystem S∼n:
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Corollary 3.9 The convergence

lim
k→∞

(T −k)⊗(n+1)ρS∼n
((n+ k)τ) = T

σ(n)
nτ,0 (ρ∗ ⊗ ρ⊗n

1 ) (3.35)

holds in the weak*-A (n) topology on C (n).

Since T is the free evolution (3.30), the limit (3.35) means that dynamics of subsystem
S∼n is the asymptotically-free evolution of the state, which is given by the n-step evolution
of the initial density matrix ρ∗ ⊗ ρ⊗n

1 of the system S + Cn.
From the continuous time point of view, the subsystem S∼n shows the asymptotic

behaviour, which is a combination of the free evolution and the periodic evolution, c.f.
Remark 2.4(a).
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