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ABSTRACT

Wavelet-based methods for multiple hypothesis testing are described and their potential for activation mapping
of human functional magnetic resonance imaging (fMRI) data is investigated. In this approach, we emphasize
convergence between methods of wavelet thresholding or shrinkage and the problem of multiple hypothesis testing
in both classical and Bayesian contexts. Specifically, our interest will be focused on ensuring a trade off between
type I probability error control and power dissipation. We describe a technique for controlling the false discovery
rate at an arbitrary level of type 1 error in testing multiple wavelet coefficients generated by a 2D discrete wavelet
transform (DWT) of spatial maps of fMRI time series statistics. We also describe and apply recursive testing
methods that can be used to define a threshold unique to each level and orientation of the 2D-DWT. Bayesian
methods, incorporating a formal model for the anticipated sparseness of wavelet coefficients representing the
signal or true image, are also tractable. These methods are comparatively evaluated by analysis of ”null” images
(acquired with the subject at rest), in which case the number of positive tests should be exactly as predicted
under the hull hypothesis, and an experimental dataset acquired from 5 normal volunteers during an event-related
finger movement task. We show that all three wavelet-based methods of multiple hypothesis testing have good
type 1 error control (the FDR method being most conservative) and generate plausible brain activation maps.

Keywords: Wavelets, Multiple hypothesis testing, Brain, Bayesian, Neuroimaging

1. INTRODUCTION

Nonparametric wavelet-based regression has been a fundamental tool in data analysis over the past two decades
and is still an expanding area of ongoing research. The goal is to recover an unknown image, say g, based
on sampled data that are contaminated with noise. Only very general assumptions about g are made such
as that it belongs to a certain class of functions (e.g. Besov space). Nonparametric regression (or denoising)
techniques provide a very effective and simple way of finding structure in data sets without the imposition of a
parametric regression model. During the 1990s, the nonparametric regression literature was arguably dominated
by nonlinear wavelet shrinkage and wavelet thresholding estimators.1–3 These estimators are a new subset of an
old class of nonparametric regression estimators, namely orthogonal series methods. Moreover, these estimators
are easily implemented through fast algorithms so they are very appealing in practical situations.4

Since the seminal papers by Donoho & Johnstone,1 the image processing literature has been inundated by
hundreds of papers applying or proposing modifications of the original algorithm in image processing problems.
Several data adaptive wavelet thresholding estimators have been developed; see for example5, 6 and references
therein.

Various Bayesian approaches for nonlinear wavelet thresholding and nonlinear wavelet shrinkage estimators
have also recently been proposed. These estimators have been shown to be effective and it is argued that they
are less ad hoc than the classical methods discussed above. In the Bayesian approach a prior distribution is
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imposed on the wavelet coefficients. The prior model is designed to capture the sparseness of wavelet expansions.
Then the image is estimated by applying a suitable Bayesian decision rule to the resulting posterior distribution
of the wavelet coefficients. Such wavelet estimators have been discussed in several recent papers.7–18 Moreover,
it has been shown that Bayesian wavelet estimators outperform classical thresholding estimators, which operate
on wavelet coefficients one at a time, in terms of mean squared error in finite sample situations. A detailed
study involving recent classical and Bayesian methods in the development towards high-performance wavelet
estimators and their finite sample properties is reported in.19

Functional MRI is a relatively new technique for measuring the neural correlates of cognitive processes. Many
difficulties must be addressed when processing fMRI data such as the weakness of the signal enhancement and
the multiple sources of artifacts. In order to extract functional information and detect activated regions using
fMRI, the most widely adopted procedures are generally based on linear (or, less often, non-linear) regression
theory. The desired effect time courses are included in a design matrix which also incorporates some other
”nuisance” variables, e.g., low frequency drift, head movements etc. Then the time course at each pixel (m,n)
can be expressed as a linear combination of some covariates xk via an additive linear model:

ymn = Xβmn + εmn, ε ∼ N (0,Σmn) (1)

where εmn is a zero mean random vector with covariance matrix Σmn. Standard assumptions are that the
errors εmn are independent and normally distributed. There is also an extended literature on modelling εmn

as short-memory processes (AR, ARMA, ARIMA); see20 and references therein. Recently, we have proposed a
new wavelet-based estimator of such linear models in the presence of long-memory (1/f) error processes.20, 21

Owing to its superior efficiency and robustness in this context, the wavelet-generalized least-squares (WLS)
algorithm described in21 is used here for estimation of linear model statistics from the fMRI time series observed
at each voxel of all fMRI datasets. This yields a time series statistic map in which the linear model parameter
of interest (divided by its standard error) is represented at each voxel in the image. Various statistical maps,
including Student T-maps , Fisher-Snedecor F-maps or Gaussian Z-maps, have been reported in the neuroimaging
literature. In the following, we will consider Gaussian statistical maps. This is not restrictive since any other
standardised statistic map can be transformed to a Z-map using appropriate integral transformations.

