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Abstract. Halfway between graph transformation theory and inverse
semigroup theory, we define higher dimensional strings as bi-deterministic
graphs with distinguished sets of input roots and output roots. We show
that these generalized strings can be equipped with an associative prod-
uct so that the resulting algebraic structure is an inverse semigroup. Its
natural order is shown to capture existence of root preserving graph mor-
phism. A simple set of generators is characterized. As a subsemigroup
example, we show how all finite grids are finitely generated. Finally, sim-
ple additional restrictions on products lead to the definition of subclasses
with decidable Monadic Second Order (MSO) language theory.

1 Introduction

A never-ending challenge faced by computer science is to provide modeling con-
cepts and tools that, on the one hand, allows for representing data and compu-
tations in a more and more abstract and richly structured way, but, on the other
hand, remains simple enough to be taught to and used by application designers
and software engineers [33].

A possible approach to this goal consists in generalizing to graphs the tech-
niques that have already been developed for strings or trees such as the notion of
recognizable languages and the associated notion of recognizers. In these direc-
tions, an enormous amount of techniques and works has been developed ranging
from Lewis’ graph composition techniques [27] and Courcelle’s developments of
recognizability to graph languages [8] (see also [9]) up to more recent advances
based on category theoretical development (see [13, 6] to name but a few).

Despite numerous achievements in theoretical computer science, there is still
room for polishing these techniques towards applications to computer engineer-
ing. The ideal balance to achieve between usage simplicity and mathematical
coherence is a long-term goal [33]. While the underlying frameworks (the back
end) of application tools to be designed can (and probably should) be based on
robust mathematics, the interface (the front end) of these tools must be kept
simple enough to be taught ad used.

Keeping in mind that strings, free monoids and related automata techniques
are among the simplest and the most robust available models and are already



and successfully put in practice in system modeling methods like event B [2], we
develop in this paper a notion of generalized strings, called higher dimensional
strings, in such a way that:

1. higher dimensional strings are simple: they are finitely generated from ele-
mentary graphs composed via a single and associative product that general-
izes string concatenation in free monoids (Theorem 25),

2. the resulting classes of generalized strings include large classes of finite
graphs such as, in particular, hypercubes, hence the name higher dimen-
sional (Section 5 for the case of grids),

3. the resulting semigroups are inverse semigroups (Theorems 17 and 19) hence-
forth mathematically rich enough to provide algebraic characterization of
graph-based concepts such as, for instance, existence of graph morphisms
characterized by natural order (Theorem 23) or acyclicity defined by a quo-
tient with an adequate ideal (Lemma 33),

4. some well-defined and rich subclasses of these generalized strings still has
efficient, expressive and decidable language theory (Theorem 32).

Technically, following the lines already sketched in [18], we use and generalize
the concept of birooted graphs (with single input and output roots) defined and
used in [31] into the notion of higher dimensional strings (with sets of input
and output roots). This provides a better measure of the amount of overlaps
that occurs in birooted graphs products can be better measured. Thus we can
extend the notion of disjoint product [15, 17] and the applicable partial algebra
techniques [5]). This yields to our main decidability result (Theorem 32).

In some sense, our proposal amounts to combining concepts and results aris-
ing from the theory of inverse semigroups [26, 29] with graph transformation
approaches [27, 13, 6, 9].

Of course, various research developments have already shown that inverse
semigroup theory is applicable to computer science, be it for data, compu-
tation, language or system modeling. Concerning data modeling, experiments
in theoretical physics have already shown that structured data as complex as
quasi-crystals can be described by means of some notion of (inverse) tiling semi-
group [23–25]. Inverse semigroup theory has also been used to study reversible
computations [10, 1]. More recently, various modeling experiments have been
conducted in computational music [3, 21]. These last experiments also led to the
definition of a Domain Specific (Programing) Language (DSL) which semantics
is based on concepts arising from inverse semigroup theory [22, 14].

2 Preliminaries

Let A = {a, b, c, · · · } be a finite alphabet of graph edge labels. Every concept
defined in the sequel could be extended to hypergraphs, that is, graphs with
edges that possibly relate more than two vertices (see Footnote 1). However,
restricting our presentation to standard (binary) graph structures allows us to
keep statements (and proofs) simpler.
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Relational graphs. A (relational) graph on the (binary symbols) alphabet A,
simply called A-graph or even graph when A is clear from the context, is a pair
G = 〈V, {Ea}a∈A〉 with set of vertices V and a-labeled edge relation Ea ⊆ V ×V
for every a ∈ A.

Back and forth path labels. Let Ā = {ā, b̄, c̄, · · · } be a disjoint copy of the
alphabet A. A back and forth path label (or simply path label) is a word from
the free monoid (A+ Ā)∗ on the alphabet A+ Ā, with empty word denoted by
1 and the product of two words u and v ∈ (A+ Ā)∗ denoted by u · v or simply
uv. Then, the reverse mapping w 7→ w from (A + Ā)∗ into itself is inductively
defined by 1 = 1, a · v = v · ā and ā · v = v · a for every a ∈ A, x ∈ A+ Ā and
v ∈ (A+ Ā)∗. It is an easy observation that the reverse mapping is an involutive
monoid anti-isomorphism, that is, we have u · v = v · u and w = w for every
u, v, w ∈ (A+ Ā)∗.

