David Janin
email: janin@labri.fr

Inverse monoids of higher-dimensional strings

Halfway between graph transformation theory and inverse semigroup theory, we define higher dimensional strings as bi-deterministic graphs with distinguished sets of input roots and output roots. We show that these generalized strings can be equipped with an associative product so that the resulting algebraic structure is an inverse semigroup. Its natural order is shown to capture existence of root preserving graph morphism. A simple set of generators is characterized. As a subsemigroup example, we show how all finite grids are finitely generated. Finally, simple additional restrictions on products lead to the definition of subclasses with decidable Monadic Second Order (MSO) language theory.

Introduction

A never-ending challenge faced by computer science is to provide modeling concepts and tools that, on the one hand, allows for representing data and computations in a more and more abstract and richly structured way, but, on the other hand, remains simple enough to be taught to and used by application designers and software engineers [START_REF] Thomas | Logic for computer science: The engineering challenge[END_REF].

A possible approach to this goal consists in generalizing to graphs the techniques that have already been developed for strings or trees such as the notion of recognizable languages and the associated notion of recognizers. In these directions, an enormous amount of techniques and works has been developed ranging from Lewis' graph composition techniques [START_REF] Lewis | A new decidable problem, with applications (extended abstract)[END_REF] and Courcelle's developments of recognizability to graph languages [START_REF] Courcelle | The monadic second-order logic of graphs V: On closing the gap between definability and recognizability[END_REF] (see also [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]) up to more recent advances based on category theoretical development (see [START_REF] Gadducci | An inductive view of graph transformation[END_REF][START_REF] Bruggink | On the recognizability of arrow and graph languages[END_REF] to name but a few).

Despite numerous achievements in theoretical computer science, there is still room for polishing these techniques towards applications to computer engineering. The ideal balance to achieve between usage simplicity and mathematical coherence is a long-term goal [START_REF] Thomas | Logic for computer science: The engineering challenge[END_REF]. While the underlying frameworks (the back end) of application tools to be designed can (and probably should) be based on robust mathematics, the interface (the front end) of these tools must be kept simple enough to be taught ad used.

Keeping in mind that strings, free monoids and related automata techniques are among the simplest and the most robust available models and are already and successfully put in practice in system modeling methods like event B [START_REF]Modeling in Event-B -System and Software Engineering[END_REF], we develop in this paper a notion of generalized strings, called higher dimensional strings, in such a way that:

1. higher dimensional strings are simple: they are finitely generated from elementary graphs composed via a single and associative product that generalizes string concatenation in free monoids (Theorem 25), 2. the resulting classes of generalized strings include large classes of finite graphs such as, in particular, hypercubes, hence the name higher dimensional (Section 5 for the case of grids), 3. the resulting semigroups are inverse semigroups (Theorems 17 and 19) henceforth mathematically rich enough to provide algebraic characterization of graph-based concepts such as, for instance, existence of graph morphisms characterized by natural order (Theorem 23) or acyclicity defined by a quotient with an adequate ideal (Lemma 33), 4. some well-defined and rich subclasses of these generalized strings still has efficient, expressive and decidable language theory (Theorem 32).

Technically, following the lines already sketched in [START_REF] Janin | Towards a higher dimensional string theory for the modeling of computerized systems[END_REF], we use and generalize the concept of birooted graphs (with single input and output roots) defined and used in [START_REF] Stephen | Presentations of inverse monoids[END_REF] into the notion of higher dimensional strings (with sets of input and output roots). This provides a better measure of the amount of overlaps that occurs in birooted graphs products can be better measured. Thus we can extend the notion of disjoint product [START_REF] Janin | Algebras, automata and logic for languages of labeled birooted trees[END_REF][START_REF] Janin | On languages of labeled birooted trees: Algebras, automata and logic[END_REF] and the applicable partial algebra techniques [START_REF] Blumensath | A syntactic congruence for languages of birooted trees[END_REF]). This yields to our main decidability result (Theorem 32).

In some sense, our proposal amounts to combining concepts and results arising from the theory of inverse semigroups [START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF][START_REF] Meakin | Groups and semigroups: connections and contrasts[END_REF] with graph transformation approaches [START_REF] Lewis | A new decidable problem, with applications (extended abstract)[END_REF][START_REF] Gadducci | An inductive view of graph transformation[END_REF][START_REF] Bruggink | On the recognizability of arrow and graph languages[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF].

Of course, various research developments have already shown that inverse semigroup theory is applicable to computer science, be it for data, computation, language or system modeling. Concerning data modeling, experiments in theoretical physics have already shown that structured data as complex as quasi-crystals can be described by means of some notion of (inverse) tiling semigroup [START_REF] Kellendonk | The local structure of tilings and their integer group of coinvariants[END_REF][START_REF] Kellendonk | Tiling semigroups[END_REF][START_REF] Kellendonk | Universal groups for point-sets and tilings[END_REF]. Inverse semigroup theory has also been used to study reversible computations [START_REF] Danos | Reversible, irreversible and optimal lambda-machines[END_REF][START_REF] Abramsky | A structural approach to reversible computation[END_REF]. More recently, various modeling experiments have been conducted in computational music [START_REF] Berthaut | Advanced synchronization of audio or symbolic musical patterns: an algebraic approach[END_REF][START_REF] Janin | Multi-scale design of interactive music systems : the libTuiles experiment[END_REF]. These last experiments also led to the definition of a Domain Specific (Programing) Language (DSL) which semantics is based on concepts arising from inverse semigroup theory [START_REF] Janin | The T-calculus : towards a structured programming of (musical) time and space[END_REF][START_REF] Hudak | Tiled polymorphic temporal media[END_REF].

