
HAL Id: hal-01165724
https://hal.science/hal-01165724v1

Submitted on 19 Jun 2015 (v1), last revised 5 Aug 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse monoids of higher-dimensional strings
David Janin

To cite this version:
David Janin. Inverse monoids of higher-dimensional strings. [Research Report] LaBRI, Université de
Bordeaux. 2015. �hal-01165724v1�

https://hal.science/hal-01165724v1
https://hal.archives-ouvertes.fr

Inverse monoids of higher-dimensional strings

David Janin

Université de Bordeaux,
Bordeaux INP,

LaBRI CNRS UMR 5800,
INRIA Bordeaux Sud-Ouest
F-33405 Talence, FRANCE

janin@labri.fr

Abstract. Halfway between graph transformation theory and inverse
semigroup theory, we define higher dimensional strings as bi-deterministic
graphs with distinguished sets of input roots and output roots. We show
that these generalized strings can be equipped with an associative prod-
uct so that the resulting algebraic structure is an inverse semigroup. Its
natural order is shown to capture existence of root preserving graph mor-
phism. A simple set of generators is characterized. As a subsemigroup
example, we show how all finite grids are finitely generated. Last, simple
additional restrictions on products lead to the definition of subclasses
with decidable Monadic Second Order (MSO) language theory.

1 Introduction

A never-ending challenge faced by computer science is to provide modeling con-
cepts and tools that, on the one hand, allow for representing data and computa-
tions in a more and more abstract and richly structured way, but, on the other
hand, remain simple enough to be taught to and used by application designers
and software engineers [32].

A possible approach to this goal consists in generalizing to graphs the tech-
niques that have already been developed for strings or trees such as the notion of
recognizable languages and the associated notion of recognizers. In these direc-
tions, an enormous amount of techniques and works has been developed ranging
from Lewis’ graph compositions techniques [25] and Courcelle’s developments of
recognizability to graph languages [8] (see also [9]) up to more recent advances
based on category theoretical development (see [14, 6] to name but a few).

Despite numerous successes in theoretical computer science, there is still
room for polishing these techniques towards application to computer engineer-
ings. The ideal balance to be reached between usage simplicity and mathematical
coherence is a long-term goal [32]. While the underlying frameworks (the back
end) of such tools can (and probably should) be based on robust mathematical
tools, the interface (the front end) of these techniques and tools must be kept
simple enough to remain teachable and usable.

Keeping in mind that strings, free monoids and related automata techniques
are among the simplest and the most robust available models and are already

and successfully put in practice is system modeling methods like event B [2]
we develop in this paper a notion generalized strings, called higher dimensional
strings, in such a way that:

1. higher dimensional strings are simple: they are finitely generated from ele-
mentary graphs composed via a single and associative product that general-
izes string concatenation in free monoids (Theorem 32),

2. the resulting classes of generalized strings include large classes of finite
graphs such as, in particular, hypercubes, hence the name higher dimen-
sional (Section 5 for the case of grids),

3. the resulting semigroups are inverse semigroups (Theorems 24 and 26) hence-
forth mathematically rich enough to provide algebraic characterization of
graph-based concepts such as, for instance, graph morphisms by natural or-
ders (Theorem 30) or acyclicity by quotient with ideal (Lemma 41),

4. some well-defined and rich subclasses of these generalized strings still enjoy
an efficient, expressive and decidable language theory (Theorem 40).

Technically, our proposal amounts to combining concepts and results arising
from the theory of inverse semigroups [24] and, beyond, group theory [27] and
graph transformation approaches [25, 14, 6, 9].

Of course, various research developments have already shown that inverse
semigroup theory is applicable to computer science, be it for data, computation,
language or system modeling.

For data modeling, experiments in theoretical physics have already shown
that structured data as complex as quasi-crystals can be described by means
of some notion of (inverse) tiling semigroup [20–22]. Inverse semigroup theory
has also been used to study reversible computations [10, 1]. More recently, vari-
ous modeling experiments have been conducted in computational music [3, 18].
These last experiments also led to the definition of a Domain Specific (Program-
ing) Language (DSL) which semantics is based on concepts arising from inverse
semigroup theory [19, 15].

More closely related with the present paper, various developments of formal
language theory linked with inverse semigroups have already been conducted [26,
29]. These (inverse) formal language theoretical approaches could also be con-
ducted over higher dimensional strings when seen as (inverse) automata with
multiple initial and terminal states. Such a point of view is however left for
further studies.

Among recent works, let us also mention the study of the word problem on
virtually free inverse semigroups [12] that already relates (elements of) inverse
semigroups with graphs of bounded tree width. Let us also mention the lifting
and the study of partially commutative trace theory (developed for concurrent
systems modeling) into inverse semigroups [11].

2

2 Preliminaries

Let A = {a, b, c, · · · } be a finite alphabet of graph edge labels. Every concept
defined in the sequel could be extended to hypergraphs, that is, graphs with
edges that possibly relate more than two vertices. However, restricting our pre-
sentation to standard (relational) graph structures allows us to keep statements
(and proofs) simpler.

Relational graphs. A (relational) graph on the (binary symbols) alphabet A,
simply called A-graph or even graph when A is clear from the context, is a pair

G = 〈V, {Ea}a∈A〉

with set of vertices V and a-labeled edge relation Ea ⊆ V × V for every a ∈ A.

Back and forth path labels. Let Ā = {ā, b̄, c̄, · · · } be a disjoint copy of the
alphabet A. A back and forth path label (or simply path label) is a word from
the free monoid (A+ Ā)∗ on the alphabet A+ Ā, with empty word denoted by
1 and the product of two words u and v ∈ (A+ Ā)∗ denoted by u · v or simply
uv. Then, the reverse mapping w 7→ w from (A + Ā)∗ into itself is inductively
defined by

1 = 1, a · v = v · ā and ā · v = v · a

for every a ∈ A, x ∈ A + Ā and v ∈ (A + Ā)∗. It is an easy observation that
the reverse mapping is an involutive monoid anti-isomorphism, that is, we have
u · v = v · u and w = w for every u, v, w ∈ (A+ Ā)∗.

Back and forth path actions. For every X ⊆ V and w ∈ (A + Ā)∗, the set
X · w ⊆ V of vertices reachable from X following w is inductively defined by

X · 1 = X, X · av = {y ∈ V : ∃x ∈ X, (x, y) ∈ Ea} · v
and X · āv = {y ∈ V : ∃x ∈ X, (y, x) ∈ Ea} · v

for every letter a ∈ A and every string v ∈ (A+ Ā)∗. In other words, X ·w is the
set of vertices that can be reached from a vertex in X along a path labeled by w,
where a (resp. ā) denotes the forward (resp. backward) traversal of an a-labeled
edge in the graph G.

One can check that X ·1 = X and and X · (u ·v) = (X ·u) ·v for every X ⊆ V
and every string u, v ∈ (A + barA)∗. Rephrased in semigroup theoretical term,
the edge relations of the graph G induce an action of the monoid (A+Ā)∗ on the
(powerset of the sets of) vertices of the graph G. It follows that the parenthesis
can be removed without ambiguity.

Notation for the singleton case. When X is a singleton {x}, we may simply
write x · w instead of {x} · w. Similarly, when x · w itself is a singleton we may
also treat it just as the element it contains. In other words, we may simply write

x · w = y

3

instead of {x} · w = {y}, to denote both the fact that there exists a (back and
forth) path from vertex x to vertex y labeled by w and the fact that this path
is unique. Similarly, we may say that x ·w is undefined (as a vertex) in the case
x · w = ∅ (as a set).

Graph morphism. The usual notion of graph morphism can then be (re)defined
via path actions as follows. Let G = 〈V, {Ea}a∈A〉 and G′ = 〈V ′, {E′a}a∈A〉
be two graphs on the alphabet A. A morphism f from G to G′, denoted by
f : G→ G′, is a mapping f : V → V ′ such that we have f(x · a) ⊆ f(x) · a and
f(x · ā) ⊆ f(x) · ā for every x ∈ V and every a ∈ A. Then, by induction, we can
easily prove that f(x · w) ⊆ f(x) · w for every x ∈ V and every w ∈ (A+ Ā)∗.

Graph quotient. Let G = 〈V, {Ea}a∈A〉 be a graph. Let ' be an equivalence
relation over the set V , that is, a reflexive and transitive relation. Let V/ ' be the
set of equivalence classes {[x]' ⊆ V : x ∈ V } where [x]' = {x′ ∈ V : x ' x′}.
Then, the quotient of the graph G by the equivalence ' is defined to be the
graph G/ ' = 〈V ′, {E′a}a∈A〉 with set of vertices V ′ = V/ 'G and set of edges
E′a = {([x], [y]) ∈ V ′ × V ′ : ([x]× [y]) ∩ Ea 6= ∅}. The mapping η' : V → V/ '
defined by η'(x) = [x]' for every x ∈ V is a surjective morphism called the
canonical morphism from the graph G onto the quotient graph G/ '.

3 Unambiguous graphs and connecting morphisms

We define and study in this section the category of unambiguous graphs and
connecting morphisms. Though fairly simple, this study is quite detailled for it
constitutes the foundation of the notion of birooted graphs define in the next
section.

Definition 1 (Unambiguous graphs). A graph G = 〈V, {Ea}a∈A〉 is unam-
biguous when, for every vertex x ∈ V , for every path w ∈ A+ Ā, there is at most
on vertex y such that x · w = {y}.

Clearly, by simple inductive argument, G is unambiguous as soon as the above
condition is satisfied for every one letter path.

Examples. Graphs examples are depicted in Figure 1 with ambiguous graph
G1 and unambiguous graphs I2 and G2. In this figure, vertices are named only
for illustrative purposes. These vertex names should not be understood as labels.
Only edges are labeled in relational graphs.

1

2

(I2)
1

4

2

53

b

a

a
a

b(G1)
1 2

3

a

b a(G2)

Fig. 1. Ambiguous graph G1 and unambiguous graph G2.

4

One can observe that graph G1 is ambiguous for two reasons. First, the upper
left vertex 1 is the source of two edges labeled by b. Second, the upper right
vertex 2 is the target of two edges labeled by a.

Remark. Observe that when a graph G is seen as a graph automaton on the
alphabet A, it is unambiguous when it is both deterministic and co-deterministic.
In the connected case, these unambiguous graphs are the Schützenberger graphs
studied and used in [30].

Definition 2 (Connecting morphisms). Let f : G → G′ be a graph mor-
phism between two graphs G = 〈V, {Ea}a∈A〉 and let G′ = 〈V ′, {E′a}a∈A〉. The
morphism f is a connecting morphism when for every x′ ∈ V ′ there exist x ∈ V
and w ∈ (A+ Ā)∗ such that x′ ∈ f(x) · w.

In other words, a morphism f : G → G′ is a connecting morphism when every
vertex of graph G′ is connected to the image of a vertex of G in graph G′.

Examples. Clearly, every surjective (i.e. onto) morphism is a connecting mor-
phism. Another example of (non surjective) connecting morphism f : I2 → G is
depicted in Figure 2.

4

1 2

3a

b
b(G)(I2)

2

1
f

Fig. 2. A connecting morphism ϕ : I2 → G with ϕ(1) = 1 and ϕ(2) = 3.

Remark. Observe that when both G and G′ are unambiguous, then, for every
x ∈ V , every w ∈ (A+ Ā)∗, if x ·w is not empty then so is f(x) ·w and we have
f(x · w) = f(x) · w. This leads us to the following Lemma.