Back and forth path actions. For every X ⊆ V and w ∈ (A + Ā)∗, the set
X · w ⊆ V of vertices reachable from X following w is inductively defined by
X · 1 = X, X · aw = {y ∈ V : ∃x ∈ X, (x, y) ∈ Ea} · w and X · āw = {y ∈ V :
∃x ∈ X, (y, x) ∈ Ea} · w, for every letter a ∈ A and every string v ∈ (A+ Ā)∗.
In other words, X · w is the set of vertices that can be reached from a vertex
in X along a path labeled by w, where a (resp. ā) denotes the forward (resp.
backward) traversal of an a-labeled edge in the graph G.

One can check that X ·1 = X and and X · (u ·v) = (X ·u) ·v for every X ⊆ V
and every string u, v ∈ (A+ Ā)∗. Rephrased in semigroup theoretical term, the
edge relations of the graph G induce an action of the monoid (A + Ā)∗ on the
powerset of the set of vertices of the graph G. It follows that parentheses can be
removed without ambiguity in expressions like (X · u) · v..

Notation for the singleton case. When X is a singleton {x}, we may simply
write x · w instead of {x} · w. Similarly, when x · w itself is a singleton we may
also treat it just as the element it contains. In other words, we may simply write
x · w = y instead of {x} · w = {y}, to denote both the fact that there exists a
(back and forth) path from vertex x to vertex y labeled by w and the fact that
this path is unique. Similarly, we may say that x · w is undefined (as a vertex)
in the case x · w = ∅ (as a set).

Graph morphism. The usual notion of graph morphism can then be (re)defined
via path actions as follows. Let G = 〈V, {Ea}a∈A〉 and G′ = 〈V ′, {E′a}a∈A〉
be two graphs on the alphabet A. A morphism f from G to G′, denoted by
f : G→ G′, is a mapping f : V → V ′ such that we have f(x · a) ⊆ f(x) · a and
f(x · ā) ⊆ f(x) · ā for every x ∈ V and every a ∈ A. Then, by induction, we can
easily prove that f(x · w) ⊆ f(x) · w for every x ∈ V and every w ∈ (A+ Ā)∗.

Graph quotient. Let G = 〈V, {Ea}a∈A〉 be a graph. Let ' be an equivalence
relation over the set V , that is, a reflexive, symmetric and transitive relation.
Let V/ ' be the set of equivalence classes {[x]' ⊆ V : x ∈ V } where [x]' =
{x′ ∈ V : x ' x′}. Then, the quotient of the graph G by the equivalence ' is
defined to be the graph G/ ' = 〈V ′, {E′a}a∈A〉 with set of vertices V ′ = V/ 'G
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and set of edges E′a = {([x], [y]) ∈ V ′ × V ′ : ([x]× [y]) ∩ Ea 6= ∅}. The mapping
η' : V → V/ ' defined by η'(x) = [x]' for every x ∈ V is a surjective morphism
called the canonical morphism from the graph G onto the quotient graph G/ '.

3 Unambiguous graphs and connecting morphisms

We define and study in this section the category of unambiguous graphs and
connecting morphisms. Though fairly simple, this study is quite detailed for it
constitutes the foundation of the notion of birooted graphs defined in the next
section.

Definition 1 (Unambiguous graphs). A graph G = 〈V, {Ea}a∈A〉 is unam-
biguous1 when, for every vertex x ∈ V , for every path w ∈ (A+ Ā)∗, there is at
most one vertex y such that x · w = {y}.

Clearly, by simple inductive argument, G is unambiguous as soon as the above
condition is satisfied for every one letter path.

Examples. Graphs examples are depicted in Figure 1 with ambiguous graph
G1 and unambiguous graphs I2 and G2. In this figure, vertices are named only
for illustrative purposes. These vertex names should not be understood as labels.
Only edges are labeled in relational graphs.

1

2

(I2)
1

4

2

53

b

a

a
a

b(G1)
1 2

3

a

b a(G2)

Fig. 1. Ambiguous graph G1 and unambiguous graph G2.

One can observe that graph G1 is ambiguous for two reasons. First, the upper
left vertex 1 is the source of two edges labeled by b. Second, the upper right
vertex 2 is the target of two edges labeled by a.

Remark. Observe that when a graph G is seen as a graph automaton on the
alphabet A, it is unambiguous when it is both deterministic and co-deterministic.
In the connected case, these unambiguous graphs are the Schützenberger graphs
studied and used in [31].

