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Résumé : Nous nous intéressons au problème de l'amélioration continue d'une chaîne de traitement de documents, visant à extraire des événements dans des documents provenant de sources ouvertes. Il s'agit de tirer parti des corrections effectuées par les opérateurs humains pour que la chaîne de traitement apprenne de ses erreurs, et s'améliore de façon générale.

Nous appliquons l'apprentissage par renforcement (en l'occurrence, le Q-Learning) à ce problème, où les actions sont les services d'une chaîne de traitement d'extraction de l'information. L'objectif est de profiter du feedback utilisateur pour permettre au système d'apprendre la configuration idéale des services (ordonnancement, gazetteers et règles d'extraction) en fonction des caractéristiques des documents à traiter (langue, type, etc.). Nous menons de premières expériences avec des données de feedback générées automatiquement à partir d'un oracle, et les résultats sont encourageants.

Mots-clés : Intelligence artificielle, Apprentissage par renforcement, Extraction et gestion des connaissances, Interaction homme-machine, Renseignement d'origine sources ouvertes (ROSO)

Notre objectif est de combler ce manque, en fournissant un mécanisme d'amélioration continue de la chaîne de traitement, tirant parti des retours (du feedback) exprimés implicitement par les opérateurs lorsqu'ils corrigent des événements dans la base de données. Il s'agit de faire en sorte que la chaîne « apprenne de ses erreurs ». Ainsi, le système pourrait apprendre des règles telles que « si le document est en breton, il est préférable de le traduire d'abord en français puis d'extraire des événements, plutôt que d'appliquer directement une phase d'extraction sur le breton », en constatant que des corrections sont souvent apportées sur les événements extraits par la deuxième option.

À moyen terme, nous visons la prise en compte directe du feedback de l'utilisateur. Son expertise (le feedback) est manifestée par les traces de ses actions (Bratko & Suc, 2003). Ces traces seront captées à travers l'interface graphique qui donne les détails des événements en synthèse. La chaîne de traitement restera alors une « boîte noire » pour l'utilisateur. Il s'agira de retours qualitatifs, en particulier sur les événements extraits (« corrigé », « consulté et non corrigé », « non consulté », etc.).

Nous restreignons ici le cadre, en supposant que le système reçoit un feedback quantitatif sur la qualité des extractions. Nous proposons une formalisation du problème en apprentissage par renforcement, et rendons compte de premières expériences très encourageantes. Pour celles-ci, le feedback est basé sur une distance entre les événements désiré et extrait et donc, implicitement, sur le temps qui serait nécessaire à la correction des erreurs. [START_REF] Culotta | Corrective feedback and persistent learning for information extraction[END_REF] ont montré l'intérêt de solliciter des corrections à l'utilisateur, et de guider la mise à jour du modèle. Pourtant le modèle pourrait être bon, mais mal appliqué, et les utilisateurs n'ont pas l'expertise pour modifier le système. [START_REF] Chai | Efficiently incorporating user feedback into information extraction and integration programs[END_REF] ont essayé de combler ce manque d'expertise en proposant un langage permettant aux utilisateurs de corriger directement l'application d'extraction de l'information sans l'intervention d'un expert technique, mais cela suppose que l'amélioration s'applique à tous les documents à traiter, c'est-à-dire, dans une chaîne de traitement figée. Or, les documents de renseignement sont hétérogènes, et sont traités dans des grands volumes.

Nous proposons de permettre à l'utilisateur de se distancer complètement du modèle, en offrant un système modulaire [cf. [START_REF] Fromherz | Model-based computing for design and control of reconfigurable systems[END_REF] qui construisent de chaînes de façon adaptative et modulaire pour des photocopieurs Xerox], qui apprend à modifier son propre comportement en temps réel [cf. [START_REF] Doucy | Méthodologie pour l'orchestration sémantique de services dans le domaine de la fouille de documents multimédia[END_REF] qui modifient également une chaîne de traitement à la volée], à partir du feedback offert par l'utilisateur [cf. [START_REF] Dupont | Apprentissage par renforcement pour la recherche d'information interactive[END_REF] qui montrent l'utilisation de RL pour la sélection d'outils de recherche basée sur l'analyse des actions de l'utilisateur], et qui plus est, s'adapte à chaque document source unique.