Lemma 3 (Unique morphism completion). Let G, G1 and G2 be three
graphs. Let f1 : G→ G1 and f2 : G→ G2 be two graph morphisms. Assume that
f1 is connecting and that both G1 and G2 are unambiguous. Then there exists
at most one morphism g : G1 → G2 such that g ◦ f1 = f2. Moreover, if f2 is
connecting, then so is g.

Proof. Let g : G1 → G2 be a morphism such that g ◦ f1 = f2. Let x1 be a vertex
in G1. Since f1 is connecting, there exist a vertex x of G and a path w ∈ (A+Ā)∗
such that x1 ∈ f1(x) ·w. Since G1 is unambiguous, we have x1 = f1(x) ·w. Since
g is a morphism, this implies that g(x1) ∈ g(f1(x) ·w). Since G2 is unambiguous,
this implies g(x1) = g(f1(x)) ·w hence, by applying the equality g ◦ f1 = f2, we
have g(x1) = f2(x) · w. In other words, g(x1) is uniquely determined by f2(x)
and the structure of G2.

5

Last, assume that f2 is a connecting morphism. Then every vertex of G2 can
be reached from a vertex is the image of f2 henceforth, thanks to the equality
g ◦ f1 = f2, it can also be reached from a vertex in the image of g. In other
words, g is also a connecting morphism. 2

Clearly, the composition of two connecting morphisms is a connecting mor-
phism. Since the identity mapping over a graph is also a connecting morphism,
this allows us to define the following categories.

Definition 4 (Induced categories). Let CGrph(A) (resp. UCGrph(A)) be
the category defined by finite graphs (resp. by finite unambiguous graphs) as
objects and connecting morphisms as arrows.

We aim now at studying the properties of both category CGrph(A) and
category UCGrph(A) and, especially, the way they are related. The notion
of unambiguous congruence defined below allows to transform any graphs into
its greatest unambiguous image. In group theory, this generalizes the notion of
Stallings foldings [27].

Definition 5 (Unambiguous congruence). LetG = 〈V, {Ea}a∈A〉 be a graph
on the alphabet A. A relation '⊆ V × V over the vertices of G is an unambigu-
ous congruence when it is an equivalence relation such that, for every a ∈ A, for
every x, y ∈ V , if x ' y then we have both x · a× y · a ⊆' and x · ā× y · ā ⊆'.

The next lemma states in which sense unambiguous congruences can indeed
be understood as congruences induced by morphisms via quotients.

Lemma 6 (Soundness). Let G = 〈V, {Ea}a∈A〉 be a graph. Let ' be a unam-
biguous congruence. Then, the quotient graph G/ ' is an unambiguous graph
and the canonical graph morphism η' : G → G/ ' is a surjective henceforth
connecting morphism.

Conversely, let f : G → H be a morphism with unambiguous graph H.
Then, the canonical equivalence 'f induced by f over the vertices of G is an
unambiguous congruence, we have G/ 'f⊆ H with usual vertex set and edge
set inclusions, and f restricted to G/ 'f is a surjective henceforth connecting
morphism.

Proof. Let G = 〈V, {Ea}a∈A〉 be a graph, and let ' be an unambiguous congru-
ence over G. Let G/ '= 〈V ′, {E′a}a∈A〉 be the quotient of G by '. We have first
to check that G/ ' is unambiguous.

Assume that there exists x, y, z ∈ V such that both ([x], [y]) ∈ E′a and
([x], [z]) ∈ E′a. By definition, this means that there exist (x′, y′) ∈ Ea with
x ' x′ and y ' y′, and there exists (x′′, z′) ∈ Ea with x ' x′′ and z ' z′. But,
since relation ' is an equivalence, this implies that x′ ' x′′. Then, by definition
of unambiguous congruence, this implies that y′ ' z′ henceforth [y] = [z]. A
symmetrical argument proves the symmetric case when both ([y], [x]) ∈ E′a and
([z], [x]) ∈ E′a.

6

Let then η' : V → V/ ' be the canonical onto mapping defined by η'(x) =
[x]' for every x ∈ V . The fact η' is a surjective morphism immediately follows
from the definition.

Conversely, let f : G → H be a morphism with unambiguous graph H.
Let 'f be the canonical equivalence induced by f defined by x 'f y when
f(x) = f(y) for every x, y ∈ V .

Let us prove that 'f is an unambiguous congruence. Let x, y ∈ V such that
x 'f y. Let a ∈ A+Ā. In the case x ·a or y ·y is the empty set, nothing has to be
proved. Assume that both x ·a and y ·a are non empty. Since f is a morphism we
have ∅ ⊂ f(x · a) ⊆ f(x) · a and ∅ ⊂ f(y · a) ⊆ f(y) · a. Since H is unambiguous
this implies that f(x · a) = f(x) · a and f(y · a) = f(y) · a and thus, because
f(x) = f(y), we have f(x · a) = f(y · a) hence (x · a)× (y · a) ⊆'f .

A symmetrical argument proves the symmetric case with x · ā and y · ā. 2

The existence of a least congruence is stated in Lemma 7 and the associated
universality property is stated Lemma 8.
Lemma 7 (Least unambiguous congruence). Let G be a graph, possibly
ambiguous. Then there exists a least unambiguous congruence 'G over G. More-
over, in the case G is unambiguous, then 'G is the identity relation.

Proof. The complete relation over the vertices ofG is a unambiguous congruence.
Since unambiguous congruences are closed under intersection, the relation 'G

can just be defined as the intersection of all unambiguous congruences over G.
In the case G is unambiguous, we easily check that the equality relation = is an
unambiguous congruence. 2

The graph G/ 'G is called the greatest unambiguous graph image of the graph
G. Its maximality is to be understood in the following sense.

Lemma 8 (Maximal unambiguous image). Let G be a graph. Let 'G be its
least unambiguous congruence. Then, for every graph morphism f : G→ H with
unambiguous graph H, there exists a unique morphism g : G/ 'G→ H such that
f = g ◦ η'G

. Moreover, if f is connecting then so it g.

Proof. Let G = 〈V, {Ea}a∈A be a graph, let H = 〈V ′, {E′a}a∈A be an unambigu-
ous graph, let f : G→ H be a morphism and let 'f be the induced equivalence.

By Lemma 6, the equivalence 'f is an unambiguous congruence. Since 'G is
the least unambiguous congruence, we have 'G⊆'f . Let then η : V/ 'G→ V 'f

be the inclusion mapping defined by η([x]'G
) = [x]'f

. We easily check that η
is a surjective henceforth connecting morphism from G/ 'G onto G/ 'f with
η'f

= η ◦ η'G
.

Now, we observe that G/ 'f⊆ H with usual vertex set and edge sets inclu-
sion. It follows that the inclusion mapping θ : V/ 'f→ H is a graph morphism
from G/ 'f to H such that f = θ ◦ η'f

.
It follows that g = θ ◦ η is a graph morphism from G/ 'G into H with

f = g ◦ η'G
. Since η'G

is connecting and both G/ 'G and H unambiguous, the
unicity of g follows from Lemma 3.

Last, clearly, when f is a connecting morphism, then so is g. 2

7

Example. An example of maximal graph image is provided by the graphs
already depicted in Figure 1 where G2 has not been chosen at random since
G2 = G1/ 'G1 .

1

4

2

53

b

a

a
a

b(G1)
1 2

3

a

b a(G2)
η

Fig. 3. Graph G2 is the maximal unambiguous image of graph G2.

The canonical onto morphism η : G1 → G1/ 'G1= G2 is depicted in Figure 3,
encoding the least unambiguous congruence on G1 that glue 1 with 5, and 3
with 4.

Remark. The construction described above is a generalization of what is known
in algebra as Stallings folding [27]. Observe that with G = 〈V, {Ea}a∈V 〉, the
least unambiguous congruence 'G equals the least fixpoint of the mapping F :
V × V → V × V defined by

F (R) = R ∪
⋃
{(x · a)× (y · a) ∪ (x · ā)× (y · ā) : (x, y) ∈ R, a ∈ A}

that contains the equality. It follows, by applying classical fixpoint techniques,
that 'G=

⋃
n≥0 F

n(=), henceforth it can be computed in quasi linear time. In
other words, computing the maximal unambiguous image G/ 'G of the graph
G can be done in time quasi linear in the size of the graph G.

Remark. Generalizing [30], provided some adequate sets of initial and terminal
states are chosen, the graph G can be viewed as a non-deterministic automaton
on the alphabet A + Ā. Then computing the unambiguous graph G/ 'G asso-
ciated to G just amounts to perform a minimization. However, such a formal
language based approach, related with the study of inverse languages [26, 29,
27], can be detailed much more and goes out of the scope of the present paper.

Clearly, the category UCGrph(A) is a subcategory of CGrph(A). The next
lemma shows shows that maximal graph images extend to morphisms henceforth
defining a projection functor from CGrph(A) into UCGrph(A).

Lemma 9 (Projected morphisms). Let G and H be two graphs. Let f :
G→ H be a connecting morphism. Let ηG : G→ G/ 'G and ηH : H → H/ 'H

be the related canonical onto morphism. Then there exists a unique connecting
morphism ϕ(f) : G/ 'G→ H/ 'H such that ϕ(f) ◦ ηG = ηH ◦ f .

Proof. Let G = 〈V, {Ea}a∈A〉 and H = 〈V ′, {E′a}a∈A〉. We aim at defining g =
ϕ(f) as depicted in Figure 4.

8

G H

G/ 'G H/ 'H

f

ηG ηH

ϕ(f)

Fig. 4. Morphism induced by quotient.

Let ' be the canonical equivalence over G induced by the graph morphisms
ηH ◦ f . Since H/ 'H is unambiguous then, by Lemma 6, the relation ' is an
unambiguous congruence over G, henceforth, by minimality, 'G⊆'. It follows
that for every x, x′ ∈ V , if x ' x′ then ηH ◦ f(x) = ηH ◦ f(y). Thus the mapping
g : V/ 'G→ V/ 'H defined by g([x]'G

) = ηH ◦ f(x) is well defined.
Let us prove it is a morphism. Let x ∈ V and a ∈ A. Since ηH ◦ f is a

morphism, we have ηH ◦ f(x · a) ⊆ ηH ◦ f(x) · a. Now, since G is unambiguous,
we have [x]'G

· a = [y] for any y ∈ x · a. It follows that g([x]'G
· a) = ηH ◦ f(y)

with y ∈ x · a henceforth g([x]'G
· a) ⊆ ηH ◦ f(x · a) ⊆ ηH ◦ f(x) · a. With

g([x]'G
) = ηH ◦ f(x) we thus have g([x]'G

· a) ⊆ g([x]'G
) · a) ⊆.

By construction, g ◦ ηG = ηH ◦ f and since ηG is connecting, by Lemma 3,
the morphism g is unique. Moreover, since f and ηH are connecting morphisms
hence so is ηH ◦ f and so is g. 2

In other words, we can define the functor ϕ : CGrph(A) → UCGrph(A) by
ϕ(G) = G/ 'G for every graph G and by ϕ(f) as given by Lemma 9 for every
connecting morphism f . Then, we have ϕ(G) = G for every unambiguous graph
G and ϕ(f) = f for every connecting graph morphism f between unambiguous
graphs. In other words, ϕ is a projection from CG(A) into UCGrph(A) hence-
forth a left inverse of the inclusion functor from UCGrph(A) to CGrph(A).