Definition 2 (Connecting morphisms). Let f : G → G′ be a graph mor-
phism between two graphs G = 〈V, {Ea}a∈A〉 and let G′ = 〈V ′, {E′a}a∈A〉. The
morphism f is a connecting morphism when for every x′ ∈ V ′ there exist x ∈ V
and w ∈ (A+ Ā)∗ such that x′ ∈ f(x) · w.
1 unambiguity can be generalized to hypergraphs by viewing every binary relation
of the form ∃z1z2z3 a(z1, x, z2, y, z3) with tuples of FO-variables z1, z2 and z3 of
adequate lengths as a primitive binary relation.
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In other words, a morphism f : G → G′ is a connecting morphism when every
vertex of graph G′ is connected to the image of a vertex of G in graph G′.

Examples. Clearly, every surjective (i.e. onto) morphism is a connecting mor-
phism. Another example of (non surjective) connecting morphism f : I2 → G is
depicted in Figure 2.

4

1 2

3a

b
b(G)(I2)

2

1
f

Fig. 2. A connecting morphism ϕ : I2 → G with ϕ(1) = 1 and ϕ(2) = 3.

Remark. Observe that when both G and G′ are unambiguous, then, for every
x ∈ V , every w ∈ (A+ Ā)∗, if x ·w is not empty then so is f(x) ·w and we have
f(x · w) = f(x) · w. This leads us to the following Lemma.

Lemma 3 (Unique morphism completion). Let G, G1 and G2 be three
graphs. Let f1 : G→ G1 and f2 : G→ G2 be two graph morphisms. Assume that
f1 is connecting and that both G1 and G2 are unambiguous. Then there exists
at most one morphism g : G1 → G2 such that g ◦ f1 = f2. Moreover, if f2 is
connecting, then so is g.

Clearly, the composition of two connecting morphisms is a connecting mor-
phism. Since the identity mapping over a graph is also a connecting morphism,
this allows us to define the following categories.

Definition 4 (Induced categories). Let CGrph(A) (resp. UCGrph(A)) be
the category defined by finite graphs (resp. by finite unambiguous graphs) as
objects and connecting morphisms as arrows.

We aim now at studying the properties of both category CGrph(A) and
category UCGrph(A) and, especially, the way they are related. The notion of
unambiguous congruence defined below allows us to transform any graph into
its greatest unambiguous image. In group theory, this generalizes the notion of
Stallings foldings [29].

Definition 5 (Unambiguous congruence). LetG = 〈V, {Ea}a∈A〉 be a graph
on the alphabet A. A relation '⊆ V × V over the vertices of G is an unambigu-
ous congruence when it is an equivalence relation such that, for every a ∈ A, for
every x, y ∈ V , if x ' y then we have both x · a× y · a ⊆' and x · ā× y · ā ⊆'.

The existence of a least congruence is stated in Lemma 6 and the associated
universality property is stated in Lemma 7.

Lemma 6 (Least unambiguous congruence). Let G be a graph, possibly
ambiguous. Then there exists a least unambiguous congruence 'G over G. More-
over, in the case G is unambiguous, then 'G is the identity relation.
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The graph G/ 'G is called the greatest unambiguous graph image of the graph
G. Its maximality is to be understood in the following sense.

Lemma 7 (Maximal unambiguous image). Let G be a graph. Let 'G be its
least unambiguous congruence. Then, for every graph morphism f : G→ H with
unambiguous graph H, there exists a unique morphism g : G/ 'G→ H such that
f = g ◦ η'G

. Moreover, if f is connecting then so is g.

Example. An example of maximal graph image is provided by the graphs
already depicted in Figure 1 where G2 has not been chosen at random since
G2 = G1/ 'G1 .

1

4

2

53

b

a

a
a

b(G1)
1 2

3

a

b a(G2)
η

Fig. 3. Graph G2 is the maximal unambiguous image of graph G2.

The canonical onto morphism η : G1 → G1/ 'G1= G2 is depicted in Figure 3,
encoding the least unambiguous congruence on G1 that glues 1 with 5, and 3
with 4.

Remark. The construction described above is a generalization of what is known
in algebra as Stallings folding [29]. Observe that with G = 〈V, {Ea}a∈V 〉, the
least unambiguous congruence 'G equals the least fixpoint of the mapping F :
V × V → V × V defined by

F (R) = R ∪
⋃
{(x · a)× (y · a) ∪ (x · ā)× (y · ā) : (x, y) ∈ R, a ∈ A}

that contains the equality. It follows, by applying classical fixpoint techniques,
that 'G=

⋃
n≥0 F

n(=), henceforth it can be computed in quasi linear time. In
other words, computing the maximal unambiguous image G/ 'G of the graph
G can be done in time quasi linear in the size of the graph G.

Clearly, the category UCGrph(A) is a subcategory of CGrph(A). The next
lemma shows shows that maximal graph images extend to morphisms henceforth
defining a projection functor from CGrph(A) into UCGrph(A).

Lemma 8 (Projected morphisms). Let G and H be two graphs with a con-
necting morphism f : G → H. Let ηG : G → G/ 'G and ηH : H → H/ 'H

be the related canonical onto morphisms. Then there exists a unique connecting
morphism ϕ(f) : G/ 'G→ H/ 'H such that ϕ(f) ◦ ηG = ηH ◦ f .