Given such a spatial brain map of time series statistics, the problem at the heart of this paper is how
best to estimate the true activation map from its noisy realisation. Almost universally in current practice, the
first step taken towards this goal is to reduce the noise in the observed map. This is most often done using
a monoresolutional Gaussian filter whose width must be arbitrarily specified. This will generally entail loss
of resolution of spatially detailed features in the map and will cost sensitivity to detect other spatial features
of the true image which do not conform in size or shape to the Gaussian kernel. Instead we here consider a
multiresolutional, wavelet-based solution to the problem, which is known to provide optimal estimates for a wide
class of image spaces. This is done in an adaptive data-driven way. The second step is to decide which pixels
are activated, for a pre-specified type I probability error α. This amounts to a binary decision problem where
each pixels is compared to the α-level critical threshold. This decision step is currently implemented at the level
of individual voxels or spatial clusters of contiguous suprathreshold voxels surviving a preliminary voxel-level
test. At either voxel or cluster level the false positive error may be controlled over multiple tests in terms of the
family-wise error rate or the false discovery rate; see22 for a review.

In this paper, we propose to tackle this latter problem using a fully wavelet-based hypothesis testing frame-
work. More specifically, we suggest that the ideas of wavelet thresholding or shrinkage can be viewed as an
approach to multiple hypothesis testing. In the neuroimaging community, some authors have already proposed
to use wavelet domain denoising to obtain an estimate of activation maps in fMRI23 and positron emission
tomography (PET).24, 25 See also the review in.26 However, these approaches share the drawback of applying
the simple universal thresholding approach without assigning any probability risk to their maps. Moreover, the
multiple comparisons problem was not explicitly addressed in their approach. To our knowledge, Ruttiman et
al.27–29 was the first to propose a wavelet-based hypothesis testing approach for brain activation mapping using
Bonferroni corrected thresholds unique to each level of the 2D-DWT of spatial statistic maps. In the same spirit,
Feilner30, 31 proposed the fractional spline wavelets to analyse time series statistic maps, using the fractional order
of the spline to control the smoothness of the reconstructed image. However, all these methods are arguably too



ad hoc and restrictive since they are only readily applicable to block designs. Sophisticated (event-related) ex-
perimental paradigms elicit brain activation in response to a number of discrete cognitive trials and any multiple
hypothesis testing method that is likely to be of real usefulness to the contemporary neuroimaging community
needs to be generally adaptable to these and other experimental designs.

We here introduce a coherent statistical framework to this estimation procedure in both the classical and the
Bayesian contexts. Several solutions from the statistical theory of wavelets are proposed to address the serious
problem of the large number of hypotheses being tested in activation mapping of a single fMRI dataset (typically
the search volume or number of voxels tested will be in the order of 20,000).

This paper is organized as follows: in Section 2 we define the nonparametric regression problem and introduce
some notational aspects. In 3, which is the core of the paper, we elaborate the multiple hypothesis testing
framework in the wavelet domain. Several variants of this general approach are described in classical and
Bayesian contexts. Section 4 presents some experimental results on null and experimental fMRI datasets. Finally,
conclusions and directions of future work are briefly summarised.

2. NONPARAMETRIC WAVELET-BASED REGRESSION

Let gmn,m, n = 0, . . . , N − 1 be equally-spaced samples of a real-valued image; without loss of generality N is
considered as a power of 2 (N = 2J). Now consider the standard nonparametric regression model:

ymn = gmn + εmn (2)

where εmn are iid normal random variables with mean zero and variance σ2 independent of gmn. The goal is
to recover the underlying function or true image g from the observed noisy data ymn, without assuming any
particular parametric structure for g. Let y, g and ε denote the matrix representations of the corresponding
entities and let D = Wy, S = Wg and V = Wε, where W is the two dimensional dyadic orthonormal wavelet
transform (DWT) operator.32 In a two dimensional setting, the subbands HHj , HLj and LHj , j = Jc, . . . , J−1
correspond to the detail coefficients in diagonal, horizontal and vertical orientations, and the subband LLJc

is
the approximation or the smooth component. Jc is the coarsest scale of the decomposition that will usually be
specified as Jc = log2 log N + 1 from asymptotic considerations. Let soj

mn be the detail coefficient of the true
image g at location (m,n), scale j and orientation o, and similarly for doj

mn and voj
mn. Due to the orthogonality

of the basis, voj
mn, the wavelet coefficients obtained by the DWT of white noise, will also be independent normal

variables with the same variance. It follows from Eq.2 that :

doj
mn = soj

mn + voj
mn, j = Jc, . . . , J − 1; m,n = 0, . . . , 2j − 1 (3)