We study a bit further the morphisms in these categories showing that they
both admit pushouts. The following definition, classical in category theory, is
given here for the sake of completeness.

Definition 10 (Pushouts). Let 〈f1 : G → G1, f2 : G → G2〉 be a pair of
morphisms. A pair of morphisms 〈g1 : G1 → H, g2 : G2 → H〉 is a pushout of
the pair 〈f1, f2〉 when f1 ◦ g1 = f2 ◦ g2, and, for every other pair of morphisms
〈g′1 : G1 → H ′, g′2 : G2 → H ′〉, if f1 ◦ g′1 = f2 ◦ g′2 then there exists a unique
morphism h : H → H ′ such that g′1 = h ◦ g1 and g′2 = h ◦ g2. Such a situation
is depicted in Figure 5 below.

The first pushout lemma, in the category CGrph(A), is a slight generalization
of the pushout in the category Set.

Lemma 11 (Synchronization). In category CGrph(A), every pair of mor-
phisms with common source has a pushout.

9

G

G1 G2
H

f1 f2

g1 g2

H ′
g′

1 g′
2

h

Fig. 5. A pushout of two connecting morphisms

Proof. Though fairly classical, for the sake of completeness, we give here a stand
alone proof.

Let G = 〈V, {Ea}a∈A}〉, G1 = 〈V ′, {E′a}a∈A}〉 and G2 = 〈V ′′, {E′′a}a∈A}〉
be three graphs with connecting morphisms f1 : G → G1 and f2 : G → G2 as
depicted in Figure 5.

Let G1 +G2 be the graph defined as the disjoint sum of the two graphs G1
and G2. Let ≡f1,f2 be the equivalence relation over its set of vertices V ′] V ′′
defined for every x, y ∈ V ′] V ′′ by x ≡f1,f2 y when f−1

x (x) ∩ f−1
y (y) 6= ∅ with

fz = f1 when z ∈ V ′ and fz = f2 when z ∈ V ′′. Let then

H = (G1 +G2)/ ≡f1,f2

be the quotient of the sum G1 +G2 by this equivalence, and let

g1 : G1 → H and g2 : G2 → H

be the related graph morphisms defined by g1(x) = [x]≡f1,f2
for every x ∈ V ′

and g2(x) = [x]≡f1,f2
for every x ∈ V ′′.

The fact these mapping are morphisms is obvious. One can also notice that
they are one-to-one and, thanks to the gluing, they are also connecting since
both f1 and f2 are connecting morphisms and vertices with common ancestors
in G via f1 and/or via f2 have been connected by the quotient under relation
≡f1,f2 . Clearly, we have g1 ◦f1 = g2 ◦f2 since f1(x) ≡f1,f2 f2(x) for every x ∈ V .

Let then 〈g′1 : G1 → H ′, g′2 : G2 → H ′〉 be another pair of connecting
morphisms with graphH ′ such that g′1◦f1 = g′2◦f2. Let 'g′

1,g′
2
be the equivalence

over V ′]V ′′ defined for every x, y ∈ V ′]V ′′ by x 'g′
1,g′

2
y whenever g′x(x) = g′y(y)

where, for every z ∈ V ′]V ′′, g′z(z) = g′1(z) when z ∈ V ′ and g′z(z) = g′2(z) when
z ∈ V ′′.

Clearly, ≡f1,f2⊆'g′
1,g′

2
. Indeed, let x, y ∈ V ′] V ′′ such that x ≡f1,f2 y. By

definition, this means that there is z ∈ V such that x = fx(z) and y = fy(z). But
since g′1◦f1 = g′2◦f2 this implies that g′x◦fx(z) = g′y ◦fy(z) hence g′x(x) = g′y(y),
that is, x 'g′

1,g′
2
y.

It follows that the mapping h that maps every vertex [x]≡f1,f2
of H to the

vertex h([x]≡f1,f2
) = g′x(x) for every x ∈ V ′] V ′′, is well defined. It is then

routine to check that h is a morphism, each edge of H being the image of an
edge in either G1 or G2 henceforth simply propagated into H either via g′1 or
via g′2.

Then, the unicity of h just follows from the fact that, for every x ∈ V ′] V ′′,
we must have h ◦ gx(x) = g′x(x). 2

10

Example. An example of such a pushout in the category CGrph(A) is depicted
in Figure 6.

1

2
(I2)

1

2

3
(G1)

a

b

1

2 4
(G2)

a

a

1

2

3

4
(H)

a

b

a

a

f1

f2

g1

g2

Fig. 6. A “synchronization” pushout example.

Remark. Existence of pushouts in CGrph(A) essentially follows from the exis-
tence of pushouts in the category Set. These pushouts are called synchronization
(or glueing) pushouts since, the pushout of 〈f1 : G → G1, f2 : G → G2〉 essen-
tially glues the vertices of G1 and G2 that have common ancestors in G either
via f1 or via f2.

The second pushout lemma, in the category UCGrph(A), is completed by
a fusion phase (or glueing propagation) defined by taking the maximal unam-
biguous image of the graph resulting from the pushout in CGrph(A). It is
called the synchronization and fusion since, building the pushout of a pair of
morphisms 〈f1 : G → G1, f2 : G → G2〉 in UCGrph(A) not only amount to
synchronize or glue the vertices G1 and G2 that have common preimages in G,
but, for the resulting graph to be unambiguous, it also amounts to perform the
fusion of the resulting (possibly ambiguous) synchronized graphs by propagating
this glueing.

Lemma 12 (Synchronization and fusion). In category UCGrph(A), every
pair of morphisms with common source has a pushout.

Proof. Let G = 〈V, {Ea}a∈A}〉, G1 = 〈V ′, {E′a}a∈A}〉 and G2 = 〈V ′′, {E′′a}a∈A}〉
be three unambiguous graphs with connecting morphisms f1 : G → G1 and
f2 : G→ G2.

In this case, the pushout construction goes in two steps: the synchronization
steps provided by the synchronization Lemma 11 followed by the fusion step
provided by the quotient under least unambiguous congruence. Then Lemma 8
allows us to conclude.

More in detail, let 〈g1 : G1 → H, g2 : G2 → H〉 be the pushout in CGrph(A)
given by Lemma 11. Let U = H/ 'H be the quotient of H by the least unam-
biguous congruence (Lemma 7). Let η : H → U be the surjective henceforth
connecting morphism from H onto U . Let then h1 = η ◦ g1 and h2 = η ◦ g2.

11

We claim that the pair of morphism 〈h1 : G1 → U, h2 : G2 → U〉 is the
pushout of 〈f1, f2〉 in the category UCGrph(A).

By Lemma 6, the graph H is unambiguous. Since f1, f2, g1, g2 and η are
connecting morphisms so are h1 and h2, and, since g1 ◦ f1 = g2 ◦ f2, we have
h1 ◦ f1 = h2 ◦ f2.

Let then 〈h′1 : G1 → U ′, h′2 : G2 → U ′〉 be another pair of connecting
morphisms with unambiguous graph U ′ such that h′1 ◦f1 = h′2 ◦f2. Since 〈g1, g2〉
is a pushout in CGrph(A) there exists a unique mapping h′ : H → U ′.

We conclude by applying the maximal unambiguous graph property. Indeed,
graph U ′ is unambiguous, with h′ : H → U ′ and η : H → U = H/ 'H . It
follows that, by applying Lemma 8, there exists a unique connecting morphism
h : U → U ′.

The strictness of the pushout in category UCGrph(A) immediately follows
from the unique morphism property.

Indeed, assume that the pair 〈h′1 : G1 → U ′, h′2 : G2 → H ′2〉 is also a
pushout. Then there exists a unique h′ : U ′ → U . But then, given the connecting
morphisms f = h1 ◦ f1 = h2 ◦ f2 we have f : G → U , h′ ◦ h : U → U and
h′◦h◦f = f . Then, by Lemma 3, h′◦h is uniquely determined hence h′◦h = idH .
By a similar argument, we have h ◦ h′ = idH′ and thus both h′ and h are
isomorphisms. This proves that f and f ′ are isomorphic. 2

Example. Continuing the example given in Figure 6 we have an example of
a synchronization + fusion example depicted in Figure 7.

1

2
(I2)

1

2

3
(G1)

a

b

1

2 4
(G2) a

a

1

2

3

4
(H)

a

b

a

a

1

2 4
(U)b

a

a

f1

f2

g1

g2

ηH

Fig. 7. A “synchronization + fusion” pushout example.

4 The inverse monoid of birooted graphs

Before defining birooted graphs, we shall review some basic facts in category the-
ory with pushout that lead the way towards our proposed definition of birooted
graphs and related algebras. These details are given for the sake of completeness
and require no prior knowledge of category theory.

12

More precisely, in a category that admits pushouts as above, there is a generic
way to define a commutative monoid structure over (equivalence classes of) mor-
phisms from a given object. Such a construction, that we call tensor monoids,
is reviewed here. Applied to the category UCGrph(A) it turns out that all
morphisms commute and are, up to isomorphism, idempotents for the tensor
product. The resulting algebraic is thus a meet semi-lattice.

The first step is to define the right notion of equivalence over morphisms with
same domain. Unless we explicit mention a category, all definition and statement
below are generic to any given category with pushouts.

Definition 13 (“Nose” morphism of morphisms). Let f1 : G → G1 and
f2 : G→ G2 be two morphisms. A nose morphism from f1 to f2 is a morphism
k : G1 → G2 such that k ◦ f1 = f2. This situation is denoted by k : f1 ⇒ f2.

Then, the two morphisms f1 and f2 are nose equivalent, which is denoted by
f1 ∼ f2 when there exists an isomorphism k such that k ◦ f1 = f2.

As a matter of fact, the existence of pushouts allows to define the notion of prod-
uct of morphisms, via pushouts, stable under nose morphism and nose equiva-
lence. Its definition is reviewed below.

Definition 14 (Tensor product via pushouts). Let 〈f1, f2〉 be a pair of
morphisms with common domain. Let 〈g1, g2〉 be a pushout of the pair 〈f1, f2〉.
Then, the morphism g1 ◦ f1 = g2 ◦ f2 is called the tensor product of f1 and f2
via 〈g1, g2〉. It is denoted by f1 ⊗g1,g2 f2.

Then, we can prove the following property.

Lemma 15 (Pushout stability w.r.t. nose morphisms). Let f1, f2, f ′1 and
f ′2 be four connecting morphisms with the same domain. Let

k1 : f1 ⇒ f ′1 and k2 : f2 ⇒ f ′2

be two nose morphisms. Then, for every pushout 〈g1, g2〉 for 〈f1, f2〉 and 〈g′1, g′2〉
for 〈f ′1, f ′2〉 there exists a unique nose morphism

h : (f1 ⊗g1,g2 f2)⇒ f ′1 ⊗g′
1,g′

2
f ′2

Moreover, if f1 ∼ f ′1 and f2 ∼ f ′2 then we have

f1 ⊗g1,g2 f2 ∼ f ′1 ⊗g′
1,g′

2
f ′2

Proof. Let f1 : G → G1, f2 : G → G2, f ′1 : G → G′1 and f ′2 : G → G′2 be four
morphisms from the same domain G. Let k1 : G1 → G′1 and k2 : G2 → G′2 be
two morphisms such that

f1 ◦ k1 = f ′1 and f2 ◦ k2 = f ′2

Let 〈g1 : G1 → H, g2 : G2 → H〉 (resp. 〈g′1 : G′1 → H ′, g′2 : G′2 → H ′〉) be a
pushout for the pair 〈f1, f2〉 (resp. the pair 〈f ′1, f ′2〉).