In other words, we can define the functor ϕ : CGrph(A) → UCGrph(A) by
ϕ(G) = G/ 'G for every graph G and by ϕ(f) as given by Lemma 8 for every
connecting morphism f . Then, we have ϕ(G) = G for every unambiguous graph
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G and ϕ(f) = f for every connecting graph morphism f between unambiguous
graphs. In other words, ϕ is a projection from CG(A) into UCGrph(A) hence-
forth a left inverse of the inclusion functor from UCGrph(A) to CGrph(A).

We study a bit further the morphisms in these categories showing that they
both admit pushouts. The following definition, classical in category theory, is
given here for the sake of completeness.

Definition 9 (Pushouts). Let 〈f1 : G → G1, f2 : G → G2〉 be a pair of
morphisms. A pair of morphisms 〈g1 : G1 → H, g2 : G2 → H〉 is a pushout of
the pair 〈f1, f2〉 when f1 ◦ g1 = f2 ◦ g2, and, for every other pair of morphisms
〈g′1 : G1 → H ′, g′2 : G2 → H ′〉, if f1 ◦ g′1 = f2 ◦ g′2 then there exists a unique
morphism h : H → H ′ such that g′1 = h ◦ g1 and g′2 = h ◦ g2.

The first pushout lemma, in the category CGrph(A), is a slight generalization
of the pushout in the category Set.

Lemma 10 (Synchronization). In category CGrph(A), every pair of mor-
phisms with common source has a pushout.

Proof (sketch of). Let ≡f1,f2 be the equivalence relation over the vertices of the
disjoint sum G1 +G2 induced by f1(x) ≡f1,f2 f2(x) for every vertex x of G. Let
H = G1 + G2/ ≡f1,f2 . Then, the pair 〈η≡f1,f2

◦ i1, η≡f1,f2
◦ i2〉 with canonical

injection i1 (resp. i2) of G1 (resp. G2) into G1 + G2 is a pushout of 〈f1, f2〉 in
category CGrph(A). 2

Example. An example of such a pushout in the category CGrph(A) is depicted
in Figure 4.

1

2
(I2)

1

2

3
(G1)

a

b

1

2 4
(G2)

a

a

1

2

3

4
(H)

a

b

a

a

f1

f2

g1

g2

Fig. 4. A “synchronization” pushout example.

Remark. Existence of pushouts in CGrph(A) essentially follows from the exis-
tence of pushouts in the category Set. These pushouts are called synchronization
(or glueing) pushouts since, the pushout of 〈f1 : G → G1, f2 : G → G2〉 essen-
tially glues the vertices of G1 and G2 that have common ancestors in G either
via f1 or via f2.

The second pushout lemma, in the category UCGrph(A), is completed by
a fusion phase (or glueing propagation) defined by taking the maximal unam-
biguous image of the graph resulting from the pushout in CGrph(A).
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Lemma 11 (Synchronization and fusion). In category UCGrph(A), every
pair of morphisms with common source has a pushout.

Proof (sketch of). Take H = G1 + G2/ 'f1,f2 as for Lemma 10 with pushout
〈g1, g2〉. Then, take U = H/ 'H the greatest unambiguous image of H. The pair
〈ηH ◦ g1, ηH ◦ g2〉 is a pushout of 〈f1, f2〉 in UCGrph(A). 2

Example. An example of a synchronization + fusion is depicted in Figure 5.

1

2
(I2)

1

2

3
(G1)

a

b

1

2 4
(G2) a

a

1

2

3

4
(H)

a

b

a

a

1

2 4
(U)b

a

a

f1

f2

g1

g2

ηH

Fig. 5. A “synchronization + fusion” pushout example.

4 The inverse monoid of birooted graphs

We are now ready to define birooted graphs as certain cospans in the category
UCGrph(A). For such a purpose, for every integer k > 0, let Ik be the un-
ambiguous defined by k distinct vertices {1, 2, · · · , k} and empty edge relations,
and let idk : Ik → Ik be the identity isomorphism.

Definition 12 (Birooted graphs). A birooted graph B is a pair of connecting
morphisms

B = 〈in : Ip → G, out : Iq → G〉

from two trivial graphs Ip and Iq to a common unambiguous graph G.
The morphism in is called the input root morphism, or, more simply, the

input root of the birooted graph B. The morphism out is called the output root
morphism, or, more simply, the output root of the birooted graph B.

The pair of positive integers (p, q) that defines the domains of root morphisms
is called the type of the birooted graph. It is denoted by dom(B). The underlying
graph G is the codomain of the input and output morphisms. It is called the
graph of B and it is also denoted by cod(B).

Remark. A birooted graph of type (p, q) can simply be seen as a unambigu-
ous graph G = 〈V, {Ea}a∈A〉 enriched with two tuples of distinguished vertices
(x1, x2, · · · , xp) ∈ V p and (y1, y2, · · · , yq) ∈ V q that label the vertices marked
by the input and the output roots of the birooted graph.
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This point of view is depicted in Figure 6 with two birooted graphs B1 and
B2 of type (2, 2). In such a figure, vertices of input roots are marked by dangling
input arrows, and vertices of output roots are marked by dangling output arrows.