Preliminaries

Let A = {a, b, c, • • • } be a finite alphabet of graph edge labels. Every concept defined in the sequel could be extended to hypergraphs, that is, graphs with edges that possibly relate more than two vertices (see Footnote 1). However, restricting our presentation to standard (binary) graph structures allows us to keep statements (and proofs) simpler.

Relational graphs. A (relational) graph on the (binary symbols) alphabet A, simply called A-graph or even graph when A is clear from the context, is a pair G = V, {E a } a∈A with set of vertices V and a-labeled edge relation E a ⊆ V ×V for every a ∈ A.

Back and forth path labels. Let Ā = {ā, b, c, • • • } be a disjoint copy of the alphabet A. A back and forth path label (or simply path label) is a word from the free monoid (A + Ā) * on the alphabet A + Ā, with empty word denoted by 1 and the product of two words u and v ∈ (A + Ā) * denoted by u • v or simply uv. Then, the reverse mapping w → w from (A + Ā) * into itself is inductively defined by

1 = 1, a • v = v • ā and ā • v = v • a for every a ∈ A, x ∈ A + Ā and v ∈ (A + Ā) * .
It is an easy observation that the reverse mapping is an involutive monoid anti-isomorphism, that is, we have u

• v = v • u and w = w for every u, v, w ∈ (A + Ā) * .
Back and forth path actions. For every X ⊆ V and w ∈ (A + Ā) * , the set X • w ⊆ V of vertices reachable from X following w is inductively defined by

X • 1 = X, X • aw = {y ∈ V : ∃x ∈ X, (x, y) ∈ E a } • w and X • āw = {y ∈ V : ∃x ∈ X, (y, x) ∈ E a } • w,
for every letter a ∈ A and every string v ∈ (A + Ā) * . In other words, X • w is the set of vertices that can be reached from a vertex in X along a path labeled by w, where a (resp. ā) denotes the forward (resp. backward) traversal of an a-labeled edge in the graph G.

One can check that X • 1 = X and and

X • (u • v) = (X • u) • v for every X ⊆ V and every string u, v ∈ (A + Ā) * .
Rephrased in semigroup theoretical term, the edge relations of the graph G induce an action of the monoid (A + Ā) * on the powerset of the set of vertices of the graph G. It follows that parentheses can be removed without ambiguity in expressions like (X • u) • v.. Notation for the singleton case. When X is a singleton {x}, we may simply write x • w instead of {x} • w. Similarly, when x • w itself is a singleton we may also treat it just as the element it contains. In other words, we may simply write x • w = y instead of {x} • w = {y}, to denote both the fact that there exists a (back and forth) path from vertex x to vertex y labeled by w and the fact that this path is unique. Similarly, we may say that x • w is undefined (as a vertex) in the case x • w = ∅ (as a set).

Graph morphism. The usual notion of graph morphism can then be (re)defined via path actions as follows. Let G = V, {E a } a∈A and G = V , {E a } a∈A be two graphs on the alphabet

A. A morphism f from G to G , denoted by f : G → G , is a mapping f : V → V such that we have f (x • a) ⊆ f (x) • a and f (x • ā) ⊆ f (x)
• ā for every x ∈ V and every a ∈ A. Then, by induction, we can easily prove that f (x • w) ⊆ f (x) • w for every x ∈ V and every w ∈ (A + Ā) * .

Graph quotient.

Let G = V, {E a } a∈A be a graph. Let be an equivalence relation over the set V , that is, a reflexive, symmetric and transitive relation. Let V / be the set of equivalence classes

{[x] ⊆ V : x ∈ V } where [x] = {x ∈ V : x x }.
Then, the quotient of the graph G by the equivalence is defined to be the graph G/ = V , {E a } a∈A with set of vertices V = V / G and set of edges

E a = {([x], [y]) ∈ V × V : ([x] × [y]
) ∩ E a = ∅}. The mapping η : V → V / defined by η (x) = [x] for every x ∈ V is a surjective morphism called the canonical morphism from the graph G onto the quotient graph G/ .

Unambiguous graphs and connecting morphisms

We define and study in this section the category of unambiguous graphs and connecting morphisms. Though fairly simple, this study is quite detailed for it constitutes the foundation of the notion of birooted graphs defined in the next section.

Definition 1 (Unambiguous graphs).

A graph G = V, {E a } a∈A is unambiguous1 when, for every vertex x ∈ V , for every path w ∈ (A + Ā) * , there is at most one vertex y such that x • w = {y}.

Clearly, by simple inductive argument, G is unambiguous as soon as the above condition is satisfied for every one letter path.

Examples.

Graphs examples are depicted in Figure 1 with ambiguous graph G 1 and unambiguous graphs I 2 and G 2 . In this figure, vertices are named only for illustrative purposes. These vertex names should not be understood as labels. Only edges are labeled in relational graphs. One can observe that graph G 1 is ambiguous for two reasons. First, the upper left vertex 1 is the source of two edges labeled by b. Second, the upper right vertex 2 is the target of two edges labeled by a.