13

G

G1

G2

H

f1

f2

g1

g2
f1 ⊗g1,g2 f2

G′
2

H ′

f ′
2

g′
1

g′
2

k2

h

f1 ⊗g′
1,g′

2
f ′

2

Fig. 8. Tensor product stability: h ◦ f1 ⊗g1,g2 f2 = f1 ⊗g′
1,g′

2
f ′

2.

Without loss of generality, we may assume that G1 = G′1 and k1 = idG1

henceforth f1 = f ′1. Indeed, proving such a partial case will also prove the
symmetrical (partial) case G2 = G′2, k2 = idG2 and f2 = f ′2. Then, apply-
ing these two partial results in sequence will give a proof of the complete case.
Such a simplified situation depicted in Figure 8 below. Then, we observe that
g′1 ◦ f1 = g′2 ◦ k2 ◦ f2. Since 〈g1, g2〉 is a pushout of 〈f1, f2〉, there exists a unique
morphism h : H → H ′ such that h ◦ f1 ⊗g1,g2 f2 = f1 ⊗g′

1,g′
2
f ′2. This concludes

the first part of the proof.

Assume now that f1 ∼ f ′1 and f2 ∼ f ′2. Again, without loss of generality, we
can restrict to the partial case where f1 = f ′1. With the same notation as above,
since f2 ∼ f ′2 we are in the that case k2 is an isomorphism. Applying the result
just obtained, this means that there exists two nose morphisms

h : H ⇒ H ′ and h′ : H ′ ⇒ H

such that

h ◦ f1 ⊗g1,g2 f2 = f1 ⊗g′
1,g′

2
f ′2 and h′ ◦ f ′1 ⊗g1,g2 f2 = f1 ⊗g′

1,g′
2
f ′2

We aim now at proving that h′ ◦ h = idH and h ◦ h′ = idH′ henceforth h is an
isomorphism. By symmetry, it suffices to prove the first equality.

By combining the results stated above, we have

(h′ ◦ h) ◦ f1 ⊗g1,g2 f2 = f1 ⊗g1,g2 f2

Let then g′′2 = (h′ ◦ h) ◦ g2. We have g′′2 ◦ f2 = (h′ ◦ h) ◦ g2 ◦ f2. Since g1 ◦ f1 =
g2 ◦ f2 = f1 ⊗g1,g2 f2 this implies that g′′2 ◦ f2 = (h′ ◦ h) ◦ f1 ⊗g1,g2 f2 hence
g′′2 ◦ f2 = f1 ⊗g1,g2 f2, that is, g′′2 ◦ f2 = g1 ◦ f1.

But 〈g1, g2〉 is a pushout of 〈f1, f2〉. It follows that there is a unique morphism
h′′ : H → H such that h′′ ◦ g1 ◦ f1 = g1 ◦ f1 and h′′ ◦ g′′2 ◦ f2 = g2 ◦ f2. But clearly
idH is such a morphism, as well as h′ ◦ h. It follows that idH = h′ ◦ h. 2

14

Remark. One can define a more general notion of (meta) morphism between
two morphisms f1 to f2 as a pair 〈k1, k2〉 such that f2◦k1 = k2◦f1. However, the
tensor product is no longer stable under such a more general notion of morphism.
Indeed, as a counter example, let f1 : I2 → I2 be the identity morphism on the
two vertices graph, and let f2 : I2 → I2 be the permutation of the same graph.
Clearly, with k1 = f2 and k2 = f1 we have f2 ◦ k1 = k2 ◦ f1. However, while
f1 ⊗ f1 ∼ f1, we have f1 ⊗ f2 ∼ g where g : I2 → I1 is the (unique) mapping
from the two vertex graph I2 to the one vertex graph I1, henceforth we have
f1 ⊗ f1 6∼ f1 ⊗ f2.

The stability lemma (Lemma 15) allows us to define the tensor algebra of
morphisms with same domain, up to nose equivalence, regardless of the pushouts
that are taken.

Definition 16 (Tensor algebras). Let G be an unambiguous graph. Let MG

be the set of classes of connecting morphisms with domain G equivalent under
nose equivalence ∼.

Then, the set MG can be equipped with the product ⊗ defined for all mor-
phisms f1 and f2 by [f1]∼ ⊗ [f2]∼ = [f1 ⊗g1,g2 f2]∼ for some (any) pushout
〈g1, g2〉 of the pair 〈f1, f2〉.

Remark. The stability property (Lemma 15) ensures the soundness of such
a definition. It even allows us to view MG as a set of representative of classes
of morphisms emanating from G, simply denoting by f1 ⊗ f2 one (any) rep-
resentative of the equivalence classes product [f1]' ⊗ [f2]'. Then, thanks to
Lemma 15, proving the validity of any equation in MG over equivalent classes of
morphisms just amounts to prove the validity of this equation over some of the
representative of these classes.

Theorem 17 (Semi-lattices of morphisms). In the category UCGrph(A),
for every unambiguous graph G, the tensor algebra 〈MG,⊗〉 is a commutative
idempotent monoid with neutral element idG.

Moreover, given the order induced ≤ defined by f ≤ g when f = g ⊗ f , then
the tensor product ⊗ is the meet for the order ≤ and we have g ≤ f if and only
there is a nose morphism k : f ⇒ g.

Proof. Let G be an unambiguous graph. We first prove that the tensor algebra
〈MG,⊗, id〉 is a commutative monoid with unit idG. Clearly, the symmetry of
pushouts shows that the tensor product is commutative. Let us prove its is
associative.

Let f1 : G→ G1, f2 : G→ G2 and f3 : G→ G3 three morphisms emanating
from G with pushouts 〈g1,l : G1 → H1,2, g2,r : G2 → H1,2〉 for the pair 〈f1, f2〉
and 〈g2,l : G2 → H2,3, g3,r : G3 → H2,3〉 for the pair 〈f2, f3〉. Let then 〈g1,2,l :
H1,2 → H, g2,3,r : H2,3,r → H〉 be the pushout of the pair 〈g2,l, g2,r〉. This
situation is depicted in Figure 9
It is then routine to check that 〈g1,2,l, g2,3,r ◦ g3,r〉 is a pushout of 〈f1 ⊗ f2, f3〉
and that 〈g1,2,l ◦ g1,l, g2,3,r, 〉 is a pushout of 〈f1, f2 ⊗ f3〉, which conclude the
proof that (f1 ⊗ f2)⊗ f3 = f1 ⊗ (f2 ⊗ f3).

15

G

G1
G2

G3

H1,2 H2,3

H

f1

f2

f3

g1,l g2,r g2,l
g3,r

g1,2,l g2,3,r

Fig. 9. Associativity up to nose morphism.

Last, we prove that idG is a neutral element for the tensor product. For such
a purpose, let f : G→ H be a morphism. We claim that 〈idH , f〉 is the pushout
of the pair 〈f, idG〉 from which we will have that f ⊗ idG = f .

The expected morphism equality is clearly satisfied. Let g′1 : H → H ′ and
g′2 : G → H ′ such that g′1 ◦ f = g′2 ◦ idG. Clearly taking h = g′1, we have
h : H → H ′ with g′1 = h ◦ idH and g′2 = h ◦ f . Moreover, since h ◦ idH = h, this
implies that h = g′1 hence such a morphism is unique.

So far, our proof is generic to arbitrary category that has pushouts. In the
category UCGrph(A), we furthermore can show that every morphism is, up to
isomorphism, idempotent under the tensor product.

Let f : G → H be a connecting morphism with unambiguous graphs
G = 〈V, {Ea}a∈A〉 and H = 〈V ′, {E′a}a∈A〉. We want to prove that f ⊗ f = f .
It suffice to prove that the pair 〈idH , idH〉 is the pushout of the pair 〈f, f〉. The
expected morphism equality is satisfied. It remains to prove the universality
property.

Let 〈g1 : H → H ′, g2 : H → H ′〉 be a pair of connecting morphism with
unambiguous H ′ such that g1 ◦ f = g2 ◦ f . We want to prove that there exists
a (unique) morphism h : H → H ′ such that h ◦ f = g1 ◦ f = g2 ◦ f . Thanks to
Lemma 3, it suffice to prove that such a morphism exists.

Let x ∈ V ′ be a vertex in H. Since f is a connecting morphism, there exists
z ∈ V and w ∈ (A + Ā)∗ such that x = f(z) · w. It follows that g1(x) =
g1(f(z) · w). But since both g1 is connecting and H ′ is unambiguous, we have
g1(x) = g1 ◦ f(z) · w. Similarly, we also have g2(x) = g2 ◦ f(z) · w. But since
g1 ◦ f = g2 ◦ f , this means that g1(x) = g2(x) hence g1 = g2. Then we can take
h = g1 = g2 to conclude.

It is routine to check that the (associative, commutative and idempotent)
tensor product is the meet of the order defined in MG by f ≤ g when f = f ⊗ g.

It remains to prove the last statement: the correspondance between this order
and the existence of morphism. Let f1 : G → H1 and f2 = G → H2 be two
morphisms in UCGrph(A).

Assume that f1 ≤ f2, that is, given a pushout 〈g1 : G1 → H, g2 : G2 → H〉 of
the pair 〈f1, f2〉. there is a nose isomorphism k : f1⊗g1,g2 f2 ⇒ f1. By definition,

16

we have f1⊗g1,g2 f2 = g1 ◦f1 = g2 ◦f2 with k ◦ (f1⊗g1,g2 f2) = f1, it follows that
k ◦ g2 ◦ f2 = f1. In other words, there is the nose morphism k ◦ g2 : f2 ⇒ f1.

Conversely, assume that there is a nose morphism k : f2 ⇒ f1. This means
that k : G2 → G2 with f1 = k ◦ f2. Then we claim that the pair 〈idG1 , k〉
is a pushout of 〈f1, f2〉. This situation is depicted Figure 10. Clearly, we have

G

G1

G2

H

G1

f1

f2

k
idG1

g1

g2
h

Fig. 10. The case there is a nose morphism k : f2 → f1.

idG1 ◦f1 = k◦f2. Let then 〈g1 : G1 → H, g2 : G2 → H〉 such that g1◦f1 = g2◦f2.
Then we can take h = g1. Clearly, we have g1 = h ◦ idG1 and h ◦ k = g2, and

the first equality ensures that h is uniquely determined by g1. 2

We are now ready to define birooted graphs as certain cospans in the category
UCGrph(A). For such a purpose, for every integer k > 0, let Ik be the un-
ambiguous defined by k distinct vertices {1, 2, · · · , k} and empty edge relations,
and let idk : Ik → Ik be the identify isomorphism.

Definition 18 (Birooted graphs). A birooted graph B is a pair of connecting
morphisms

B = 〈in : Ip → G, out : Iq → G〉

from two trivial graphs Ip and Iq to a common unambiguous graph G.
The morphism in is called the input root morphism, or, more simply, the

input root of the birooted graph B. The morphism out is called the output root
morphism, or, more simply, the output root of the birooted graph B.

The pair of positive integers (p, q) that defines the domains of root morphisms
is called the type of the birooted graph. It is denoted by dom(B). The underlying
graph G is the codomain of the input and output morphisms. It is called the
graph of B and it is also denoted by cod(B).