1 1

2 2
a

b b
(B1)

1

2 2

1
b

c

b
(B2)

Fig. 6. Examples of (2, 2)-birooted graphs.

Remark. The name “birooted graphs” is borrowed from [31]. However, our
definition is a clear generalization of the definition given in [31]. Indeed, Stephen’s
birooted graphs are only birooted graphs of type (1, 1).

In category theoretical term, a birooted graph is a cospan (see for instance [4]).
The existence of pushouts in the category UCGrph(A) allows us to define the
product of birooted graphs as the product of their cospan. However, such a
product is (so far) not uniquely determined since, a priori, it may depend on the
chosen pushout.

Definition 13 (Birooted graph product instance). Let B1 = 〈in1, out1〉
and let B2 = 〈in2, out2〉 be two birooted graphs. Assume that B1 is of type (p, q)
and that B2 is of type (q, r). Let 〈h1, h2〉 be a pushout of the pair 〈out1, in2〉.
Then, the product instance of birooted graphs via the pushout 〈h1, h2〉 is defined
to be the birooted graphs 〈h1 ◦ in1, h2 ◦ out2〉, and it is denoted by B1 ·h1,h2 B2.

A concrete example of a product instance built from the (2, 2)-birooted graphs
given in Figure 6 is depicted in Figure 7.

1

2

1

2

b

a

b

c

b b

a

b

c

Fig. 7. A product instance of B1 ·B2 ·B1 ·B2.

We aim now at defining products of birooted graphs up to some adequate notion
of birooted graph equivalence. This is done via the notion of birooted graph
morphisms (Definition 14) and the proof that birooted graph product instances
are stable under birooted graph morphisms (Lemma 15).

Definition 14 (Birooted graph morphisms). Let B1 = 〈in1, out1〉 and
B2 = 〈in2, out2〉 be two birooted graphs. A birooted graph morphism from
B1 to B2 is defined as root preserving graph morphism of their codomain, that
is, a graph morphism h : cod(B1) → cod(B2) such that in2 = h ◦ in1 and
out2 = h ◦ out1. Such a morphism is denoted by h : B1 ⇒ B2.
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Two birooted graphs B1 and B2 are isomorphic when there is an isomorphism
h : B1 ⇒ B2. Such a situation is denoted by B1 ∼ B2.

Remark. Thanks to Lemma 3, there exists at most one morphism h : B1 ⇒ B2
between any two birooted graphs B1 and B2.

Lemma 15 (Product stability w.r.t. birooted graphs morphisms). Let
f1 : B1 ⇒ C1 and f2 : B2 ⇒ C2 be two birooted graphs morphisms and let B1 ·B2
and C1·C2 be two product instances. Then, there exists a (unique) birooted graphs
morphisms h : B1 ·B2 ⇒ C1 · C2.

This stability property allows us to define the following birooted graph algebras.

Definition 16 (Birooted graph algebras). Let HS(A) be the set of classes
of isomorphic birooted graphs extended with the emptyset equipped with the
product defined for every X,Y ∈ H(S) as follows. In the case there is B ∈ X,
C ∈ Y and a product instance B ·C, then we take X ·Y = [B]∼ · [Y ]∼ = [B ·Y ]∼
and we take X · Y = ∅ in all other cases.

Notation. In the sequel we shall simply write B (or C) instead of [B] (or [C])
and we shall simply write B ·C for the product [B]∼ · [C]∼ of the corresponding
classes of equivalent birooted graphs.

Theorem 17 (Semigroup property). The algebra HS(A) is a semigroup,
that is, the product of birooted graphs is an associative operation.

Lemma 18 (Idempotent property). A non-zero birooted graph B of the form
B = 〈in, out〉 is idempotent, that is, B ·B = B, if and only if in = out. Moreover,
idempotent birooted graphs commute henceforth form a subsemigroup.

Theorem 19 (Inverse semigroup property). The semigroup HS(A) is an
inverse semigroup, that is, for every element B, there is a unique element B−1

such that
B ·B−1 ·B = B and B−1 ·B ·B−1 = B−1

The inverse B−1 of a non-zero birooted graph B = 〈in, out〉 is simply given by
B−1 = 〈out, in〉.

Inverses allow us to define left and right projections that, following inverse semi-
group theory, characterize left and right Green classes.

Definition 20 (Left and right projection). Let B ∈ HS(A) be a birooted
graph. The left projection BL of the birooted graph B is defined by BL = B−1·B.
The right projection BR of the birooted graph B is defined by BR = B ·B−1.

Lemma 21. Let B = 〈in, out〉 be a non-zero birooted graph. Then we have
BL = 〈out, out〉 and BR = 〈in, in〉.

10



Remark. As a general matter of fact, the relation B � C defined over birooted
graphs when there exists a (root preserving) morphism h : C ⇒ B is a (partial)
order relation. We shall see now that it has an algebraic characterization in
inverse semigroup theory: it is the natural order [26].