La plateforme WebLab

La chaîne de traitement qui motive notre travail s'appuie sur la plateforme open-source We-bLab (2015). WebLab intègre des services web qui peuvent être interchangés ou permutés afin de créer une chaîne de traitement. Cette chaîne peut ensuite être utilisée pour analyser des documents multimédia open-source, et en extraire l'information.

Une chaîne de traitement typique de WebLab (Figure 1) commence par convertir le document source en une ressource XML. Cette ressource est ensuite transmise de service en service. Chaque service analyse le contenu de la ressource telle qu'il la reçoit, et l'enrichit avec des annotations. Enfin, les résultats sont stockés pour consultation par l'utilisateur.

Texte

Normaliseur (Tika) 

r 1 = r 0 + u 0 Détecteur de langue (NGramJ) r 2 = r 1 + u 1 Extracteur (GATE) r 3 = r 2 + u 2 Inférence spatiale (Geo) r 4 = r 3 + u 3 BDD d r 1 r 2 r 3 r 4

Exemple 1

Considérons le document textuel suivant : 4/29/1971: In a series of two incidents that might have been part of a multiple attack, suspected members of the Chicano Liberation Front bombed a Bank of America branch in Los Angeles, California, US. There were no casualties but the building sustained $ 1,600 in damages.

La ressource XML (simplifiée) de la Figure 2 est produite après le passage du document par le normaliser, Tika (2015), qui a ajouté l'annotation « text/plain » (ligne 15) et le contenu original, et le détecteur de la langue, NGramJ (2015), qui a ajouté la langue « en » (ligne 21). 

Définition 1 (Un événement)

Un événement E est un quadruplet E =< C, T, S, A >, où :

-C ⊆ C est la dimension conceptuelle de E, donnée par un ensemble d'atomes pris dans un domaine C commun à tous les événements ; -T est la dimension temporelle de E, c'est-à-dire la date à laquelle E est survenu (potentiellement ambiguë, telle que « mardi dernier ») ; pour modéliser l'ambiguïté, on prend T ⊆ T, où T est l'ensemble des dates ; -S est la dimension spatiale de E, potentiellement ambiguë également, avec S ⊆ S ; -A est la dimension agentive de E, càd l'ensemble des participants impliqués (A ⊆ A).

Si la définition est générale, on s'intéresse dans le cadre de cet article à des domaines précis : C est un ensemble fixé et fini d'atomes dans WOOKIE ; T est l'ensemble de toutes les « dates » qui peuvent être extraites, par exemple « mardi dernier », « 2001 », « 2001/9/11, 8:46 » ; S est l'ensemble des entités utilisées par GeoNames (2015) ; enfin, A est l'ensemble (infini) de tous les participants pouvant être extraits, vus comme des chaînes de caractères.

Exemple 2 (suite de l'exemple 1) Le document au dessus donnera lieu à l'extraction d'un événement E =< C, T, S, A > avec C = {AttackEvent, BombingEvent}, T = {4/29/1971}, S = {Los Angeles, California, United States, America}, A = {Chicano Liberation Front, Bank of America}.

Apprentissage par renforcement

Pour atteindre notre objectif, nous appliquons les techniques de l'apprentissage par renforcement (Reinforcement Learning, RL). Pour une introduction détaillée au sujet, nous renvoyons le lecteur à Sutton & Barto (1998), mais nous en rappelons les grands principes dans cette section.

En RL, l'apprenant reçoit une récompense, basée sur les résultats des actions qu'il a choisies. Plus les résultats sont proches des objectifs, plus la récompense est élevée. Le système essaie de maximiser ces récompenses, typiquement en exploitant ce qu'il connaît déjà pour continuer à recevoir de bonnes récompenses, et en explorant de nouvelles actions avec l'espoir d'obtenir des récompenses encore plus importantes. Prenons l'exemple d'un robot qui doit naviguer sur une grille. Son objectif est d'atteindre une case spécifique, qui est la seule à donner une récompense. Typiquement, au fil des épisodes, il renforcera la valeur des cases depuis lesquelles il sera arrivé rapidement au but, et apprendra ainsi le chemin idéal.