Remark. A birooted graph of type (p, q) can simply be seen as a unambigu-
ous graph G = 〈V, {Ea}a∈A〉 enriched with two tuples of distinguished vertices
(x1, x2, · · · , xp) ∈ V p and (y1, y2, · · · , yq) ∈ V q that label the vertices marked
by the input and the output roots of the birooted graph.

This point of view is depicted in Figure 11 with two birooted graphs B1 and
B2 of type (2, 2). In such a figure, vertices of input roots are marked by dangling
input arrows, and vertices of output roots are marked by dangling output arrows.

17

1 1

2 2
a

b b
(B1)

1

2 2

1
b

c

b
(B2)

Fig. 11. Examples of (2, 2)-birooted graphs.

Remark. The name “birooted graphs” is borrowed from [30]. However, our
definition is a clear generalization of the definition given in [30]. Indeed, Stephen’s
birooted graphs are only birooted graphs of type (1, 1).

In category theoretical term, a birooted graph is a cospan (see for instance [4]).
The existence of pushouts in the category UCGrph(A) allows us to define the
product of birooted graphs as the product of their cospan. However, such a
product is (so far) not uniquely determined since, a priori, it may depend on the
chosen pushout.

Definition 19 (Birooted graph product instance). Let B1 = 〈in1, out1〉
and let B2 = 〈in2, out2〉 be two birooted graphs. Assume that B1 is of type (p, q)
and that B2 is of type (q, r). Let 〈h1, h2〉 be a pushout of the pair 〈out1, in2〉.
Then, the product instance of birooted graphs via the pushout 〈h1, h2〉 is defined
to be the birooted graphs 〈h1 ◦ in1, h2 ◦ out2〉, and it is denoted by B1 ·h1,h2 B2.
Such a situation is depicted in Figure 12.

Ip Iq Ir

G1 G2

G

out1 in2in1 out2

h1 h2
in out

Fig. 12. The pushout diagram of a product instance B1 ·h1,h2 B2.

A concrete example of a product instance built from the (2, 2)-birooted graphs
given in Figure 11 is depicted in Figure 13.

1

2

1

2

b

a

b

c

b b

a

b

c

Fig. 13. A product instance of B1 ·B2 ·B1 ·B2.

We aim now at defining products of birooted graphs up to some adequate notion
of birooted graph equivalence. This is done via the notion of birooted graph

18

morphisms (Definition 20) and the proof that birooted graph product instances
are stable under birooted graph morphisms (Lemma 22).

Definition 20 (Birooted graph morphisms). Let B1 = 〈in1, out1〉 and
B2 = 〈in2, out2〉 be two birooted graphs. A birooted graph morphism from
B1 to B2 is defined as root preserving graph morphism of their codomain, that
is, a graph morphism h : cod(B1) → cod(B2) such that in2 = h ◦ in1 and
out2 = h ◦ out1. Such a morphism is denoted by h : B1 ⇒ B2.

Two birooted graphs B1 and B2 are isomorphic when there is an isomorphism
h : B1 ⇒ B2. Such a situation is denoted by B1 ∼ B2.

Lemma 21 (Unicity of birooted graph morphism). Let B1 and B2 be two
birooted graphs. Then there exists at most one morphism h : B1 ⇒ B2. Moreover,
in the case there exists a morphism h : B1 ⇒ B2 and a morphism h′ : B2 → B1
then h and h′ are isomorphisms and B1 ∼ B2.

Proof. Thanks to the definition, since roots are connecting morphisms, a bi-
rooted graph morphism is necessarily a connecting morphism. Then, the unicity
of birooted graph morphisms follows from Lemma 3. In particular, when there
exists h : B1 ⇒ B2 and h′ : B2 ⇒ B1 then we have h′ ◦ h : B1 → B1 and
h ◦h′ : B2 → B2. By unicity, with cod(B1) = G1 and cod(B2) = G2, this implies
that h′ ◦ h = idG1 and h ◦ h′ = idG2 hence B1 and B2 are isomorphic. 2

Lemma 22 (Product stability w.r.t. birooted graphs morphisms). Let
f1 : B1 ⇒ C1 and f2 : B2 ⇒ C2 be two birooted graphs morphisms and let B1 ·B2
and C1·C2 be two product instances. Then, there exists a (unique) birooted graphs
morphisms h : B1 ·B2 ⇒ C1 · C2.

Proof. Let then B1 = 〈in1, out1〉, B2 = 〈in2, out2〉, C1 = 〈in′1, out′1〉 and C2 =
〈in′2, out′2〉. Let also f1 : B1 ⇒ C1, that is, f1 ◦ in1 = in′1 and f1 ◦ out1 = out′1,
and, f2 : B2 ⇒ C2, that is, f2 ◦ in2 = in′2 and f2 ◦ out2 = out′2. This situation
is depicted Figure 14. We aim at building h : G→ G′ such that h ◦ in = in′ and
h ◦ out = out′. For such a purpose, let us consider

g1 = h′1 ◦ f1 : G1 → G′ and g2 = h′2 ◦ f2 : G2 → G′

Clearly, we have g1◦out1 = g2◦in2. But since 〈h1, h2〉 is a pushout of 〈out1, in2〉,
this implies that there is a unique morphism h : G→ G′ such that factorizes g1
and g2 through h1 and h2, that is, such that

g1 = h ◦ h1 and g2 = h ◦ h2

Replacing g1 and g2 by their definitions, we obtain

h′1 ◦ f1 = h ◦ h1 and h′2 ◦ f2 = h ◦ h2

This implies that

h′1 ◦ f1 ◦ in1︸ ︷︷ ︸
in′

= h ◦ h1 ◦ in1︸ ︷︷ ︸
in

and h′2 ◦ f2 ◦ in2︸ ︷︷ ︸
out′

= h ◦ h2 ◦ in2︸ ︷︷ ︸
out

hence the desired results. 2

19

Ip Iq Ir

G1 G2

G

out1 in2in1 out2

h1 h2in out

G′
1 G′

2

G′

out′1 in′
2in′

1 out′2

h′
1 h′

2in′ out′

f1 f2h

Fig. 14. Building a morphism B1 ·B2 ⇒ C1 ·B2.

This stability property allows us to define the following birooted graph algebras.

Definition 23 (Birooted graph algebras). Let HS(A) be the set of classes
of isomorphic birooted graphs extended with the emptyset equipped with the
product defined for every X,Y ∈ H(S) as follows. In the case there is B ∈ X,
C ∈ Y and a product instance B ·C, then we take X ·Y = [B]∼ · [Y]∼ = [B ·Y]∼
and we take X · Y = ∅ in all other cases.

Notation. In the sequel we shall simply write B (or C) instead of [B] (or [C])
and we shall simply write B ·C for the product [B]∼ · [C]∼ of the corresponding
classes of equivalent birooted graphs.

Theorem 24 (Semigroup property). The algebra HS(A) is semigroup, that
is, the product of birooted graphs is an associative operation.

Proof. Associativity of the product follows from the existence of pushouts in
UCGrph(A) (Lemma 12) and unicity up to isomorphism thanks to unicity
(Lemma 3).

More precisely, let Bi = 〈ini, outi〉 for i = 1, 2, 3 be three birooted graphs.
First we easily obverse that (B1 · B2) · B3 = 0 if and only if B1 · (B2 · B3) = 0
since this is just a matter of type compatibility. It thus remains to prove the
case when both products are non-zero.

Let 〈f1, f2〉 (resp. 〈g1, g2〉) be a pushout of 〈out1, in2〉 (resp., 〈out2, in3〉). Let
B1,2 = B1 ·B2 = 〈f1 ◦ in1, f2 ◦ out2〉 and, B2,3 = B2 ·B3 = 〈g1 ◦ in2, g2 ◦ out3〉 be
the corresponding product instances. Let also 〈h1, h2〉 be a pushout of 〈f2, g1〉
and let B = 〈h1 ◦ f1 ◦ in1, h2 ◦ g2 ◦ out3〉 be the resulting birooted graphs. This
situation is depicted in Figure 15.
Now, we aim at proving that, up to isomorphism, we have:

B = B1,2 ·B3 = B1 ·B2,3

20

Ip Iq Ir Is

G1 G2 G3

G12 G23

G

in1 out1 in2 out2 in3 out3
f1 f2 g1 g2

h1 h2in out

Fig. 15. Associativity of the product (up to isomorphisms) from combinations of
pushouts

thus proving the associativity of the product in HS(A). For this purpose, we
just check that:

〈h1, h2 ◦ g2〉 is a pushout of 〈f2 ◦ out2︸ ︷︷ ︸
out12

, in3〉

hence

〈G12, f1 ◦ in1, f2 ◦ out2〉 · 〈G3, in3, out3〉 = 〈h1 ◦ f1 ◦ in1︸ ︷︷ ︸
in

, h2 ◦ g2 ◦ out3︸ ︷︷ ︸
out

and that
〈h1 ◦ f1, h2〉 is a pushout of 〈out1, f1 ◦ in2︸ ︷︷ ︸

in23

〉

hence

〈G1, in1, out1〉 · 〈G12, g1 ◦ in2, g2 ◦ out3〉 = 〈h1 ◦ f1 ◦ in1︸ ︷︷ ︸
in

, h2 ◦ g2 ◦ out3︸ ︷︷ ︸
out

where, thanks to stability (Lemma 22) birooted graph equality should be under-
stood up to isomorphisms. 2

Lemma 25 (Idempotent property). A non-zero birooted graph B of the form
B = 〈in, out〉 is idempotent, that is, B ·B = B, if and only if in = out. Moreover,
idempotent birooted graphs commute henceforth form a subsemigroup.

Proof. Let B = 〈in, out〉 be a birooted graph with domain G, assumed to be
idempotent (up to isomorphism). This implies that B is of type (p, p) for some
p > 0. The situation is depicted in Figure 16 with isomorphism h : G → G.
where 〈h1, h2〉 is the pushout of 〈out, in〉.

Since h◦h1◦in = in this means that h◦h1 agrees with idG on the vertices of G
in the image of in. But since in is connecting, by Lemma 3 we have h◦h1 = idG.
Quite similarly, since h ◦ h2 ◦ out = out we also have h ◦ h2 = idG. But then,
since h1 ◦ out = h2 ◦ in, this implies that h ◦ h1 ◦ out = h ◦ h2 ◦ in henceforth
in = out.

Conversely, when in = out, we know (Theorem 17) that in⊗ out ∼ in ∼ out
hence a pushout of 〈in, in〉 is given by 〈idG, idG〉 henceforth B is idempotent.

21

Ip Ip Ip

G G

G

G

out inin out

h1 h2

hin out

Fig. 16. An idempotent product 〈G, in, out〉 · 〈G, in, out〉 ∼ 〈G, in, out〉

As a consequence of this characterization, we also observe that the product
of idempotent birooted graphs coincide with the (extension with zero) of the
tensor product of morphisms. It follows that Theorem 17 applies proving that
idempotent birooted graphs commute henceforth they form a subsemigroup of
the semigroup of birooted graphs. 2

Theorem 26 (Inverse semigroup property). The semigroup HS(A) is an
inverse semigroup, that is, for every element B, there is a unique element B−1

such that
B ·B−1 ·B = B and B−1 ·B ·B−1 = B−1

The inverse B−1 of a non-zero birooted graph B = 〈in, out〉 is simply given by
B−1 = 〈out, in〉.

Proof. It suffices to prove that every element B ∈ HS(A) has an inverse. Indeed,
thanks to Lemma 25, we know that idempotent element commute and, following
the theory [24], this implies the unicity of inverse.