Definition 22 (Natural order). The natural order ≤ is defined over birooted
graphs by B ≤ C when B = BR · C (or, equivalently, B = C ·BL).

Theorem 23 (Natural order vs birooted graph morphisms). In the in-
verse semigroup HS(A), the absorbant element 0 is the least element under the
natural order and, for every pair of non zero birooted graphs B and C, B ≤ C
if, and only if, there is a birooted graph morphism h : C ⇒ B.

The inverse semigroup of birooted graphs gives a fairly simple though math-
ematically robust way to compose birooted graphs one with the other. Now we
aim at characterizing a simple set of generators for this semigroup.

Definition 24 (Elementary birooted graphs). A elementary birooted graph
is either zero or any birooted graph among Im, Pm,i,j , Tm,a, Tm,ā Fm or Jm

defined below. In the case m = 3 these graphs are depicted in Figure 8.
(13)

1 1

2 2

3 3

(P3,1,2)
1 2

2 1

3 3

(T3,a)
1 1

2 2

3 3
a

(T3,ā)
1 1

2 2

3 3
a

(F3)
1 1

2 2

3

(J3)
1 1

2 2

3

Fig. 8. Elementary birooted graphs.

Formally, the birooted graph Pm,i,j = 〈idm : Im → Im, out : Im → Im〉 is
defined for any m > 0 and 1 ≤ i, j ≤ m by out(i) = j, out(j) = i and out(k) = k
for every other 1 ≤ k ≤ m. It is called a root permutation. As a particular case,
when i = j, since Pm,i,j = 〈idm, idm〉, the birooted graph Pm,i,i is denoted by
1m instead and called a root identity.

The birooted graphs Fm = 〈idm−1 : Im−1 → Im−1, out : Im → Im−1〉 and
Jm = 〈in : Im → Im−1, idm−1 : Im−1 → Im−1〉 are defined for any m > 1, by
in(m) = out(m) = m− 1 and in(k) = out(k) = k for every 1 ≤ k ≤ m− 1. They
are called a root fork and a root join.

The birooted graph Tm,a = 〈int : Im → Ga, out : Im → Ga〉 is defined for
any m > 0 and a ∈ A, by Ga being the m+ 1 vertex graph with set of vertices
V = {1, · · · ,m,m + 1} and sets of edges Ea = {(m,m + 1)} and Eb = ∅ for
every b 6= a, with in(m) = m, out(m) = m+ 1 and in(k) = out(k) = k for every
other 1 ≤ k < m. It is called a forward edge. The birooted graph Tm,ā = T−1

m,a is
called a backward edge.
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Examples. Some birooted graphs generated by elementary graphs are depicted
in Figure 9.

(T2,a · J2 · F2 · T2,ā)

1 1

2 2
a

(F2 · T2,a · T2,b · T2,c · J2)

1 1

a
b

c

(T2,b · P2,1,2 · T2,a · P2,1,2)

1

2

1

2

a

b

Fig. 9. Some elementary compositions.

Theorem 25. Every birooted graphs 〈in : Ip → G, out : Iq → G〉 with n vertices
in G is finitely generated from 0 and the elementary birooted graphs 1k, Pk,i,j,
Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ max(n, p+ 1, q + 1).

Definition 26 (Bounded birooted graphs algebras). For any given integer
m > 0, let HSm(A) (resp. HS≤m(A)) be the algebraic structure defined as the
subsemigroup of HS(A) generated by 1m, Pm,i,j , Tm,a, Tm,ā (resp. 1k, Pk,i,j ,
Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ m).

As an corollary of Theorems 17 and 19, we have:

Theorem 27. For every integer m > 0, the algebra HSm(A) is an inverse
monoid with neutral element 1m.

Remark. As a particular case, it can be shown that HS1(A) is the free inverse
monoid FIM (A) generated by A. We shall see below that birooted grids of arbi-
trary size but of type (2, 2) belong to HS≤2(A). In other word, in Theorem 25,
the bound given for k, depending on the number of vertices of G is not optimal.

5 Languages of birooted graphs

Now we aim at developing the language theory of higher dimensional strings,
that is to say, the study of the definability of subsets of HS(A). For such a
purpose, we consider the First Order (FO) logic or the Monadic Second Order
(MSO) logic (see [9]) on birooted graphs. We refer the reader to the book [9]
for a definition of MSO on graphs.

More precisely, we consider HS≤m(A) so that the number of input and output
roots on graphs is bounded. Then, one can enrich the signature A by 2 ∗ m
symbols, necessarily interpreted as singletons in order to describes these roots.
Clearly, this is easily done within FO or MSO logic and we can thus consider
the class of FO-definable or MSO-definable languages of birooted graphs.