Le RL est généralement formalisé comme un processus de décision markovien (Markov Decision Process, MDP). Un tel processus modélise l'environnement en termes d'états, dans lesquels des actions sont possibles, qui mènent à d'autres états de manière stochastique. Le fait que l'environnement soit dans un état donné à un certain instant apporte une récompense immédiate à l'agent. L'objectif d'un apprenant est de choisir ses actions de façon à maximiser son espérance de récompenses cumulées, sans connaître, initialement, ni les distributions sur les états résultant d'une action, ni les récompenses associées aux états. Bien entendu, ce cadre générique admet de nombreuses variantes (pour un aperçu récent, voir Szepesvári (2010)).

Définition 2 (MDP)

Un processus de décision markovien [START_REF] Puterman | Markov Decision Processes : Discrete Stochastic Dynamic Programming[END_REF] est un 5-uplet (S, A, P, R, γ), avec -S un ensemble (fini, discret) d'états possibles de l'environnement, -A un ensemble (fini, discret) d'actions (que l'agent peut effectuer), -P un ensemble de distributions {P a (s, •) | s ∈ S, a ∈ A} ; P a (s, s ) est la probabilité que l'environnement soit dans l'état s après que l'agent a effectué l'action a en s, -R une fonction de récompense, que nous supposons définie sur les états ; R(s) est la récompense obtenue par l'agent pour se trouver dans l'état s, -γ ∈ [0, 1] un facteur d'atténuation, qui contrôle l'importance des récompenses espérées dans le futur, relativement aux récompenses espérées dans l'immédiat.

Dans le cadre du RL, l'agent (apprenant) connaît initialement seulement les espaces d'états et d'actions S, A, ainsi que le facteur γ. À tout instant t, il connaît l'état courant s t de l'environnement, et choisit une action a t . L'environnement passe dans un état s t+1 tiré selon la distribution P at (s t , •), et l'agent est informé de l'état s t+1 et de la récompense r t+1 = R(s t+1 ). Le processus continue en s t+1 . L'agent doit, au fil de ces interactions avec l'environnement, apprendre une série de politiques π 0 , π 1 , . . . , π t , . . . , une politique π t : S → A donnant, pour l'instant t, l'action π t (s) à effectuer si l'état courant est s t = s, pour tout s ∈ S. Son objectif est à tout instant de maximiser l'espérance de la récompense cumulée, c'est-à-dire l'espérance de la quantité ∞ t =t γ t R(s t ). Dans l'exemple du robot, à l'instant t, l'état courant s t est la case sur laquelle il se trouve, et son action a t est prise parmi nord, ouest, etc. La probabilité P at (s t , s ) qu'il arrive sur la case s à l'instant suivant dépend de sa case de départ s t et de l'action a t .

Il n'est pas si trivial de définir des états et actions dans une chaîne de traitement, pourtant, il semble naturel d'utiliser le RL sur notre problématique. Les seules informations connues avant de commencer une chaîne de traitement sont les services disponibles, leurs paramètres, et les états potentiels des documents et du système (cf. section 2). L'apprenant ne connaît ni la forme, ni le contenu des documents à l'avance, ni si une extraction sera possible, donc ses décisions sont prises dans l'incertain. Nous voulons que le système apprenne une série de politiques adaptées aux besoins de l'utilisateur, pour améliorer en continu l'extraction des événements.

De nombreux algorithmes ont été proposés dans la littérature pour les problèmes de RL. Dans cet article, nous utilisons une des approches les plus standards, le Q-learning [START_REF] Watkins | Learning from delayed rewards[END_REF], avec une exploration -gloutonne. Cette approche consiste à maintenir, pour chaque couple état/action (s, a), une valeur notée Q(s, a) qui représente intuitivement l'estimation courante, par l'agent, de l'espérance de récompense s'il se trouve dans s, exécute a, puis suit une politique optimale. En résumé, lorsque l'agent est dans l'état s t , choisit a t , se retrouve en s t+1 et reçoit une récompense r t+1 , il met à jour son estimation de la valeur Q(s t , a t ) de la manière suivante :

Q(s t , a t ) ← (1 -α) Q(s t , a t ) + αγ(r t+1 + γ max a t+1 Q(s t+1 , a t+1
)) où α, le taux d'apprentissage, est un coefficient dans [0, 1] qui fixe l'importance de la dernière expérience (r t+1 + γ max(. . . )) par rapport à l'expérience déjà accumulée (l'ancienne valeur de Q(s t , a t )).