The sparseness of the wavelet expansion makes it reasonable to assume that essentially only a few large detail
coefficients in D contain information about the underlying image g, while small values can be attributed to
the noise which uniformly contaminates all wavelet coefficients. It is also advisable to keep the approximation
coefficients intact because they represent low-frequency terms that usually contain important features about the
image g. By thresholding or shrinking the detail coefficients and inverting the DWT, one can obtain an estimate
of the underlying image g. So the resulting three-step wavelet-based estimation procedure can be summarized
by the following diagram:

y
DWT
−→ D

Nonlinear thresholding operator η
−−−−−−−−−−−−−−−−−−−−−→ {Ŝ = η(D)}

IDWT
−→ ĝ

where η is a nonlinear (shrinkage or thresholding) operator. Examples of such an operator are the universal
threshold and hard and soft thresholding rules introduced by Donoho et al.1 Following their work, a variety
of methods have been proposed in the literature to choose the threshold level and the thresholding rule; see for
example.19

3. WAVELET THRESHOLDING AS A HYPOTHESIS TESTING PROBLEM

3.1. Classical approach

We mean by “classical” that no prior distribution is imposed on the true unknown wavelet coefficients, in contrast
to the Bayesian approach where a prior density is specified to capture the sparseness of wavelet coefficients of
the true image g.



3.1.1. Thresholding as a multiple hypotheses testing problem

The main idea here is simply to reformulate wavelet-thresholding as a multiple hypothesis testing problem. For
each observed wavelet coefficient at each scale, orientation and location, we test the following hypothesis:

H0 : soj
mn = 0 versus H1 : soj

mn 6= 0

The observed detail coefficient is distributed according to doj
mn/soj

mn ∼ N (soj
mn, σ2). This detail coefficient is

retained in the reconstruction if H0 is rejected with a risk α, otherwise it is discarded. Classical approaches
to multiple hypothesis testing face serious problems because of the large number of hypotheses being tested
simultaneously. In other words, if the error is controlled at an individual level, the test is too permissive and
the chance of erroneously retaining a coefficient is extremely high; whereas if the family-wise error is controlled,
the test is too conservative and the chance of falsely discarding a coefficient is extremely high. Abramovich and
colleagues33, 34have proposed a way to control such dissipation of power based on type 1 error control in terms
of the false discovery rate (FDR).

Let T be the number of observed wavelet coefficients that are retained by the thresholding procedure. From
these T coefficients, TP (true positives) are correctly retained and FP = T −TP (false positives) are erroneously
retained. The error in such a procedure is expressed in terms of the random variable FPF = FP/T , i.e., the
proportion of the retained wavelet coefficients that should properly have been rejected. Obviously, FPF is
defined as zero when T = 0 since no error of this type can be made when no coefficient is retained. The FDR
of empirical wavelet coefficients can now be defined as the expectation of FPF , i.e., the expected proportion of
false positives among the total number of coefficients surviving the threshold.

Following Abramovich et al,33, 34 we propose maximizing the number of retained wavelet coefficients subject
to the constraint FPF < α, which can be operationalised in terms of the following algorithm to calculate the
global threshold of the map:

1. For each of the nd = N×N−1 observed wavelet coefficients {doj
mn : j = 0, . . . , J−1;m,n = 0, . . . , 2j−1; o =

HH,HL,LH}, calculate the corresponding double-sided p-value, poj
mn under H0:

poj
mn = 2

(

1 − Φ

(

|doj
mn|

σ̂

))

(4)

where Φ(x) is the cumulative normal distribution of a standard normal variable. If one is able to measure
σ̂, then this estimate could be used. If not, σ can be estimated from the coefficients in the horizontal HH
orientation at the finest scale using the popular robust estimator1:

σ̂ =
MAD(dHH1

mn )

0.6745
(5)

where MAD is the median absolute deviation. We can see that all the N2 − 1 wavelet detail coefficients
of the image are being tested in this step. In the context of fMRI, one is usually interested only in voxels
representing brain tissue and not skull, scalp or surrounding air. These non-cerebral elements of the image
are therefore discarded in a preliminary pre-processing step; it follows that the number nd has to be reduced
by taking into account only the number of intra-cranial voxels.