Remark. Observe that when a graph G is seen as a graph automaton on the alphabet A, it is unambiguous when it is both deterministic and co-deterministic. In the connected case, these unambiguous graphs are the Schützenberger graphs studied and used in [START_REF] Stephen | Presentations of inverse monoids[END_REF].

Definition 2 (Connecting morphisms).

Let f : G → G be a graph morphism between two graphs G = V, {E a } a∈A and let G = V , {E a } a∈A . The morphism f is a connecting morphism when for every x ∈ V there exist x ∈ V and w

∈ (A + Ā) * such that x ∈ f (x) • w.
In other words, a morphism f : G → G is a connecting morphism when every vertex of graph G is connected to the image of a vertex of G in graph G .

Examples. Clearly, every surjective (i.e. onto) morphism is a connecting morphism. Another example of (non surjective) connecting morphism f :

I 2 → G is depicted in Figure 2. 4 1 2 3 a b b (G) (I2) 2 1 f Fig. 2. A connecting morphism ϕ : I2 → G with ϕ(1) = 1 and ϕ(2) = 3.
Remark. Observe that when both G and G are unambiguous, then, for every

x ∈ V , every w ∈ (A + Ā) * , if x • w is not empty then so is f (x) • w and we have f (x • w) = f (x) • w.
This leads us to the following Lemma.

Lemma 3 (Unique morphism completion).

Let G, G 1 and G 2 be three graphs. Let f 1 : G → G 1 and f 2 : G → G 2 be two graph morphisms. Assume that f 1 is connecting and that both G 1 and G 2 are unambiguous. Then there exists at most one morphism g :

G 1 → G 2 such that g • f 1 = f 2 . Moreover, if f 2 is connecting, then so is g.
Clearly, the composition of two connecting morphisms is a connecting morphism. Since the identity mapping over a graph is also a connecting morphism, this allows us to define the following categories.

Definition 4 (Induced categories). Let CGrph(A) (resp. UCGrph(A))

be the category defined by finite graphs (resp. by finite unambiguous graphs) as objects and connecting morphisms as arrows.

We aim now at studying the properties of both category CGrph(A) and category UCGrph(A) and, especially, the way they are related. The notion of unambiguous congruence defined below allows us to transform any graph into its greatest unambiguous image. In group theory, this generalizes the notion of Stallings foldings [START_REF] Meakin | Groups and semigroups: connections and contrasts[END_REF].

Definition 5 (Unambiguous congruence). Let

G = V, {E a } a∈A be a graph on the alphabet A. A relation ⊆ V × V over the vertices of G is an unambigu- ous congruence when it is an equivalence relation such that, for every a ∈ A, for every x, y ∈ V , if x y then we have both x • a × y • a ⊆ and x • ā × y • ā ⊆ .
The existence of a least congruence is stated in Lemma 6 and the associated universality property is stated in Lemma 7.

Lemma 6 (Least unambiguous congruence).

Let G be a graph, possibly ambiguous. Then there exists a least unambiguous congruence G over G. Moreover, in the case G is unambiguous, then G is the identity relation.

The graph G/ G is called the greatest unambiguous graph image of the graph G. Its maximality is to be understood in the following sense.

Lemma 7 (Maximal unambiguous image).

Let G be a graph. Let G be its least unambiguous congruence. Then, for every graph morphism f : G → H with unambiguous graph H, there exists a unique morphism g :

G/ G → H such that f = g • η G . Moreover, if f is connecting then so is g.
Example. An example of maximal graph image is provided by the graphs already depicted in Figure 1 where G 2 has not been chosen at random since 3, encoding the least unambiguous congruence on G 1 that glues 1 with 5, and 3 with 4.

G 2 = G 1 / G1 .

The canonical onto morphism

η : G 1 → G 1 / G1 = G 2 is depicted in Figure
Remark. The construction described above is a generalization of what is known in algebra as Stallings folding [START_REF] Meakin | Groups and semigroups: connections and contrasts[END_REF]. Observe that with G = V, {E a } a∈V , the least unambiguous congruence G equals the least fixpoint of the mapping F :

V × V → V × V defined by F (R) = R ∪ {(x • a) × (y • a) ∪ (x • ā) × (y • ā) : (x, y) ∈ R, a ∈ A}
that contains the equality. It follows, by applying classical fixpoint techniques, that G = n≥0 F n (=), henceforth it can be computed in quasi linear time. In other words, computing the maximal unambiguous image G/ G of the graph G can be done in time quasi linear in the size of the graph G.

Clearly, the category UCGrph(A) is a subcategory of CGrph(A). The next lemma shows shows that maximal graph images extend to morphisms henceforth defining a projection functor from CGrph(A) into UCGrph(A). Lemma 8 (Projected morphisms). Let G and H be two graphs with a connecting morphism

f : G → H. Let η G : G → G/ G and η H : H → H/ H
be the related canonical onto morphisms. Then there exists a unique connecting morphism ϕ(f

) : G/ G → H/ H such that ϕ(f) • η G = η H • f .
In other words, we can define the functor ϕ : CGrph(A) → UCGrph(A) by ϕ(G) = G/ G for every graph G and by ϕ(f) as given by Lemma 8 for every connecting morphism f . Then, we have ϕ(G) = G for every unambiguous graph G and ϕ(f) = f for every connecting graph morphism f between unambiguous graphs. In other words, ϕ is a projection from CG(A) into UCGrph(A) henceforth a left inverse of the inclusion functor from UCGrph(A) to CGrph(A).