Enfin, dans le Q-learning avec exploration -gloutonne, le taux d'exploration ∈ [0, 1] règle le dilemme exploitation/exploration de la manière suivante. À chaque pas de temps t, l'agent tire un nombre aléatoire dans [0, 1] ; s'il fait entre 0 et , alors il choisit une action aléatoirement (il explore) ; sinon, l'agent exploite et choisit simplement l'action a qui maximise Q(s t , a).

Le Q-learning est un algorithme simple, dont les paramètres α et peuvent être réglés de façon intuitive, et c'est pourquoi nous l'utilisons dans la suite. Toutefois, notre contribution consiste à modéliser le problème de l'amélioration continue d'une chaîne de traitement comme un problème de RL, et tout algorithme pour ce problème pourrait également être utilisé.

Dans la pratique, la chaîne de traitement utilisée est complexe. Elle est écrite et calibrée par des experts qui choisissent les services constituant la chaîne, leur ordonnancement et leurs paramètres (par exemple, les gazetteers de mots déclencheurs pour les services de détection d'événements). L'ordonnancement peut être conditionnel (par exemple, si le document est en format pdf, passer au service 1 pour le convertir en XML, et au service 2 sinon), mais il est figé.

Malgré l'expertise, il est très difficile d'obtenir une chaîne parfaite, parce que l'utilisation des documents open source provenant du web apporte des difficultés : leurs format et contenu ne sont pas standards, les pages sources elles-mêmes ne sont pas contrôlables, les urls changent, ou sont piratés, et il y a du « bruit » (publicité par exemple). On observe des erreurs d'extraction pouvant être des événements d'intérêt manqués, des événements mal extraits (les informations non connexes dans la même phrase associées faussement, par exemple).

Par exemple, l'utilisateur voudrait de l'information sur les accords entre pays. Il est impossible de dire avec certitude que le mot « alliance » dans un document y fait référence. Ce n'est qu'après l'extraction de l'événement déclenchée par le mot « alliance » que l'utilisateur se rend compte que la page parle de mariages, par exemple. Même si le document provient d'un journal politique, il se peut que l'on parle d'une coalition entre partis politiques, ou que les filtres de publicité n'aient pas réussi à attraper une vente de bagues. Le mot « union » a pu être utilisé au lieu d'« alliance », et l'événement n'a pas été reconnu. Avec ces incertitudes, les experts qui paramètrent la chaîne essaient d'envisager les situations les plus communes. Il est inconcevable qu'ils puissent construire des chaînes à la main en examinant chaque document source.

Notre objectif est donc l'amélioration continue de la chaîne de traitement, de sorte que le système apprenne de ses erreurs. Pour cela, on peut tirer parti du fait que des opérateurs humains consultent les fiches synthétiques produites par le système, qui contiennent les événements extraits et les pointeurs vers les documents sources. Ces utilisateurs ont la possibilité de corriger le contenu extrait, fournissant ainsi, indirectement, un feedback sur le traitement effectué.

À moyen terme, nous cherchons à développer un système qui réponde aux besoins réels de la communauté Open-source intelligence (OSINT). L'utilisateur corrigera les erreurs, et le système pourra prendre en compte ce feedback implicite sur les traitements qu'il a effectués, afin d'améliorer ces derniers pour les documents suivants.

Toutefois, dans cet article, nous nous intéressons à un objectif simplifié, dans lequel le feedback est supposé donné de façon explicite (simulé dans nos expériences), et sur une échelle numérique. Ce cadre simplifié est une première étape vers la résolution du problème, et nos expériences fournissent ainsi une preuve de concept pour notre objectif à moyen terme.

Formalisation comme un problème de décision

Puisqu'une chaîne unique pour traiter parfaitement chaque type de document est impossible à construire, l'idéal serait une chaîne faite sur mesure pour chaque document. Nous choisissons de modéliser le problème du traitement d'un document comme un processus de décision markovien (MDP). La stochasticité nous permet de prendre en compte, en particulier, le fait que des actions menées dans un contexte apparemment similaire, peuvent ne pas produire le même résultat. À titre d'exemple, choisir d'extraire la langue peut résulter en l'extraction de langues différentes, ce qui est pris en compte directement par les actions stochastiques des MDP.