Since 0 has itself has inverse, it remains to prove the case on a non-zero
B ∈ HS(A). Let then B = 〈in : Ip → G, out : Iq → G〉. We aim at proving that
C = 〈out, in〉 is an inverse of B. By symmetry, it suffices to prove the equality

B · C ·B = B

However, thanks to Lemma 17, we know that in⊗ in = in and out⊗ out = out.
Then, the expected equality follows from the definition, as depicted in Figure 17
where all diamond diagrams are clearly pushouts.

Ip Iq Ip Iq

G G G

G G

G

in out out in in out

id id id id

id idin out

Fig. 17. A product instance 〈in, out〉 · 〈out, in〉 · 〈in, out〉.

Inverses allow us to define left and right projections that, following inverse semi-
group theory, characterize left and right Green classes.

22

Definition 27 (Left and right projection). Let B ∈ HS(A) be a birooted
graph. The left projection BL of the birooted graph B is defined by BL = B−1·B.
The right projection BR of the birooted graph B is defined by BR = B ·B−1.

Lemma 28. Let B = 〈in, out〉 be a non-zero birooted graph. Then we have
BL = 〈out, out〉 and BR = 〈in, in〉.

Proof. This can easily be deduce from the pushout diagrams induced by these
product with, again thanks to Theorem 17, in⊗ in = in and out⊗ out = out as
depicted in Figure 18 below. 2

Ip Iq Ip Iq Ip Iq

G G G G

G G

in out out in out in out in

id id id id

in in out out

Fig. 18. Right and left projection diagrams pushouts diagrams.

Remark. As in any inverse semigroup, it is an obvious observation that an
element B is idempotent if and only if it is self-inverse, that is, when B = B−1,
henceforth, as already observed in Lemma 25, in the non-zero case, when it is of
the form 〈f, f〉.

Remark. As a general matter of fact, the relation B � C defined over birooted
graphs when there exists a morphism h : C ⇒ B is a preorder (or quasi-order)
relation. Thanks to identities, it is reflexive, and thanks to morphism composi-
tion it is transitive. Then, Lemma 21 above proves that the equivalence induced
by such a preorder relation is the isomorphism relation over birooted graphs.
In other words, the notion of morphisms induces an order relation on the set
HS(A). We shall see now that this order over HS(A) induced by morphisms
has an algebraic characterization in inverse semigroup theory: it is the natural
order [24].

Definition 29 (Natural order). The natural order ≤ is defined over birooted
graphs by B ≤ C when B = BR · C (or, equivalently, B = C ·BL).

Theorem 30 (Natural order vs birooted graph morphisms). In the in-
verse semigroup HS(A), the absorbant element 0 is the least element under the
natural order and, for every pair of non zero birooted graphs B and C, B ≤ C
if, and only if, there is a birooted graph morphism h : C ⇒ B.

Proof. The fact 0 is the least element in the natural order is immediate. Let
B = 〈in, out〉 and C = 〈in′, out′〉 be two non-zero birooted graphs.

Assume that B ≤ C, that is, BR ·C is isomorphic with B. Let f : BR ·C ⇒ B
be such an isomorphism. By applying Lemma 28 that shows BR = 〈in, in〉, the
resulting situation is depicted Figure 19. Since f ◦h1 ◦ in = in, by applying the

23

Ip Ip Iq

G G′

G

G

in in in′ out′

h1 h2

f

in out

Fig. 19. The case BR · C ∼ B.

unicity lemma (Lemma 8) we have f ◦ h1 = idG.
Let then h = f ◦ h2. We have h ◦ in′ = f ◦ h2 ◦ in′. But h2 ◦ in′ = h1 ◦ in

hence h ◦ in′ = f ◦ h1 ◦ in and thus h ◦ in′ = in. Since h ◦ out′ = out we thus
have proved that h is a morphism h : C ⇒ B from the birooted graph C to the
birooted graph B.

Conversely, assume that there is a morphism h : C → B. That is, h : G′ → G
such that h ◦ in′ = in and h ◦ out′ = out.

This situation, together with the product of BR ·C via a pushout 〈h1, h2〉, is
depicted Figure 20. We aim at proving that h1 : B ⇒ BR ·C is an isomorphism.

Ip

Ip
Iq

G G′

H

in in in′
out′

h1 h2

h

h′

out

Fig. 20. The product BR · C with h : C ⇒ B.

Given that BR ·C = 〈h1 ◦ in, h1 ◦ out′〉, this amounts to prove that h1 is a graph
isomorphism and h1 ◦ in = h1 ◦ in (which is clear) and h1 ◦out = h2 ◦out′ (which
is also clear). In other words, it remains to prove that h1 is a isomorphism.

Let g1 = idG and g2 = h. By construction, we have g1 ◦ in = g2 ◦ in′. Since
〈h1, h2〉 is a pushout of 〈in, in′〉, this implies that there is a unique morphism
h′ : H → G such that g1 = h′ · h1 and g2 = h′ · h2. This means in particular
that idG = h′ · h1. But this also means that h1 ◦ h′ ◦ h1 = h1 hence, since h1 is
connecting, by Lemma 3, we also have idH = h1 ◦ h′. 2

The inverse semigroup of birooted graphs gives a fairly simple though math-
ematically robust way to compose birooted graphs one with the other. Now we
aim at characterizing a simple set of generators for this semigroup.

Clearly, as the number of vertex in root morphisms domain may be arbitrarily
big, there exists no finite set of generators. More precisely, root morphisms must

24

be connecting morphisms. Then, a simple connectivity argument shows that the
birooted graph Idn = 〈idn, idn〉 component cannot be generated from birooted
graph generator with root morphisms domain Ik with k < n.

Definition 31 (Elementary birooted graphs). A elementary birooted graph
is either zero or any birooted graph among Im, Pm,i,j , Tm,a, Tm,ā Fm or Jm

defined below. In the case m = 3 these graphs are depicted in Figure 21.

(13)
1 1

2 2

3 3

(P3,1,2)
1 2

2 1

3 3

(T3,a)
1 1

2 2

3 3
a

(T3,ā)
1 1

2 2

3 3
a

(F3)
1 1

2 2

3

(J3)
1 1

2 2

3

Fig. 21. Elementary birooted graphs.

Formally, the birooted graph Pm,i,j = 〈idm : Im → Im, out : Im → Im〉 is
defined for any m > 0 and 1 ≤ i, j ≤ m by out(i) = j, out(j) = i and out(k) = k
for every other 1 ≤ k ≤ m. It is called a root permutation. As a particular case,
when i = j, since Pm,i,j = 〈idm, idm〉, the birooted graph Pm,i,i is denoted by
1m instead and called a root identity.

The birooted graphs Fm = 〈idm−1 : Im−1 → Im−1, out : Im → Im−1〉 and
Jm = 〈in : Im → Im−1, idm−1 : Im−1 → Im−1〉 are defined for any m > 1, by
in(m) = out(m) = m− 1 and in(k) = out(k) = k for every 1 ≤ k ≤ m− 1. They
are called a root fork and a root join.

The birooted graph Tm,a = 〈int : Im → Ga, out : Im → Ga〉 is defined for
any m > 0 and a ∈ A, by Ga being the m+ 1 vertex graph with set of vertices
V = {1, · · · ,m,m + 1} and sets of edges Ea = {(m,m + 1)} and Eb = ∅ for
every b 6= a, with in(m) = m, out(m) = m+ 1 and in(k) = out(k) = k for every
other 1 ≤ k < m. It is called a forward edge. The birooted graph Tm,ā = T−1

m,a is
called a backward edge.

Examples. Some birooted graphs generated by elementary graphs are depicted
in Figure 22.

Theorem 32. Every birooted graphs 〈in : Ip → G, out : Iq → G〉 with n vertices
in G is finitely generated from 0 and the elementary birooted graphs 1k, Pk,i,j,
Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ max(n, p+ 1, q + 1).

Proof. Let B = 〈in : Ip → G, out : Iq → G ∈ HS(A) with G = 〈V, {Ea}a∈A.
The proof that B can be built as a product of elementary birooted graphs goes

25

(T2,a · J2 · F2 · T2,ā)

1 1

2 2
a

(F2 · T2,a · T2,b · T2,c · J2)

1 1

a
b

c

(T2,b · P2,1,2 · T2,a · P2,1,2)

1

2

1

2

a

b

Fig. 22. Some elementary compositions.

by induction on the triple n(B) by the number of edges, the number of roots
and the number of vertices

n(B) = (Σa∈A|Ea|, p+ q, |V |)

ordered lexicographically.

In the smallest possible case, we have n(B) = (0, 1, 1), that is, G = I1 and
B = 11, nothing has to be done.

Assume now that the statement is true for all birooted graphs B′ with
n(B′) < n(B). Then three cases are possible.

We first examine the three possible cases of edges connecting an input or an
output root to any other vertex.

In the first case, there is i ∈ {1, · · · , p} and x ∈ A+ Ā such that in(i) ·x = y
is defined. Possibly taking Pp,i,p · B instead of B, we may assume that i = p.
Indeed, we easily check that B = Pp,i,p · Pp,i,p · B so the original B can be
recovered by composing it with the same root permutation.

Let then B′ = 〈in′ : Ip+1 → G′, out′ : Iq → G′〉 be the birooted graph defined
by:

• the graph G′ obtained the graph G′ by keeping the same set of vertices and
by removing the edge (x, y) from Ex when x ∈ A or the edge (y, x) ∈ Ex̄

when x ∈ Ā,
• taking in′(k) = in(k) for every 1 ≤ k ≤ p and in(p+ 1) = y,
• taking out′ = out.

Since the number of edges is strictly smaller, we have n(B′) < n(B) hence
the induction hypothesis applies and we conclude by observing that we have
B = Fp+1 · Tp+1,x ·B′.

In the second case, there is j ∈ {1, · · · , q} and x ∈ A+Ā such that out(j)·x =
y is defined. Again, possibly taking B · Pq,j,q we may assume that j = q.

Then, using a symmetrical argument, we can define B′ with n(B′) < n(B)
such that we have B = B′ · Tq+1,x · Jq+1 and we conclude by applying the
induction hypothesis.

In the third case, for every x ∈ A + Ā, every i ∈ {1, · · · , q} and every
j ∈ {1, · · · , p} we have in(i) = ∅ = out(j). Since both in and out are connecting
morphisms this implies that Ea = ∅ for every a ∈ A.

26

Then we examined if some vertex are double input or double output root.
Three subcases are possible.

In the first subcase, there are i, j ∈ {1, · · · , p} with i 6= j such that in(i) =
in(j). Possibly taking Pp,i,p ·Pp,j,p−1 ·B instead of B we may assume that i = p
and j = p−1. Indeed, we may then recover the initial birooted graph just taking
back Pp,j,p−1 · Pp,i,p ·B since, for all p, i, j and all B, we have Pp,i,j · Pp,i,j = 1p

and 1p ·B = B.
Let then B′ = 〈in′, out〉 be the birooted graph obtained from B = 〈in, out〉

just by taking the restriction in′ : Ip−1 → G of in : Ip → G to the set {1, p− 1}.
We easily observe that B = Jp · B′. Since the number of edges is the same and
the number of roots is strictly smaller, we have n(B′) < n(B). We conclude by
observing that B = Jp ·B′ and applying the induction hypothesis on B′.