We study a bit further the morphisms in these categories showing that they both admit pushouts. The following definition, classical in category theory, is given here for the sake of completeness.

Definition 9 (Pushouts

). Let f 1 : G → G 1 , f 2 : G → G 2 be a pair of morphisms. A pair of morphisms g 1 : G 1 → H, g 2 : G 2 → H is a pushout of the pair f 1 , f 2 when f 1 • g 1 = f 2 • g 2 ,
and, for every other pair of morphisms

g 1 : G 1 → H , g 2 : G 2 → H , if f 1 • g 1 = f 2 • g 2 then there exists a unique morphism h : H → H such that g 1 = h • g 1 and g 2 = h • g 2 .
The first pushout lemma, in the category CGrph(A), is a slight generalization of the pushout in the category Set.

Lemma 10 (Synchronization). In category CGrph(A), every pair of morphisms with common source has a pushout.

Proof (sketch of). Let ≡ f1,f2 be the equivalence relation over the vertices of the disjoint sum

G 1 + G 2 induced by f 1 (x) ≡ f1,f2 f 2 (x) for every vertex x of G. Let H = G 1 + G 2 / ≡ f1,f2 . Then, the pair η ≡ f 1 ,f 2 • i 1 , η ≡ f 1 ,f 2 • i 2 with canonical injection i 1 (resp. i 2) of G 1 (resp. G 2) into G 1 + G 2 is a pushout of f 1 , f 2 in category CGrph(A). 2
Example. An example of such a pushout in the category CGrph(A) is depicted in Figure 4. Remark. Existence of pushouts in CGrph(A) essentially follows from the existence of pushouts in the category Set. These pushouts are called synchronization (or glueing) pushouts since, the pushout of

f 1 : G → G 1 , f 2 : G → G 2 essen- tially glues the vertices of G 1 and G 2 that have common ancestors in G either via f 1 or via f 2 .
The second pushout lemma, in the category UCGrph(A), is completed by a fusion phase (or glueing propagation) defined by taking the maximal unambiguous image of the graph resulting from the pushout in CGrph(A).

Lemma 11 (Synchronization and fusion). In category UCGrph(A), every pair of morphisms with common source has a pushout.

Proof (sketch of). Take H = G 1 + G 2 / f1,f2 as for Lemma 10 with pushout g 1 , g 2 . Then, take U = H/ H the greatest unambiguous image of H. The pair

η H • g 1 , η H • g 2 is a pushout of f 1 , f 2 in UCGrph(A). 2
Example. An example of a synchronization + fusion is depicted in Figure 5.

The inverse monoid of birooted graphs

We are now ready to define birooted graphs as certain cospans in the category UCGrph(A). For such a purpose, for every integer k > 0, let I k be the unambiguous defined by k distinct vertices {1, 2, • • • , k} and empty edge relations, and let id k : I k → I k be the identity isomorphism.

Definition 12 (Birooted graphs).

A birooted graph B is a pair of connecting morphisms B = in : I p → G, out : I q → G from two trivial graphs I p and I q to a common unambiguous graph G.

The morphism in is called the input root morphism, or, more simply, the input root of the birooted graph B. The morphism out is called the output root morphism, or, more simply, the output root of the birooted graph B.

The pair of positive integers (p, q) that defines the domains of root morphisms is called the type of the birooted graph. It is denoted by dom(B). The underlying graph G is the codomain of the input and output morphisms. It is called the graph of B and it is also denoted by cod(B).

Remark.

A birooted graph of type (p, q) can simply be seen as a unambiguous graph G = V, {E a } a∈A enriched with two tuples of distinguished vertices (x 1 , x 2 , • • • , x p) ∈ V p and (y 1 , y 2 , • • • , y q) ∈ V q that label the vertices marked by the input and the output roots of the birooted graph. This point of view is depicted in Figure 6 with two birooted graphs B 1 and B 2 of type [START_REF]Modeling in Event-B -System and Software Engineering[END_REF][START_REF]Modeling in Event-B -System and Software Engineering[END_REF]. In such a figure, vertices of input roots are marked by dangling input arrows, and vertices of output roots are marked by dangling output arrows. Remark. The name "birooted graphs" is borrowed from [START_REF] Stephen | Presentations of inverse monoids[END_REF]. However, our definition is a clear generalization of the definition given in [START_REF] Stephen | Presentations of inverse monoids[END_REF]. Indeed, Stephen's birooted graphs are only birooted graphs of type (1, 1).

In category theoretical term, a birooted graph is a cospan (see for instance [START_REF] Blume | Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata[END_REF]). The existence of pushouts in the category UCGrph(A) allows us to define the product of birooted graphs as the product of their cospan. However, such a product is (so far) not uniquely determined since, a priori, it may depend on the chosen pushout.

Definition 13 (Birooted graph product instance).