2. Sort the poj
mn in an ascending order, p1 ≤ p2 ≤ . . . ≤ pnd.

3. Find the last index such that iFDR = max
i

(pi < (i/nd)α).

4. For this index, calculate the critical threshold corresponding to this double-sided p-value:

λFDR = σ̂Φ−1
(

1 −
piFDR

2

)

(6)

5. Use λFDR and apply classical hard (kill or keep) or soft (kill or shrink) thresholding rules to the observed
wavelet coefficients up to a coarse level Jc.



6. Apply the inverse DWT to obtain an estimate of the image g.

Clearly this is a global thresholding procedure in which the same threshold value λFDR is applied to coefficients
at all scales and orientations of the decomposition. Indeed, it can be easily shown that the universal threshold
value of Donoho (λU = σ

√

2 log N2) is a special case of the general procedure described here that confers a type

1 probability error 1/(N2
√

π log N2) for large N , which is also equal to its power under the alternative H1.

3.1.2. Thresholding as a recursive hypothesis testing problem

Here we use prior work by Ogden and colleagues35 to develop a recursive procedure for multiple hypothesis
testing which uses level-dependent thresholds λj . Rather than seeking to include as many wavelet coefficients as
possible (subject to constraint in terms of type 1 error), the recursive hypothesis testing procedure35 includes a
wavelet coefficient only when there is strong, affirmative evidence that it is needed in the reconstruction.

Let d̃ji = dji
σ be independent random variables N (s̃j

i , 1), i = {1, . . . , nj} that represent the observed wavelet
coefficients at any level j, where nj = 22j if all detail coefficients at scale j are tested. For fMRI data, and for
the same reason as above, nj is the number of intra-cranial voxels at scale j. Let Inj

represent a non-empty
subset of indices {1, . . . , nj}. Then the multiple hypothesis testing problem could be expressed as:

H0 : s̃j
i = 0, i ∈ Inj

versus H1 : s̃j
i 6= 0, i ∈ Inj

and s̃j
i = 0, i 6∈ Inj

(7)

(For readability, the superscript o (denoting orientation) was not used in this expression). To test the set of
hypotheses given in Eq.7 we use the standard likelihood ratio test (LRT).35 If the cardinality of the set Inj

is
not known, which is the case in practice, the LRT for the above hypotheses would be based on the test statistic
∑nj

i=1 |d̃
j
i |

2 ∼ χ2
nj
|H0. However, this is not the most appropriate test statistic, since only a few of the s̃j

i ’s
are non-zero, resulting in poor power of detection when Inj

contains only a few coefficients. If one knows the

cardinality c of Inj
, then the LRT would be based on the sum of squares of the c largest d̃j

i ’s. However, c is not
known in practice. Therefore, Ogden35 suggested a recursive testing procedure for Inj

containing one element

each time. The LRT statistic would then be the largest |d̃j
i |

2. It has been shown that the corresponding critical
threshold at level α is equal to:

|λj
LRT|

2 =

{

Φ−1

[

(1 − α)1/nj + 1

2

]}2

(8)

Ogden and Parzen35 then proposed the following recursive algorithm for choosing the threshold λj , which we
extend to the 2D case for each level and orientation:

1. At each level and orientation, calculate |λj
LRT|

2 using Eq.8 and compare the largest |d̃j
i |

2 with this critical
value.

2. If the square value of d̃j
i is larger, this indicates that there is still significant signal among wavelet coefficients.

Remove this d̃j
i , set nj = nj − 1 and return to Step 1.

3. If |d̃j
i | < |λj

LRT|, then there is no strong evidence of presence of signal in the remaining coefficients. Set the

threshold λj of the current level and orientation to the largest remaining |d̃j
i |.

4. Apply the soft thresholding scheme using λj so that small coefficients (indistinguishable from pure noise)
are shrunk to zero and the significant coefficients included in the reconstruction are shrunk toward zero
by the maximum absolute value of the small coefficients. This is accomplished in an adaptive data-driven
way at each scale and orientation.

In the hypothesis testing procedures described above, the user has some control on the smoothness of the
reconstructed image by means of the pre-specified type 1 probability level α. A compromise must be reached
between oversmooth and noisy estimates. Popular choices are α = 0.05 or 0.01.