In the second subcase there are i, j ∈ {1, · · · , q} with i 6= j such that out(i) =
out(j). By applying a symmetrical argument, we can show that there exists B′
with n(B′) < n(B) such that B = B′ ·Fq and we conclude similarly by applying
the induction hypothesis on B′.

In the third case, we may assume that both in and out are injective mor-
phisms. Since there are no edges and both in and out are connecting morphisms,
this implies that p = q = |V | and both in and out are isomorphisms from I|V |
into I|V |. Thus there is a bijection p over {1, 2, · · · , |V |} such that out = p ◦ in.
As well know, every bijection over a finite set V can be generated by a sequence
(ik, jk)1≤k<p of p transpositions (possible repeating the identity) over V such
that p = (ip, jp) ◦ · · · (i2, j2) ◦ (i1, j1). It follows that

B = Pp,ip,jp · · · · · Pp,i2,j2 · Pp,i1,j1

This concludes the case study and the induction proof argument.
We conclude the proof by checking the correctness of the announced bound

on the number of roots used in intermediate elementary birooted graphs. 2

Definition 33 (Bounded birooted graphs algebras). For any given integer
m > 0, let HSm(A) (resp. HS≤m(A)) be the algebraic structure defined as the
subsemigroup of HS(A) generated by 1m, Pm,i,j , Tm,a, Tm,ā (resp. 1k, Pk,i,j ,
Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ m).

As an corollary of Theorems 24 and 26, we have:

Theorem 34. For every integer m > 0, the algebra HSm(A) is an inverse
monoid with neutral element 1m.

Proof. We observe first that the birooted graphs of HSm(A) are necessarily of
type (m,m). Since, by definition, HSm(A) is closed under product, it suffices
to prove that 1m is a neutral element. For this, we observe that a pushout of
a pair of morphisms of the form 〈idm : Im → Im, r : Im → G〉 is the pair
〈r : Im → G, idG : G → G〉. From this fact we easily deduce that the birooted

27

ImIm Im

G Im

G

out idmin idm

idG out
in out

Fig. 23. The birooted (right) unit case

graph 1m = 〈idm, idm〉 is, up to birooted graph isomorphism, a right unit for
the product of (m,m)-birooted graphs as depicted in Figure 23.
A symmetrical argument shows that 〈idm, idm〉 it is also a left unit for the
product. 2

Remark. As a particular case, it can be shown that HS1(A) is the free inverse
monoid FIM(A) generated by A. We shall see below that birooted grids of arbi-
trary size but of type (2, 2) belong to HS≤2(A). In other word, in Theorem 32,
the bound given for k, depending on the number of vertices of G is not optimal.
Remark. In the category UCGrph(A) there is a notion of cospans, that is,
pairs of morphisms of the form

〈in : Gin → G, out : Gout → G〉

with arbitrary input graphGin and output graphGout. However, in our definition
of birooted graphs, we restrict to trivial graphs Gin and Gout of the form Ik.
One may wonder what is the loss induced by such a restriction.

It turns out that, up to compatibility criteria in the product, arbitrary
cospans may be encoded into birooted graphs. More precisely, for every unam-
biguous graph G, given the number n of its vertices, let hG : In → G be a (fixed)
canonical injection morphism from the trivial graph with In into G. Then, up
to cospan isomorphism (defined just as for birooted graph), every cospan

C = 〈in : Gin → G, ou : Gout → G〉

can be represented, by the birooted graph

B(C) = 〈hGin
, hGin

〉 · 〈in ◦ hGin
, out ◦ hGout

〉 · 〈hGout
, hGout

〉

More precisely:
Lemma 35 (Co-span encoding stability). Let C1 and C2 be two cospans.
If C1 ∼ C2 then B(C1) ∼ B(C2), i.e. the encoding preserve isomorphism equiv-
alence. However, it is false that if B(C1) ∼ B(C2) then C1 ∼ C2.

Denoting by C1 · C2 the isomorphic classes of the cospan product of C1 and
C2, if C1 ·C2 is non-empty, B(C1 ·C2) = B(C1)·B(C2), i.e. the encoding preserve
product.

Proof. Immediate from the definitions. The morphism is not injective (one-to-
one) since, through the proposed encoding B(C), the interface 〈Gin, Gout〉 that
defines the cospan compatibility in product is partially lost. Both graphs G1 and
G2 have been merged into (some morphic image of) G.

28

5 Languages of birooted graphs

Now we aim at developing the language theory of higher dimensional strings,
that is to say, the study of the definability of subsets of HS(A). For such a
purpose, we consider the First Order (FO) logic or the Monadic Second Order
(MSO) logic (see [9]) on birooted graphs. We refer the reader to the book [9]
for a definition of MSO on graphs.

More precisely, we considerHS≤m(A) so that the number of input and output
roots on graphs is bounded. Then, one can enrich the signature A by 2 ∗ m
symbols, necessarily interpreted as singletons in order to describes these roots.
Clearly, this is easily done within FO or MSO logic and we can thus consider
the class of F -definable or MSO-definable languages of birooted graphs.

Theorem 36 (Undecidability). When m ≥ 2, the language emptiness prob-
lem for FO-definable (henceforth MSO-definable) languages of birooted graphs
of HS≤m(A) is undecidable.

Proof (sketch of). The undecidability of FO follows from the fact that, as soon as
m ≥ 2, as depicted in Figure 24, grids of arbitrary size can be finitely generated
henceforth classical undecidability results applies [9]. 2

(B1) (B2) (B3) (B4) (B5) (B6)

a

a

b b

1

2

1

2

a

a

b b

1

2

1 2

a

a

b b

1 2

1

2

a

a

b b

1

2

1

2

a

a

b b

2

1

1 2

a

a

b b

1

2

1 2

Fig. 24. A finite set of generators B1,B2, B3, B4, B5 and B6.

We first check, following the examples depicted in Figure 22, that these gen-
erators can indeed be defined by means of Pk,i,j , Tk,a, Tk,ā, Fk and Jk with
1 ≤ k ≤ 2. For instance, we have B5 = (T2,b̄ ·J2)R ·T2,a ·T2,b · (T2,a ·J2)R ·P2,1,2.

Then, as depicted in Figure 25, we can generate birooted grids of arbitrary
size by taking the (2, 2)-birooted graph Bm,n defined by Gm,n = (Zm · Ym)n.
Clearly, Bmn contains a grid of size m by 2 ∗ n.

One may ask how generating such graphs of unbounded tree-width can be
avoided. It occurs that this can simply be done by restricting the overlaps that
are allowed in product instances. More precisely, observing the examples above,
one can notice that every product involved in generating Ym or Zm is fairly
simple. They essentially consists in synchronizing the involved graphs. There is
a trivial fusion phase as in Lemma 11.

29

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b b
1

2

(zm)

1

2

a

a

b ba

a

b ba

a

b ba

a

b b

a

a

b b
1

2

(ym)

Fig. 25. The (2, 2)-birooted graphs Ym = (B1)m ·B2 ·B3 and Zm = (B4)m ·B5 ·B6.

On the contrary, when defining the product ym ·zm, the gluing phase involved
more than 2 ∗m vertices, glued one by one. There is a non- trivial fusion phase
in the sense of Lemma 12.

Recently introduced in the context of birooted words [16] or trees [17] lan-
guages, the definition of the disjoint product, extended to birooted graphs, makes
this restriction of overlaps formal.

Definition 37 (Disjoint product). Let B1 = 〈in1, out1〉 and B2 = 〈in2, out2〉
be two birooted graphs. Let 〈h1, h2〉 be a pushout of 〈out1, in2〉 in UCGrph(A)
and let B1 · B2〈in, out〉 with in = h1 ◦ in1 and out = h2 ◦ out2 be the resulting
product. Then this product is a disjoint product when the pair 〈h1, h2〉 is also a
pushout of in 〈out1, in2〉 in the category CGrph(A). In this case, the disjoint
product is denoted by B1 ? B2.

In other words, a birooted graph product is a disjoint product when the fu-
sion phase in the underlying pushout computation is trivial. Although partially
defined, this disjoint product is still associative in the following sense.

Lemma 38 (Partial associativity). For all birooted graphs B1, B2, B3 the
disjoint product B1 ? (B2 ? B3) is defined if and only if the disjoint product
(B1 ? B2) ? B3 is defined and, in that case, the products are equal.

Proof. Let f : Im → G be a morphism in UCGrph(A). We define the interface
type τ(f) of the morphism f to be the mapping τ(f) : {1, · · · ,m} → P(A+ Ā)
defined by τ(f)(k) = {x ∈ A+ Ā : f(k) · x 6= ∅} for every 1 ≤ k ≤ m. Then, two
such a mapping f : Im → G1 and g : In → G are said disjoint compatible when
m = n and for every 1 ≤ k ≤ m we have τ(f)(k) ∩ τ(g)(k) = ∅.

Then, given any birooted graphs B1 = 〈in1 : Ip1 → G1, out1 : Iq1 → G1 and
B2 = 〈in2 : Ip2 → G1, out1 : In → Gq2 , we can easily check, thanks to the proof
of the pushout Lemmas 11 and 12, that the disjoint product B1 ? B2 is defined
if and only if out1 and in2 are disjoint compatible.

Then, checking that such a compatibility condition is associative in the above
sense is routine checking.

2

Then, the closure under disjoint products and left and right projections are
defined as follows.

30

Definition 39 (Disjoint closure and decomposition). Let X ⊆ HS(A) be
a set of birooted graphs. The disjoint closure of the setX is defined to be the least
set Y of birooted graphs such that X ⊂ Y and that Y is closed under disjoint
product and left and right projections. This closure is denoted by 〈X〉?,L,R.

For every birooted graph B ∈ 〈X〉?,L,R, a combination of elements of X by
disjoint products and let and right projection that equals B is called a disjoint
decomposition of B over X.

Examples. The subset of HS1(A) generated by disjoint products of elementary
birooted graphs I1 and T1,a with a ∈ A is just the free monoid A∗. Adding left
and right projections, the disjoint closure of such a set is known in the literature
as the free ample monoid FAM(A) whose elements are positive birooted trees
(see [13]). Adding backward edges T1,ā for every a ∈ A, the disjoint closure of the
resulting set is the free inverse monoid FIM(A) whose elements are arbitrary
birooted trees.

Theorem 40 (Decidability and complexity). Let X ⊆fin HS(A) be a finite
subset of HS(A). Then, the emptyness problem forMSO-definable subsets of the
disjoint closure 〈X〉?,R,L is (non-elementary) decidable.

Moreover, for any MSO-definable language L ⊆ 〈X〉?,R,L, the membership
problem B ∈ L for any B ∈ HS(A) is linear in the size of any disjoint decom-
position of B over X.

Proof (sketch of). Every disjoint product in 〈X〉?,R,L is just a disjoint sum
with a bounded glueing of roots. It follows that MSO decomposition techniques
(see [28] or [31]) combined with partial algebra techniques [7] are available, as
done in [5] for languages of labeled birooted trees, to achieve an algebraic char-
acterization of MSO definable languages in terms of (partial algebra) morphisms
into finite structures. Such an approach also proves the complexity claim for the
membership problem. 2

Remark. Of course, the membership problem in non elementary in the size of
the MSO formula that defines L. This already follows from the case of MSO
definable languages of finite words. Also, the problem of finding disjoint de-
compositions over X for birooted graphs may be delicate and is left for further
studies.