Let B 1 = in 1 , out 1 and let B 2 = in 2 , out 2 be two birooted graphs. Assume that B 1 is of type (p, q) and that B 2 is of type (q, r). Let h 1 , h 2 be a pushout of the pair out 1 , in 2 . Then, the product instance of birooted graphs via the pushout h 1 , h 2 is defined to be the birooted graphs h 1 • in 1 , h 2 • out 2 , and it is denoted by B 1 • h1,h2 B 2 .

A concrete example of a product instance built from the (2, 2)-birooted graphs given in Figure 6 is depicted in Figure 7. We aim now at defining products of birooted graphs up to some adequate notion of birooted graph equivalence. This is done via the notion of birooted graph morphisms (Definition 14) and the proof that birooted graph product instances are stable under birooted graph morphisms (Lemma 15).

Definition 14 (Birooted graph morphisms). Let

B 1 = in 1 ,
h : B 1 • B 2 ⇒ C 1 • C 2 .
This stability property allows us to define the following birooted graph algebras.

Definition 16 (Birooted graph algebras).

Let HS(A) be the set of classes of isomorphic birooted graphs extended with the emptyset equipped with the product defined for every X, Y ∈ H(S) as follows. In the case there is B ∈ X, C ∈ Y and a product instance B • C, then we take

X • Y = [B] ∼ • [Y] ∼ = [B • Y] ∼ and take X • Y = ∅ in

Theorem 17 (Semigroup property). The algebra HS(A) is a semigroup, that is, the product of birooted graphs is an associative operation.

Lemma 18 (Idempotent property). A non-zero birooted graph B of the form

B = in, out is idempotent, that is, B •B = B,
if and only if in = out. Moreover, idempotent birooted graphs commute henceforth form a subsemigroup.

Theorem 19 (Inverse semigroup property). The semigroup HS(A) is an inverse semigroup, that is, for every element B, there is a unique element

B -1 such that B • B -1 • B = B and B -1 • B • B -1 = B -1
The inverse B -1 of a non-zero birooted graph B = in, out is simply given by B -1 = out, in .

Inverses allow us to define left and right projections that, following inverse semigroup theory, characterize left and right Green classes. Remark. As a general matter of fact, the relation B C defined over birooted graphs when there exists a (root preserving) morphism h : C ⇒ B is a (partial) order relation. We shall see now that it has an algebraic characterization in inverse semigroup theory: it is the natural order [START_REF] Lawson | Inverse Semigroups : The theory of partial symmetries[END_REF].

Definition 22 (Natural order). The natural order ≤ is defined over birooted graphs by

B ≤ C when B = B R • C (or, equivalently, B = C • B L).
Theorem 23 (Natural order vs birooted graph morphisms). In the inverse semigroup HS(A), the absorbant element 0 is the least element under the natural order and, for every pair of non zero birooted graphs B and C, B ≤ C if, and only if, there is a birooted graph morphism h :

C ⇒ B.
The inverse semigroup of birooted graphs gives a fairly simple though mathematically robust way to compose birooted graphs one with the other. Now we aim at characterizing a simple set of generators for this semigroup.

Definition 24 (Elementary birooted graphs).

A elementary birooted graph is either zero or any birooted graph among I m , P m,i,j , T m,a , T m,ā F m or J m defined below. In the case m = 3 these graphs are depicted in Figure 8. Formally, the birooted graph P m,i,j = id m : I m → I m , out : I m → I m is defined for any m > 0 and 1 ≤ i, j ≤ m by out(i) = j, out(j) = i and out(k) = k for every other 1 ≤ k ≤ m. It is called a root permutation. As a particular case, when i = j, since P m,i,j = id m , id m , the birooted graph P m,i,i is denoted by 1 m instead and called a root identity.

The birooted graphs Examples. Some birooted graphs generated by elementary graphs are depicted in Figure 9. Theorem 25. Every birooted graphs in : I p → G, out : I q → G with n vertices in G is finitely generated from 0 and the elementary birooted graphs

F m = id m-1 : I m-1 → I m-1 , out : I m → I m-1 and J m = in : I m → I m-1 , id m-1 : I m-1 → I m-1 are defined for any m > 1, by in(m) = out(m) = m -1 and in(k) = out(k) = k for every 1 ≤ k ≤ m -1.
(T2,a • J2 • F2 • T2,ā) 1 1 2 2 a (F2 • T2,a • T 2,b • T2,c • J2) 1 1 a b c (T 2,b • P2,1,2 • T2,a • P2,1,2)
1 k , P k,i,j , T k,a , T k,ā , F k and J k with 1 ≤ k ≤ max(n, p + 1, q + 1).
Definition 26 (Bounded birooted graphs algebras). For any given integer m > 0, let HS m (A) (resp. HS ≤m (A)) be the algebraic structure defined as the subsemigroup of HS(A) generated by 1 m , P m,i,j , T m,a , T m,ā (resp.

1 k , P k,i,j , T k,a , T k,ā , F k and J k with 1 ≤ k ≤ m).
As an corollary of Theorems 17 and 19, we have:

Theorem 27.
For every integer m > 0, the algebra HS m (A) is an inverse monoid with neutral element 1 m .