Le système a une perception de la tâche sous la forme d'états du processus : document courant, informations déjà extraites, temps déjà passé sur ce document, etc. Chaque passage par un service modifie l'état courant. Par ailleurs, le système dispose d'un certain nombre d'actions qu'il peut appliquer dans l'état courant : ces actions correspondent au service suivant à lancer (ou à l'arrêt du traitement et l'enregistrement des événements extraits en base). La répétition d'une même action sur un même document est techniquement autorisée, mais cela sera pénalisé par le système de récompense (car induisant un temps de traitement plus long). La chaîne de traitement n'est plus figée, mais contrôlée par un algorithme de RL.

Les actions font transiter le système d'un état à l'autre : par exemple, l'action consistant à extraire la langue, appliquée dans un état donné s t correspondant à un document en cours de traitement, fera transiter le système vers un état s t+1 égal à s t à ceci près qu'il contiendra l'information « langue extraite » et l'annotation « fr ». Enfin, les récompenses r(s) sont données au système en fonction du feedback sur les événements extraits (simulé dans notre cas), et donc seulement pour les états terminaux d'un traitement. Les volumes de documents traités en production (potentiellement tous les documents possibles du web) étant très importants, le temps passé à traiter le document influe également sur la récompense (cf. section 5).

Plus précisément, les états que perçoit la chaîne sont des états combinatoires, formés par les valeurs d'un certain nombre de descripteurs des documents. Ces états permettent une généralisation en apprentissage, par exemple, nous avons déjà vu que le type de document (politique vs. mariage) influence en grande mesure l'utilité du mot « alliance » pour l'extraction de l'information. On peut espérer que la chaîne apprenne au fil des interactions que -si l'état courant a la valeur « true » pour le descripteur « typeExtrait » et la valeur « politique » pour le descripteur « type », alors la meilleure action à effectuer consiste à lancer un service d'extraction qui utilise « alliance » parmi les mots déclencheurs, -dans les autres cas où le type est extrait, la meilleure action consiste à arrêter le traitement (inutile d'essayer d'extraire des accords entre pays dans des documents non politiques), -sinon, la meilleure action consiste à lancer un service de reconnaissance de type.

5 Cadre expérimental L'objectif de cet article est de donner une preuve de concept de notre approche. Pour cela, nous avons considéré un corpus de textes, dont les événements d'intérêt sont déjà connus. En appliquant notre formalisme, nous avons utilisé un algorithme de Q-learning pour contrôler le traitement, en simulant un feedback en utilisant la vérité terrain.

Nous nous basons sur une chaîne simple mais typique (cf. section 2). La chaîne est écrite comme une route [START_REF] Camel | Apache camel[END_REF] en XML. Chaque service est défini comme un endpoint, et nous utilisons le Dynamic Router pour donner à l'IA le contrôle sur les services appelées, leur ordonnancement, et leurs paramètres, spécifiquement, le choix des gazetteers (les mots déclencheurs) de GATE [START_REF] Cunningham | Text Processing with GATE (Version 6)[END_REF] pour la détection des événements dans un texte.

Corpus

Nous nous intéressons à l'extraction d'événements correspondant à des attentats à la bombe (bombings) dans le monde entier. Le Global Terrorism Database (GTD (2014)) est une base de données open source composée des détails de plus de 125 000 événements terroristes mondiaux de 1970 à 2013. Le corpus est formé d'un ensemble des synthèses de ces événements {d 1 . . . d N } d'où une chaîne d'extraction parfaite extrairait les événements E 1 , . . . , E N ∈ GT D, respectivement (cf. exemple 1, exemple 2). Nous attendons de notre système qu'il apprenne une chaîne qui s'approche de ce but, en apprenant non seulement le bon ordonnancement des services, mais aussi le fait que certains services (dans notre cas, le service d'inférence de l'information géographique) et certains gazetteers de GATE ne sont pas utiles.

États et actions

Un état est représenté par une affectation des caractéristiques : language ∈ {"en"," "}, format ∈ {"text/plain"," "}, durée, nbServices ∈ {0 -5, 5 -20, 20+}, bombing ∈ {true, false}, any ∈ {true, false} où durée est le nombre de secondes écoulées depuis le début du traitement du document courant (arrondie à la dizaine de secondes), nbServices est le nombre de services déjà utilisés sur ce document, bombing est true si et seulement si un événement de ce type a déjà été extrait, et de même, any est true si et seulement si un événement quelconque a déjà été extrait. Ces caractéristiques sont choisies à titre illustratif pour la preuve de concept, en lien avec un ensemble restreint d'actions. Un système opérationnel prendrait évidemment en compte de nombreuses autres caractéristiques (type de document, liste complète de langues, etc.).