Remark. Another possible proof for the above theorem may consist in show-
ing that disjoint products and projections preserves graphs tree-width. More
precisely, for every birooted graph B = 〈in : Ip → G, out : Iq → G〉, let
twd(B) the maximum of p, q and the tree-width of the graph G. Then we can
show that for every birooted graph B1 and B2 we have twd(BL

1) = twd(B1),
twd(BR

2) = twd(B2), and if the disjoint product B1 ? B2 is defined then we have
twd(B1 ? B2) = max(twd(B1), twd(B2)). It follows that, since X is finite, all
graphs of 〈X〉?,R,L have bounded tree-width henceforth MSO would be decid-
able (see [9]). Then, the complexity claim for the membership problem would

31

follow, for instance, from the algebraic presentation of recognizable languages of
graphs via cospans studied in [6].

As observed above, A∗, FAM(A) and FIM(A) are examples of subsemigroup
of HS(A) that are finitely generated by disjoint product, inverses and/or pro-
jections. By applying Theorem 40, this proves (again) that their MSO definable
subsets have decidable emptyness problem.

Of course, any subsemigroup of HS(A) that would equal the disjoint closure
of some of its finite subset would also have decidable (MSO) emptyness problem.
However, finding such examples seems to be delicate. Thanks to [23], E-unitary
inverse semigroups with virtually free group image may induce subsemigroup
of HS(A) with decidable MSO language theory. Other examples need to be
discovered.

Last, as an illustration of the power of the inverse semigroup framework that
is proposed here, we show how birooted acyclic graphs can easily be defined as
the quotient of the inverse semigroup of birooted graphs by the semigroup ideal
of cyclic ones. More precisely:

Lemma 41 (Semigroup ideal). Let ϕ be a graph property that is preserved
under graph morphisms. Let Iϕ be the set Iϕ ⊆ HS(A) that contains 0 and all
birooted graphs whose underlying graph satisfies ϕ. Then, Iϕ is an semigroup
ideal of HS(A), that is,

HS(A) · Iϕ ⊆ HS(A) and Iϕ ·HS(A) ⊆ HS(A)

and the Rees’ quotient HS(A)/Iϕ, that is, the set HS(A) − Iϕ + {0} equipped
with the product defined as in H(A) when the result does not belong to Iϕ and
defined to be 0 otherwise, is still an inverse semigroup.

Proof. Let ϕ be a graph property such that, for every graph G1 and G2, every
graph morphism ϕ : G1 → G2, if G1 |= ϕ then G2 |= ϕ.

Let then B1 = 〈in1 : Ip → G1, Iq → G1〉 and B2 = 〈in2 : Iq → G2, Ir → G2〉
be two birooted graphs and let 〈h1 : G1 → G, h2 : G2 → G〉 be a pushout of
〈out1, in2〉. By definition, B1 ·B2 = 〈h1 ◦ in1, h2 ◦ out2〉.

In the case we have G1 |= ϕ (resp. G2 |= ϕ) then, by applying the remark
above, thanks to the existence of morphism h1 (resp. morphism h2) we have
G |= ϕ. In other words, in both case B1 ∈ Iϕ or B2 ∈ Iϕ, we have B1 ·B2 ∈ Iϕ.
Since 0 ∈ Iϕ this proves that Iϕ is an ideal of HS(A).

The fact that the quotient of an inverse semigroup by an ideal is still an
inverse semigroup is routine. 2

In other words, much in the same way 0 already appears with products in HS(A)
that have no compatible types, when the property ϕ describes, in some concrete
modeling context, a set of faulty models that is preserves under morphism, then
the product in HS(A)/Iϕ equals 0 also when the resulting birooted graph is
faulty.

An application of this result is the modeling of causality by means of edge
direction. More precisely, assume from now on that in graphs, vertices are system

32

(partial) states, and directed edges between vertices are causal (local) transition.
Indeed, under such a modeling assumption, every birooted graph who underlying
graph has a (directed) cycle is faulty with respect to strict causality. In other
words, we would like to restrict to birooted (directed) acyclic graphs. This can
easily be done as follows.

Clearly, the existence of directed cycles is a property preserved by morphism.
Then, the algebra of birooted acyclic graphs can simply be modeled as the in-
verse semigroup HS(A)/IC where IC ⊆ HS(A) is the resulting semigroup ideal
containing 0 and all (directed) cyclic birooted graphs.

Such a situation is depicted in Figure 26 where examples show how products

1

2

1

2

a

b

(B1)

1

2

1

2

a

b

(B2)

1

2

1

2c

a
(B3)

1

2

1

2

a

b

(B1 ·B2)
1

2

1

2

a

c

b

(B1 ·B3)

1

2

1

2

a
b

b

(B2 ·B3)

Fig. 26. Causal constraints propagation via products.

of birooted graphs may propagate causality constraints eventually leading to
non-causal graphs: the product (B2 ·B2).

In other words, with the proposed approach, one can define a modeling soft-
ware in such a way that non-causal models raised by combination of causal
constraints are easily detected and forbidden, while, at the same time, the un-
derlying algebraic framework still lays in the theory of inverse semigroups.

6 Conclusion

We have shown how a rather simple and intuitive composition operation on
graphs, inheriting from long standing ideas (see [25]), induces a rich algebraic
structure, an inverse semigroup, from which one can define a natural order and
other mathematically robust operators such as left and right projections, that
capture graph theoretical concepts.

Of course, defining graph products by means of cospans products has already
a long history in Theoretical Computer Science (see e.g. [14, 6, 4]). The originality
of our approach consists in restricting to the category of unambiguous graphs
and connecting morphisms that allow the resulting semigroup to be an inverse
semigroup.

Still, this inverse semigroup is far from being understood in the depth. Little
is known about its subsemigroups. Thanks to [30], one can easily show that,

33

all A generated E-unitary inverse semigroups (see [24]) are subsemigroups of
the monoid defined by birooted graphs of type (1,1). This suggests that the
semigroup HS(A) may satisfy some universality property that is still to be
discovered. Also, we have no direct characterization of the subsemigroups of
HS(A) that could be defined by bounding the number of roots on generators.

By restricting the product to disjoint product, techniques arising from par-
tial algebras [7] are applicable allowing us to inherit from the existing MSO-
language theory of graphs of bounded tree-width [8, 9]. Yet, closure property
of MSO-definable languages remains to be detailled. Also, defining suitable sub-
semigroups of (possible Rees’ quotient of) HS(A) that would also have decidable
MSO languages is still to be investigated.

With a view towards application, beyond all experiments mentioned in the
introduction, the modeling power of birooted graphs also needs to be investigated
further in both practical modeling problems and more general modeling theories.
For such a purpose, an implementation of the monoidHS(A) with both graphical
and programmatic views of its elements is scheduled.

Acknowledgements

Although the main idea presented here essentially remains the same, its pre-
sentation, completely changed, has benefited from the numerous and helpful
comments of anonymous referees of former versions of this works.

It must also be mentioned that the idea of developing a notion of higher
dimensional strings has been suggested to us by Mark V. Lawson during the
summer 2012.

References

1. S. Abramsky. A structural approach to reversible computation. Theor. Comp.
Sci., 347(3):441–464, 2005.

2. J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge, 2010.

3. F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio or sym-
bolic musical patterns: an algebraic approach. International Journal of Semantic
Computing, 6(4):409–427, 12 2012.

4. C. Blume, H.J.S. Bruggink, M. Friedrich, and B. König. Treewidth, pathwidth
and cospan decompositions with applications to graph-accepting tree automata.
Journal of Visual Languages and Computing, 24(3):192 – 206, 2013.

5. A. Blumensath and D. Janin. A syntactic congruence for languages of birooted
trees. Semigroup Forum, 2014.

6. H.J.S. Bruggink and B. König. On the recognizability of arrow and graph lan-
guages. In Graph Transformations, volume 5214 of LNCS, pages 336–350. Springer,
2008.

7. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

8. B. Courcelle. The monadic second-order logic of graphs V: On closing the gap
between definability and recognizability. Theor. Comp. Sci., 80(2):153–202, 1991.

34

9. B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic,
a language theoretic approach, volume 138 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 2012.

10. V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-machines.
Theor. Comp. Sci., 227(1-2):79–97, 1999.

11. V. Diekert, M. Lohrey, and A. Miller. Partially commutative inverse monoids.
Semigroup Forum, 77(2):196–226, 2008.

12. V. Diekert, N. Ondrusch, and M. Lohrey. Algorithmic problems on inverse monoids
over virtually free groups. Int. Jour. of Algebra and Comp., 18(01):181–208, 2008.

13. J. Fountain, G. Gomes, and V. Gould. The free ample monoid. Int. Jour. of
Algebra and Comp., 19:527–554, 2009.

14. F. Gadducci and R. Heckel. An inductive view of graph transformation. In Re-
cent Trends in Algebraic Development Techniques, 12th International Workshop,
WADT’97, Selected Papers, pages 223–237, 1997.

15. P. Hudak and D. Janin. Tiled polymorphic temporal media. In Work. on Functional
Art, Music, Modeling and Design (FARM), pages 49–60. ACM Press, 2014.

16. D. Janin. Overlaping tile automata. In A.A. Bulatov and A.M. Shur, editors,
8th Int. Computer Science Symp. in Russia (CSR), volume 7913 of LNCS, pages
431–443. Springer, 06 2013.

17. D. Janin. On languages of labeled birooted trees: Algebras, automata and logic.
Information and Computation, 2014.

18. D. Janin, F. Berthaut, and M. Desainte-Catherine. Multi-scale design of interactive
music systems : the libTuiles experiment. In Sound and Music Comp. (SMC), 2013.

19. D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati. The
T-calculus : towards a structured programming of (musical) time and space. In
Work. on Functional Art, Music, Modeling and Design (FARM), pages 23–34. ACM
Press, 2013.

20. J. Kellendonk. The local structure of tilings and their integer group of coinvariants.
Comm. Math. Phys., 187:115–157, 1997.

21. J. Kellendonk and M. V. Lawson. Tiling semigroups. Journal of Algebra, 224(1):140
– 150, 2000.

22. J. Kellendonk and M. V. Lawson. Universal groups for point-sets and tilings.
Journal of Algebra, 276:462–492, 2004.

23. D. Kuske and M. Lohrey. Logical aspects of cayley-graphs: the group case. Ann.
Pure Appl. Logic, 131(1-3):263–286, 2005.

24. M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World
Scientific, 1998.

25. H. R. Lewis. A new decidable problem, with applications (extended abstract). In
IEEE Symp. on Foundations of Computer Science (FOCS), pages 62–73. IEEE
Press, 1977.

26. S. W. Margolis and J. C. Meakin. Inverse monoids, trees and context-free lan-
guages. Trans. Amer. Math. Soc., 335:259–276, 1993.

27. J. Meakin. Groups and semigroups: connections and contrasts. In Groups St
Andrews 2005, Volume 2, London Mathematical Society, Lecture Note Series 340.
Cambridge University Press, 2007.

28. S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–419,
1975.

29. P. V. Silva. On free inverse monoid languages. ITA, 30(4):349–378, 1996.
30. J.B. Stephen. Presentations of inverse monoids. Journal of Pure and Applied

Algebra, 63:81–112, 1990.

35

31. W. Thomas. Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In Structures in Logic and Computer Science, volume 1261 of
LNCS, pages 118–143. Springer, 1997.

32. W. Thomas. Logic for computer science: The engineering challenge. In Informatics
- 10 Years Back, 10 Years Ahead., volume 2000 of LNCS, pages 257–267. Springer,
2001.

36