Remark. As a particular case, it can be shown that HS 1 (A) is the free inverse monoid FIM (A) generated by A. We shall see below that birooted grids of arbitrary size but of type (2, 2) belong to HS ≤2 (A). In other word, in Theorem 25, the bound given for k, depending on the number of vertices of G is not optimal.

Languages of birooted graphs

Now we aim at developing the language theory of higher dimensional strings, that is to say, the study of the definability of subsets of HS(A). For such a purpose, we consider the First Order (F O) logic or the Monadic Second Order (M SO) logic (see [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]) on birooted graphs. We refer the reader to the book [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] for a definition of MSO on graphs. More precisely, we consider HS ≤m (A) so that the number of input and output roots on graphs is bounded. Then, one can enrich the signature A by 2 * m symbols, necessarily interpreted as singletons in order to describes these roots. Clearly, this is easily done within F O or M SO logic and we can thus consider the class of F O-definable or M SO-definable languages of birooted graphs.

Theorem 28 (Undecidability).

When m ≥ 2, the language emptiness problem for F O-definable (hence also M SO-definable) languages of birooted graphs of HS ≤m (A) is undecidable.

Proof (sketch of). The undecidability of F O follows from the fact that, as soon as m ≥ 2, as depicted in Figure 10, grids of arbitrary size can be finitely generated with two edge relations a and b modeling horizontal and vertical directions, hence, together with additional edge relations for encoding arbitrary unary predicates on grid vertices, classical undecidability results apply [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. We first check, following the examples depicted in Figure 9, that these generators can indeed be defined by means of

2 (B1) (B2) (B3) (B4) (B5) (B6)
P k,i,j , T k,a , T k,ā , F k and J k with 1 ≤ k ≤ 2.
For instance, we have

B 5 = (T 2, b • J 2) R • T 2,a • T 2,b • (T 2,a • J 2) R • P 2,1,2 .
Then, as depicted in Figure 11, we can generate birooted grids of arbitrary size by taking the (2, 2)-birooted graph B m,n defined by

G m,n = (Z m • Y m) n .
Clearly, B mn contains a grid of size m by 2 * n. One may ask how generating such graphs of unbounded tree-width can be avoided. It occurs that this can simply be done by restricting the overlaps that are allowed in product instances.

Recently introduced in the context of birooted words [START_REF] Janin | Overlaping tile automata[END_REF] or trees [START_REF] Janin | Algebras, automata and logic for languages of labeled birooted trees[END_REF][START_REF] Janin | On languages of labeled birooted trees: Algebras, automata and logic[END_REF] languages, the definition of the disjoint product, extended to birooted graphs, makes this restriction of overlaps formal.

Definition 29 (Disjoint product).

Let B 1 = in 1 , out 1 and B 2 = in 2 , out 2 be two birooted graphs. Let h 1 , h 2 be a pushout of out 1 , in 2 in UCGrph(A) and let B 1 • B 2 in, out with in = h 1 • in 1 and out = h 2 • out 2 be the resulting product. Then this product is a disjoint product when the pair h 1 , h 2 is also a pushout of in out 1 , in 2 in the category CGrph(A). In this case, the disjoint product is denoted by B 1 B 2 .

In other words, a birooted graph product is a disjoint product when the fusion phase in the underlying pushout computation is trivial. Although partially defined, this disjoint product is still associative in the following sense.

Lemma 30 (Partial associativity). For all birooted graphs B 1 , B 2 , B 3 the disjoint product B 1 (B 2 B 3) is defined if and only if the disjoint product (B 1 B 2) B 3 is defined and, in that case, the products are equal.

Then, the closure under disjoint products and left and right projections are defined as follows.

Definition 31 (Disjoint closure and decomposition). Let X ⊆ HS(A) be a set of birooted graphs. The disjoint closure of the set X is defined to be the least set Y of birooted graphs such that X ⊂ Y and that Y is closed under disjoint product and left and right projections. This closure is denoted by X ,L,R .

For every birooted graph B ∈ X ,L,R , a combination of elements of X by disjoint products and let and right projection that equals B is called a disjoint decomposition of B over X.

Examples. The subset of HS 1 (A) generated by disjoint products of elementary birooted graphs I 1 and T 1,a with a ∈ A is just the free monoid A * . Adding left and right projections, the disjoint closure of such a set is known in the literature as the free ample monoid FAM (A) whose elements are positive birooted trees (see [START_REF] Fountain | The free ample monoid[END_REF]). Adding backward edges T 1,ā for every a ∈ A, the disjoint closure of the resulting set is the free inverse monoid FIM (A) whose elements are arbitrary birooted trees.

Theorem 32 (Decidability and complexity). Let X ⊆ f in HS(A) be a finite subset of HS(A). Then, the emptiness problem for M SO-definable subsets of the disjoint closure X ,R,L is (non-elementary) decidable.

Moreover, for any M SO-definable language L ⊆ X ,R,L , the membership problem B ∈ L for any B ∈ HS(A) is linear in the size of any disjoint decomposition of B over X.