Les actions disponibles consistent à choisir le prochain service parmi {Tika, NGramJ, GATE, Geo}. Quand le système choisit GATE, il a le choix parmi six gazetteers : bombing (verbes et noms), injure (verbes et noms), HarryPotter (verbes et noms). Les mots contenus dans les listes de bombing et injure peuvent déclencher l'extraction des événements. Les listes HarryPotter contiennent exclusivement des mots qui ne sont pas présents dans les documents du GTD, tels que dragon, et l'IA devrait donc apprendre que ce paramètre du service est inutile. Nous cherchons ainsi à vérifier que, pour la tâche d'extraction de bombings qui lui est confiée, le système réussit bien à apprendre que le gazetteer le plus pertinent est bombing, et que les deux autres gazetteers l'induisent en erreur (si les mots d'injure sont utilisés pour détecter des bombings) ou le ralentissent inutilement (gazetteer HarryPotter). Une dernière action disponible permet au système d'arrêter le traitement du document, et de retourner les éventuels événements extraits.

Protocole

Nous avons pris deux jeux de documents du GT D qui contiennent de l'information sur des bombings. Le premier consiste en 100 documents d'entraînement que nous avons traités 30 fois par lots, utilisant un taux d'exploration de 0.4 qui est divisé par 2 jusqu'à 0.1 tous les 5 lots pour réduire de plus en plus l'exploration et augmenter l'exploitation. Les documents étant hétérogènes, nous avons utilisé un taux d'apprentissage α de 0.2. Cela ne garantit pas la convergence de l'apprentissage, mais permet de réduire l'effet négatif des grandes variations, par exemple, si plusieurs documents à la suite ne contiennent pas d'information extractible.

En contrôle, nous comparons la performance de deux chaînes « expertes » (Mixte qui accède à toutes les gazetteers de GATE, et Bombe qui n'accède qu'au gazetteer de bombing) à celle de l'IA sur le même jeu de 100 documents. Le deuxième jeu consiste en 1000 documents aléatoirement choisis que l'IA « voit » pour la première fois. Nous les traitons avec les deux chaînes « expertes » sans IA ; avec une IA paramétrée avec = α = 0 et les Q-valeurs apprises à l'issue du lot 30 ; et avec une IA « vierge » avec un = 0.4 initialement, divisé par 2 tous les 100 documents jusqu'à = 0.05, et α = 0.2. Pour éviter que l'IA tourne à l'infini, si le temps de traitement d'un document dépasse 30 secondes 1 , la chaîne est arrêtée dès que le service courant a fini, induisant une récompense réduite ou négative, et les éventuels événements extraits sont retournés. Les documents sont toujours traités dans le même ordre.

Objectifs et récompenses

Le feedback donné au système prend en compte la similarité entre les événements potentiellement extraits par la chaîne sur le document et l'événement du GT D qui correspond à ce document (voir ci-dessous) Nous définissons la similarité entre deux événements

E 1 =< C 1 , T 1 , S 1 , A 1 > et E 2 =< C 2 , T 2 , S 2 , A 2 > par Sim(E 1 , E 2 ) = (α • Sim(C 1 , C 2 ) + β • Sim(T 1 , T 2 ) + γ • Sim(S 1 , S 2 ) + δ • Sim(A 1 , A 2 ))/(α + β + γ + δ)
Puisque nous simulons un utilisateur intéressé principalement par les événements de type bombing, nous donnons à α une valeur plus élevée, spécifiquement α = 20; β = γ = δ = 1.

La similarité conceptuelle Sim(C 1 , C 2 ) est de 1 s'il y a un atome commun entre les dimensions conceptuelles de E 1 et E 2 , et de 0 sinon. Par exemple, pour

C 1 = {BombingEvent, AttackEvent} et C 2 = {BombingEvent}, on obtient C 1 ∩ C 2 = {BombingEvent}, et donc Sim(C 1 , C 2 ) = 1.
Nous procédons de même pour la similarité géographique Sim(S 1 , S 2 ).