Theorem 28 (Undecidability). When m ≥ 2, the language emptiness prob-
lem for FO-definable (hence also MSO-definable) languages of birooted graphs
of HS≤m(A) is undecidable.
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Proof (sketch of). The undecidability of FO follows from the fact that, as soon
as m ≥ 2, as depicted in Figure 10, grids of arbitrary size can be finitely gener-
ated with two edge relations a and b modeling horizontal and vertical directions,
hence, together with additional edge relations for encoding arbitrary unary pred-
icates on grid vertices, classical undecidability results apply [9]. 2

(B1) (B2) (B3) (B4) (B5) (B6)

a

a

b b
1

2

1

2

a

a

b b
1

2

1 2

a

a

b b

1 2

1

2

a

a

b b
1

2

1

2

a

a

b b
2

1

1 2

a

a

b b
1

2

1 2

Fig. 10. A finite set of generators B1,B2, B3, B4, B5 and B6.

We first check, following the examples depicted in Figure 9, that these generators
can indeed be defined by means of Pk,i,j , Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ 2.
For instance, we have B5 = (T2,b̄ · J2)R · T2,a · T2,b · (T2,a · J2)R · P2,1,2.

Then, as depicted in Figure 11, we can generate birooted grids of arbitrary
size by taking the (2, 2)-birooted graph Bm,n defined by Gm,n = (Zm · Ym)n.
Clearly, Bmn contains a grid of size m by 2 ∗ n.

1

2

a

a

b b a

a

b b a

a

b b a

a

b b

a

a

b b
1

2

(zm)

1

2

a

a

b ba

a

b ba

a

b ba

a

b b

a

a

b b
1

2

(ym)

Fig. 11. The (2, 2)-birooted graphs Ym = (B1)m ·B2 ·B3 and Zm = (B4)m ·B5 ·B6.

One may ask how generating such graphs of unbounded tree-width can be
avoided. It occurs that this can simply be done by restricting the overlaps that
are allowed in product instances.

Recently introduced in the context of birooted words [16] or trees [15, 17]
languages, the definition of the disjoint product, extended to birooted graphs,
makes this restriction of overlaps formal.

Definition 29 (Disjoint product). Let B1 = 〈in1, out1〉 and B2 = 〈in2, out2〉
be two birooted graphs. Let 〈h1, h2〉 be a pushout of 〈out1, in2〉 in UCGrph(A)
and let B1 · B2〈in, out〉 with in = h1 ◦ in1 and out = h2 ◦ out2 be the resulting
product. Then this product is a disjoint product when the pair 〈h1, h2〉 is also a
pushout of in 〈out1, in2〉 in the category CGrph(A). In this case, the disjoint
product is denoted by B1 ? B2.

In other words, a birooted graph product is a disjoint product when the fu-
sion phase in the underlying pushout computation is trivial. Although partially
defined, this disjoint product is still associative in the following sense.
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Lemma 30 (Partial associativity). For all birooted graphs B1, B2, B3 the
disjoint product B1 ? (B2 ? B3) is defined if and only if the disjoint product
(B1 ? B2) ? B3 is defined and, in that case, the products are equal.

Then, the closure under disjoint products and left and right projections are
defined as follows.

Definition 31 (Disjoint closure and decomposition). LetX ⊆ HS(A) be a
set of birooted graphs. The disjoint closure of the set X is defined to be the least
set Y of birooted graphs such that X ⊂ Y and that Y is closed under disjoint
product and left and right projections. This closure is denoted by 〈X〉?,L,R.

For every birooted graph B ∈ 〈X〉?,L,R, a combination of elements of X by
disjoint products and let and right projection that equals B is called a disjoint
decomposition of B over X.

Examples. The subset of HS1(A) generated by disjoint products of elementary
birooted graphs I1 and T1,a with a ∈ A is just the free monoid A∗. Adding left
and right projections, the disjoint closure of such a set is known in the literature
as the free ample monoid FAM (A) whose elements are positive birooted trees
(see [12]). Adding backward edges T1,ā for every a ∈ A, the disjoint closure of
the resulting set is the free inverse monoid FIM (A) whose elements are arbitrary
birooted trees.

Theorem 32 (Decidability and complexity). Let X ⊆fin HS(A) be a finite
subset of HS(A). Then, the emptiness problem for MSO-definable subsets of the
disjoint closure 〈X〉?,R,L is (non-elementary) decidable.

Moreover, for any MSO-definable language L ⊆ 〈X〉?,R,L, the membership
problem B ∈ L for any B ∈ HS(A) is linear in the size of any disjoint decom-
position of B over X.

Proof (sketch of). Every disjoint product in 〈X〉?,R,L is just a disjoint sum
with a bounded glueing of roots. It follows that MSO decomposition techniques
(see [30] or [32]) combined with partial algebra techniques [7] are available, as
done in [5] for languages of labeled birooted trees, to achieve an algebraic char-
acterization of MSO definable languages in terms of (partial algebra) morphisms
into finite structures. Such an approach also proves the complexity claim for the
membership problem. 2

Remark. Of course, the membership problem is non elementary in the size of
the MSO formula that defines L. This already follows from the case of MSO
definable languages of finite words. Also, the problem of finding disjoint de-
compositions over X for birooted graphs may be delicate and is left for further
studies.