Proof (sketch of). Every disjoint product in X ,R,L is just a disjoint sum with a bounded glueing of roots. It follows that MSO decomposition techniques (see [START_REF] Shelah | The monadic theory of order[END_REF] or [START_REF] Thomas | Ehrenfeucht games, the composition method, and the monadic theory of ordinal words[END_REF]) combined with partial algebra techniques [START_REF] Burmeister | A Model Theoretic Oriented Approach to Partial Algebras[END_REF] are available, as done in [START_REF] Blumensath | A syntactic congruence for languages of birooted trees[END_REF] for languages of labeled birooted trees, to achieve an algebraic characterization of MSO definable languages in terms of (partial algebra) morphisms into finite structures. Such an approach also proves the complexity claim for the membership problem.

2

Remark. Of course, the membership problem is non elementary in the size of the M SO formula that defines L. This already follows from the case of M SO definable languages of finite words. Also, the problem of finding disjoint decompositions over X for birooted graphs may be delicate and is left for further studies.

As observed above, A * , FAM (A) and FIM (A) are examples of subsemigroup of HS(A) that are finitely generated by disjoint product, inverses and/or projections [START_REF] Janin | Algebras, automata and logic for languages of labeled birooted trees[END_REF][START_REF] Janin | On languages of labeled birooted trees: Algebras, automata and logic[END_REF]. By applying Theorem 32, this proves (again) that their MSO definable subsets have decidable emptiness problem.

The inverse monoid of acyclic birooted graphs

Towards application purposes, birooted graphs can be seen as models of computerized system behaviors with vertices viewed as (local) states and edges viewed as (local) transition. In this case, one is tempted to detect and forbid directed cycles which interpretation could be problematic (causally incoherent).

As an illustration of the power of the inverse semigroup framework that is proposed here, we show how these birooted acyclic graphs can simply be defined as the quotient of the inverse semigroup of birooted graphs by the semigroup ideal of cyclic ones. Then, in such a quotient, easily implementable, a product of acyclic birooted graphs is causally coherent if and only if it is non zero.

Lemma 33 (Semigroup ideal).

Let ϕ be a graph property that is preserved under graph morphisms. Let I ϕ be the set I ϕ ⊆ HS(A) that contains 0 and all birooted graphs whose underlying graph satisfies ϕ. Then, I ϕ is an semigroup ideal of HS(A), that is,

HS(A) • I ϕ ⊆ HS(A) and I ϕ • HS(A) ⊆ HS(A)

and the Rees' quotient HS(A)/I ϕ , that is, the set HS(A) -I ϕ + {0} equipped with the product defined as in H(A) when the result does not belong to I ϕ and defined to be 0 otherwise, is still an inverse semigroup.

In other words, much in the same way 0 already appears with products in HS(A) that have no compatible types, when the property ϕ describes, in some concrete modeling context, a set of faulty models that is preserves under morphism, then the product in HS(A)/I ϕ equals 0 also when the resulting birooted graph is faulty.

Clearly, the existence of directed cycles is a property preserved by morphism. Then, the algebra of birooted acyclic graphs can simply be modeled as the inverse semigroup HS(A)/I C where I C ⊆ HS(A) is the resulting semigroup ideal containing 0 and all (directed) cyclic birooted graphs.

Such a situation is depicted in Figure 12 where examples show how products of birooted graphs may propagate causality constraints eventually leading to non-causal graphs: the product (B 2 • B 2).

In other words, with the proposed approach, one can define a modeling software in such a way that non-causal models raised by combination of causal constraints are easily detected and forbidden, while, at the same time, the underlying algebraic framework still lays in the theory of inverse semigroups.

Conclusion

We have shown how a rather simple and intuitive composition operation on graphs, inherited from long standing ideas (see [START_REF] Lewis | A new decidable problem, with applications (extended abstract)[END_REF]), induces a rich algebraic structure, an inverse semigroup, from which one can define a natural order and other mathematically robust operators such as left and right projections, that capture graph theoretical concepts.

Of course, defining graph products by means of cospans products has already a long history in Theoretical Computer Science (see e.g. [START_REF] Gadducci | An inductive view of graph transformation[END_REF][START_REF] Bruggink | On the recognizability of arrow and graph languages[END_REF][START_REF] Blume | Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata[END_REF]). The originality of our approach consists in restricting the category of unambiguous graphs and connecting morphisms that allow the resulting semigroup to be an inverse semigroup.

Still, this inverse semigroup is far from being understood in depth. Little is known about its subsemigroups. Thanks to [START_REF] Stephen | Presentations of inverse monoids[END_REF], one can easily show that, all A generated E-unitary inverse semigroups (see also [START_REF] Margolis | E-unitary inverse monoids and the Cayley graph of a group presentation[END_REF]) are subsemigroups of the monoid defined by birooted graphs of type [START_REF] Abramsky | A structural approach to reversible computation[END_REF][START_REF] Abramsky | A structural approach to reversible computation[END_REF]. This suggests that the semigroup HS(A) may satisfy some universality property that is still to be discovered. Also, we have no direct characterizations of the subsemigroups of HS(A) that could be defined by bounding the number of roots on generators.