Pour la similarité temporelle Sim(T 1 , T 2 ), s'il y a au moins un élément en commun nous donnons une similarité de 1, mais si une comparaison directe ne donne pas un résultat, nous utilisons l'information dérivée (jour, mois, année, jour de la semaine). Par exemple, pour T 1 = {7 October 1969} et T 2 = {T uesday}, l'intersection est vide, mais en notant que le 7 octobre 1969 a été un mardi, nous obtenons Sim(T 1 , T 2 ) = 1 7 . Enfin, pour la similarité entre les dimensions agentives, nous utilisons la distance de Levenshtein sur chaque paire d'agents a 1 , a 2 pris dans A 1 , A 2 (nombre minimal de caractères à supprimer, insérer ou remplacer pour passer d'une chaîne à l'autre), rendue « floue » (F SLS(a i , a j )) en considérant les sous-séquences de la chaîne principale [START_REF] Ginstrom R | Global Terrorism Database[END_REF]. Nous définissons

Sim(A 1 , A 2 ) comme max{F SLS(a 1 , a 2 ) | a 1 ∈ A 1 , a 2 ∈ A 2 },
si elle est au-dessus d'un certain seuil θ, et 0 sinon (en pratique, θ = 0.45 donne de bons résultats). Par exemple, pour A 1 = {Le P rof esseur T ournesol P hD} et A 2 = {T ournessol}, on obtient Sim(A 1 , A 2 ) = F SLS( @ @ @ @ @ @ @ @ @ h h h h h h h h h Le P rof esseur T ournesol$ $ $ $ P hD, T ourne

1 suppression ssol) = 1 -( 1 9 ) = 0.89 IC 2015
Nous ne nous intéressons pas icià l'association d'entités telles que François Hollande / le président, mais la modularité du système permettrait de prendre en compte cette similarité facilement en s'appuyant sur des ressources adéquates.

Résultats expérimentaux

Les diagrammes 1a et 1b dans Figure 3 montrent les récompenses reçues (par document et par ordre décroissant des récompenses respectivement) par une IA, et par les deux chaînes « expertes » sur les 100 documents d'entraînement. Dans le diagramme 1a, les documents où l'IA a fait au moins une exploration sont marqués sur les axes en haut et en bas, et seulement les courbes des lots 1, 10, 20, 30 sont montrées (les autres étaient similaires).

La courbe IA Lot30 et la courbe IA Lot1 montrent comme attendu que plus l'IA traite de documents, plus elle s'améliore. La comparaison avec la courbe Bombe montre que l'IA est capable d'une performance proche de celle de la chaîne experte. Notons que les documents où l'IA reçoit de moins bonnes récompenses que la chaîne experte sont dues aux explorations (p.ex. document 13), ou à la mauvaise calibration du seuil de temps (document 5). Parfois l'IA surpasse la chaîne experte (document 87) qui se traduit par une récompense (réduite) pour l'extraction d'un événement autre que bombing.

Pour nous approcher du cas d'utilisation réel, nous avons ensuite traité 1000 documents inconnus, choisis aléatoirement. Les diagrammes 2a et 2b montrent les récompenses reçues (par document, et par ordre décroissant des récompenses respectivement) par l'IA formée sur les 100 documents mentionnés ci-dessus, par les deux chaînes « expertes » (Bombe et Mixte), et par l'IA non formée » (c'est-à-dire sans a priori sur les besoins de l'utilisateur ni sur les documents). Nous voyons que, sauf mauvaise calibration du seuil, la courbe IA formée suit exactement celle de la chaîne experte Bombe, montrant qu'elle a bien appris à n'extraire que des événements bombing. 2c montre la moyenne cumulative (lissée pour les valeurs négatives) des différences entre les récompenses reçues par les IAs (formée et non formée), et la chaîne experte Bombe. Nous voyons que l'IA formée est capable d'une performance constante, et que l'IA non formée se stabilise au bout d'environ 600 documents, et donc généralise bien en apprentissage. Il s'avère également que l'IA a bien appris l'ordonnancement de la chaîne. Par exemple, dans l'état correspondant à un document sans type ni langue extraits, 0 secondes et 2 services déjà écoulés, et aucun événement extrait, la meilleure action apprise est de passer le document au service Tika, et dans l'état correspondant à un document où la langue, le type, et au moins un événement sont extraits, quelles que soient les valeurs des autres attributs, l'IA arrête le traitement de ce document. L'IA a aussi appris à optimiser la chaîne pour ce type de document. Elle n'appelle pas le service Geo et n'utilise que la liste de verbes de bombing, comme espéré. Cependant, elle a trouvé une solution inattendue avec le choix des noms injure, ce qui reflète peut être l'importance relative donnée par GATE lui-même aux noms et verbes pour les extractions.