As observed above, A∗, FAM (A) and FIM (A) are examples of subsemigroup
of HS(A) that are finitely generated by disjoint product, inverses and/or pro-
jections [15, 17]. By applying Theorem 32, this proves (again) that their MSO
definable subsets have decidable emptiness problem.
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6 The inverse monoid of acyclic birooted graphs

Towards application purposes, birooted graphs can be seen as models of comput-
erized system behaviors with vertices viewed as (local) states and edges viewed
as (local) transition. In this case, one is tempted to detect and forbid directed
cycles which interpretation could be problematic (causally incoherent).

As an illustration of the power of the inverse semigroup framework that is
proposed here, we show how these birooted acyclic graphs can simply be defined
as the quotient of the inverse semigroup of birooted graphs by the semigroup
ideal of cyclic ones. Then, in such a quotient, easily implementable, a product
of acyclic birooted graphs is causally coherent if and only if it is non zero.

Lemma 33 (Semigroup ideal). Let ϕ be a graph property that is preserved
under graph morphisms. Let Iϕ be the set Iϕ ⊆ HS(A) that contains 0 and all
birooted graphs whose underlying graph satisfies ϕ. Then, Iϕ is an semigroup
ideal of HS(A), that is,

HS(A) · Iϕ ⊆ HS(A) and Iϕ ·HS(A) ⊆ HS(A)

and the Rees’ quotient HS(A)/Iϕ, that is, the set HS(A) − Iϕ + {0} equipped
with the product defined as in H(A) when the result does not belong to Iϕ and
defined to be 0 otherwise, is still an inverse semigroup.

In other words, much in the same way 0 already appears with products in HS(A)
that have no compatible types, when the property ϕ describes, in some concrete
modeling context, a set of faulty models that is preserves under morphism, then
the product in HS(A)/Iϕ equals 0 also when the resulting birooted graph is
faulty.

Clearly, the existence of directed cycles is a property preserved by morphism.
Then, the algebra of birooted acyclic graphs can simply be modeled as the in-
verse semigroup HS(A)/IC where IC ⊆ HS(A) is the resulting semigroup ideal
containing 0 and all (directed) cyclic birooted graphs.

Such a situation is depicted in Figure 12 where
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b
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1

2
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2
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2

a
b

b

(B2 ·B3)

Fig. 12. Causal constraints propagation via products.

examples show how products of birooted graphs may propagate causality
constraints eventually leading to non-causal graphs: the product (B2 ·B2).
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In other words, with the proposed approach, one can define a modeling soft-
ware in such a way that non-causal models raised by combination of causal
constraints are easily detected and forbidden, while, at the same time, the un-
derlying algebraic framework still lays in the theory of inverse semigroups.

7 Conclusion

We have shown how a rather simple and intuitive composition operation on
graphs, inherited from long standing ideas (see [27]), induces a rich algebraic
structure, an inverse semigroup, from which one can define a natural order and
other mathematically robust operators such as left and right projections, that
capture graph theoretical concepts.

Of course, defining graph products by means of cospans products has already
a long history in Theoretical Computer Science (see e.g. [13, 6, 4]). The originality
of our approach consists in restricting to the category of unambiguous graphs
and connecting morphisms that allow the resulting semigroup to be an inverse
semigroup.

Still, this inverse semigroup is far from being understood in depth. Little is
known about its subsemigroups. Thanks to [31], one can easily show that, all A
generated E-unitary inverse semigroups (see also [28]) are subsemigroups of the
monoid defined by birooted graphs of type (1,1). This suggests that the semi-
group HS(A) may satisfy some universality property that is still to be discovered.
Also, we have no direct characterizations of the subsemigroups of HS(A) that
could be defined by bounding the number of roots on generators.

Following [5], by restricting the product to disjoint product, techniques aris-
ing from partial algebras [7] are applicable allowing us to inherit from the existing
MSO-language theory of graphs of bounded tree-width [8, 9]. It is expected that
tile automata, defined in [15, 16] over birooted words or trees, can easily be ex-
tended to higher dimensional strings and related with MSO-definability. Yet,
closure property of MSO-definable languages remains to be detailled. It is by
no means clear under which restrictions the product of two definable languages
remains definable. Also, defining more suitable subsemigroups of (possible Rees’
quotient of) HS(A) that would also have decidable MSO languages is still to be
investigated.

With a view towards application, beyond all experiments mentioned in the
introduction, the modeling power of birooted graphs also needs to be investi-
gated further in both practical modeling problems and more general modeling
theories. For such a purpose, an implementation of the monoid HS(A) with
both graphical and programmatic views of its elements is scheduled. As already
mentioned, multiple roots gives a flavor of concurrency. It is also expected that
higher dimensional strings can be used as (explicitly concurrent) models of par-
tially semi-commutative traces [11, 19] henceforth connecting higher dimensional
strings with a part of concurrency theory.

Finally, it has been shown recently that (one head) tree and graph walking
automata semantics is nicely described in terms of (languages of) birooted graphs
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with single input and output roots [20]. The generalized birooted graphs pre-
sented here may provide nice semantical models of multi-head walking automata:
partial runs of these automata clearly define languages of birooted graphs with
multiple input and output roots.
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