Following [START_REF] Blumensath | A syntactic congruence for languages of birooted trees[END_REF], by restricting the product to disjoint product, techniques arising from partial algebras [START_REF] Burmeister | A Model Theoretic Oriented Approach to Partial Algebras[END_REF] are applicable allowing us to inherit from the existing MSO-language theory of graphs of bounded tree-width [START_REF] Courcelle | The monadic second-order logic of graphs V: On closing the gap between definability and recognizability[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. It is expected that tile automata, defined in [START_REF] Janin | Algebras, automata and logic for languages of labeled birooted trees[END_REF][START_REF] Janin | Overlaping tile automata[END_REF] over birooted words or trees, can easily be extended to higher dimensional strings and related with MSO-definability. Yet, closure property of MSO-definable languages remains to be detailled. It is by no means clear under which restrictions the product of two definable languages remains definable. Also, defining more suitable subsemigroups of (possible Rees' quotient of) HS(A) that would also have decidable MSO languages is still to be investigated.

With a view towards application, beyond all experiments mentioned in the introduction, the modeling power of birooted graphs also needs to be investigated further in both practical modeling problems and more general modeling theories. For such a purpose, an implementation of the monoid HS(A) with both graphical and programmatic views of its elements is scheduled. As already mentioned, multiple roots gives a flavor of concurrency. It is also expected that higher dimensional strings can be used as (explicitly concurrent) models of partially semi-commutative traces [START_REF] Diekert | Partially commutative inverse monoids[END_REF][START_REF] Janin | Free inverse monoids up to rewriting[END_REF] henceforth connecting higher dimensional strings with a part of concurrency theory.

Finally, it has been shown recently that (one head) tree and graph walking automata semantics is nicely described in terms of (languages of) birooted graphs with single input and output roots [START_REF] Janin | Walking automata in the free inverse monoid[END_REF]. The generalized birooted graphs presented here may provide nice semantical models of multi-head walking automata: partial runs of these automata clearly define languages of birooted graphs with multiple input and output roots.

Fig. 1 .

 1 Fig. 1. Ambiguous graph G1 and unambiguous graph G2.

Fig. 3 .

 3 Fig. 3. Graph G2 is the maximal unambiguous image of graph G2.

Fig. 4 .

 4 Fig. 4. A "synchronization" pushout example.

Fig. 5 .

 5 Fig. 5. A "synchronization + fusion" pushout example.

Fig. 6 .

 6 Fig. 6. Examples of (2, 2)-birooted graphs.

Fig. 7 .

 7 Fig. 7. A product instance of B1 • B2 • B1 • B2.

 all other cases. Notation. In the sequel we shall simply write B (or C) instead of [B] (or [C]) and we shall simply write B • C for the product [B] ∼ • [C] ∼ of the corresponding classes of equivalent birooted graphs.

Definition 20 (1 . 21 .

 20121 Left and right projection). Let B ∈ HS(A) be a birooted graph. The left projection B L of the birooted graph B is defined by B L = B -1 •B. The right projection B R of the birooted graph B is defined by B R = B • B -Lemma Let B = in, out be a non-zero birooted graph. Then we have B L = out, out and B R = in, in .

Fig. 8 .

 8 Fig. 8. Elementary birooted graphs.

 They are called a root fork and a root join. The birooted graph T m,a = int : I m → G a , out : I m → G a is defined for any m > 0 and a ∈ A, by G a being the m + 1 vertex graph with set of vertices V = {1, • • • , m, m + 1} and sets of edges E a = {(m, m + 1)} and E b = ∅ for every b = a, with in(m) = m, out(m) = m + 1 and in(k) = out(k) = k for every other 1 ≤ k < m. It is called a forward edge. The birooted graph T m,ā = T -1 m,a is called a backward edge.

Fig. 9 .

 9 Fig. 9. Some elementary compositions.

Fig. 10 .

 10 Fig. 10. A finite set of generators B1,B2, B3, B4, B5 and B6.

Fig. 11 .

 11 Fig. 11. The (2, 2)-birooted graphs Ym = (B1) m • B2 • B3 and Zm = (B4) m • B5 • B6.

Fig. 12 .

 12 Fig. 12. Causal constraints propagation via products.

Product stability w.r.t. birooted graphs morphisms).

 out 1 and B 2 = in 2 , out 2 be two birooted graphs. A birooted graph morphism from B 1 to B 2 is defined as root preserving graph morphism of their codomain, that is, a graph morphism h :cod(B 1) → cod(B 2) such that in 2 = h • in 1 and out 2 = h • out 1 . Such a morphism is denoted by h : B 1 ⇒ B 2 .Two birooted graphs B 1 and B 2 are isomorphic when there is an isomorphism h : B 1 ⇒ B 2 . Such a situation is denoted by B 1 ∼ B 2 . Thanks to Lemma 3, there exists at most one morphism h : B 1 ⇒ B 2 between any two birooted graphs B 1 and B 2 . Let f 1 : B 1 ⇒ C 1 and f 2 : B 2 ⇒ C 2 be two birooted graphs morphisms and let B 1 •B 2 and C 1 •C 2 be two product instances. Then, there exists a (unique) birooted graphs morphisms

	Remark. Lemma 15 (

unambiguity can be generalized to hypergraphs by viewing every binary relation of the form ∃z 1 z

z

a(z 1 , x, z 2 , y, z 3) with tuples of FO-variables z 1 , z 2 and z 3 of adequate lengths as a primitive binary relation.

Acknowledgements

The idea of developing a notion of higher dimensional strings has been suggested to the author by Mark V. Lawson in 2012. Their presentations have also benefited from numerous and helpful comments from anonymous referees of serval versions of this paper.