Conclusion et perspectives

Nous avons proposé une formalisation du problème de l'amélioration continue d'une chaîne de traitement de documents, visant à extraire des événements dans des documents provenant de sources ouvertes, ainsi qu'une solution basée sur l'apprentissage par renforcement. 

FIGURE 1 -

 1 FIGURE 1 -Une chaîne WebLab typique : un document, d, est converti en une ressource XML, r 0 , et des annotations, u j , sont ajoutées par chaque service. Enfin, les résultats sont stockés.

  Nous considérons l'utilisation d'une telle chaîne pour l'extraction d'événements d'intérêt pour la veille économique, stratégique, ou militaire. En travaillant avec WebLab, nous nous situons dans la continuité du travail de Serrano (2014), qui propose la définition suivante d'un événement, formalisé dans l'ontologie WOOKIE. Notre travail est indépendant de WebLab et WOOKIE, et nous aurions pu utiliser une autre définition, par exemple, celle de van Hage et al. (2011).

FIGURE 3 -

 3 FIGURE 3 -Résultats expérimentaux : 1a, 1b montrent les résultats pour les documents d'entraînement, et 2a, 2b, 2c pour les documents de test ; 1a, 2a montrent les récompenses reçues par document (toujours rencontrés dans le même ordre), 1b, 2b montrent les récompenses triées, et 2c la moyenne cumulative lissée des différences entre le système experte et les IA.

  , et le temps passé à traiter le document. Précisément, en notant Sim(E e , E b ) la similarité moyenne entre les événements extraits (quand ils existent) et un bombing réel, et t le temps passé par la chaîne sur le document, nous donnons le feedback F suivant : Si Sim(E e , E b ) = 0 (càd si E e = ∅ ou E e = E b ) alors F est -t, sinon, F est Sim(Ee,E b ) max(t,25) . Nous formalisons ainsi le fait que l'extraction d'événements corrects est primordiale, et doit se faire dans un temps raisonnable. D'autre part, si aucun événement n'a été extrait, la chaîne est pénalisée, et ce d'autant plus que le temps passé est long. Nous encourageons ainsi la chaîne à détecter des événements, ou à détecter rapidement qu'il n'y a aucun événement d'intérêt dans le document.

IntroductionNous nous intéressons au problème générique de l'amélioration continue d'une chaîne de traitement de documents, plus précisément d'extraction d'événements d'intérêt. L'application qui nous intéresse particulièrement est le renseignement à partir de sources ouvertes. Dans cette application, des documents provenant essentiellement du web sont fournis en continu à une chaîne de traitement, qui vise à extraire des événements (par exemple, une attaque terroriste) et leurs caractéristiques (date, lieu, acteurs, etc.) et à les intégrer à une base de données.Dans de telles applications, il est clair que l'extraction ne peut pas être parfaite. On peut ainsi imaginer qu'une dépêche relatant « le bombardement, par des ions, d'une cible d'or par la physique atomique lors d'une manifestation pour la fête de la science », puisse induire une chaîne de traitement en erreur et lui fasse insérer dans la base un attentat à l'arme atomique. Par ailleurs, la volonté de traiter des documents provenant du monde entier entraîne le besoin de traiter des documents dans des langues très diverses, pour lesquelles des dictionnaires peuvent être de qualité très variable. Pour toutes ces raisons, le cadre typique implique des opérateurs humains, qui peuvent corriger a posteriori les événements placés automatiquement en base de données.L'application qui nous intéresse utilise la plateforme WebLab (2015) pour le renseignement d'origine sources ouvertes. La chaîne de traitement, définie par des experts, consiste en un enchaînement figé (mais potentiellement conditionnel) de traitements atomiques, tels que l'extraction de la langue ou du format, la traduction, la détection d'événements en utilisant des mots ou verbes déclencheurs, etc. Aucun mécanisme ne permet d'améliorer la chaîne au fil du temps.