3.2. Bayesian approach

Similar in spirit to the multiple hypothesis testing procedures discussed in Section 3.1.1, a Bayesian method for
obtaining a wavelet thresholding estimator was considered by Vidakovic.12 This method also involves testing
the following hypothesis H0 : dj

mn = 0 versus H1 : dj
mn 6= 0. However, the Bayesian framework here imposes a

prior which describes the variability of the wavelet coefficients sj
mn of the true image g.

This requires a prior distribution that has a point mass component; otherwise the testing is impossible
because any continuous prior density will give the prior (and hence the posterior) probability of zero to the
precise hypothesis. When including a point mass at zero, and with an appropriate choice of the Bayes rule, it
is possible to get a wavelet coefficient estimate which is exactly zero.12 Then we will choose the prior mixture
model according to9, 36:

fs(s) = pj f̃(s) + (1 − pj)δ(s) (9)

where pj is the mixing proportion, δ(s) is a point mass at zero and f̃(s) describes the behaviour of sj
mn under

H1 (when sj
mn is nonzero) which occurs with probability pj . Considering f̃(s) as a Gaussian pdf with zero mean

and variance σ2
j , Abramovich and colleagues37 proposed the ratio test (RT) statistic as the Bayes thresholding

rule:

ηj
mn =

P (H1/dj
mn)

P (H0/dj
mn)

H0

Q
H1

ηα (10)

In contrast to previous authors, we here introduce an α-level critical threshold ηα. Again, this will allow us to
control the smoothness of the reconstructed map. Furthermore, one can easily show that the marginal pdf of
the observed wavelet coefficients is:

fd(d
j
mn) = pjfd/H1

(dj
mn) + (1 − pj)fd/H0

(dj
mn)

= pjφ(dj
mn;σ2

j ) ∗ φ(dj
mn;σ2) + (1 − pj)φ(dj

mn;σ2)
(11)

where φ(x;σ2) is the centered Gaussian pdf with variance σ2. From this expression it is straightforward to derive
the expression of the RT:

ηj
mn =

pj

1 − pj

σ
√

σ2
j + σ2

e
d

j
mn

2

2σ2

(

σ2
j

σ2
j
+σ2

)

(12)

One can clearly see, from Eq.12, that under the null hypothesis, i.e., dj
mn ∼ N (0, σ2), the random variable

(

dj
mn

σ

)2

) is χ2(1) distributed. To test H0 for a pre-specified α value, one can easily derive the corresponding

critical threshold ηα, and then apply the Bayesian RT-based wavelet estimator which is essentially a hard
thresholding rule:

ŝj
mn = dj

mn1(ηj
mn ≥ ηα) (13)

where 1(x) is the indicator function.

To apply the Bayesian RT-based thresholding rule, the parameters pj , σj and σ should be estimated appropri-
ately. Several solutions have been proposed in the literature. For example, one could use the robust estimate Eq.5
for σ and an iterative expectation-minimization (EM) algorithm to get maximum likelihood estimates (MLE) of
pj and σj .

11, 13

In the mixture prior model of Eq.9, other forms for f̃ have been considered in the literature. In their so-called
BAMS method, Vidakovic et al.38 chose a standard exponential prior on the unknown σ2, and obtained a double
exponential pdf for f̃ . Their results can be easily exploited to derive a closed-form expression for ηj

mn. For
robustness reasons, Vidakovic12 also suggested the use of central Student t distributions (more heavily tailed
than the normal) as a prior. However, no closed form expression is available for the corresponding Bayesian
thresholding rule.

In fact, many other prior distributions can be used provided that they are unimodal, centered and peaked
at zero, and symmetric. Complicated prior pdfs can become useless in practice, although theoretically powerful,
since in general, closed-form expressions are not available for them thus necessitating intensive numerical inte-
gration. It is also worth noting that the distribution of the decision RT in Eq.10 quickly becomes a complicated



function of dj
mn as the complexity of the prior increases. Therefore, its distribution is not easily accessible under

H0. Alternatively, one must use (computer-intensive) resampling techniques such as the bootstrap to estimate
its distribution.

4. RESULTS AND DISCUSSION

4.1. Experimental designs and data acquisition

Gradient-echo echoplanar imaging data were acquired as follows:

4.1.1. Null datasets at 1.5T

4 normal volunteers were studied (at 1.5 Tesla (T)) while they lay quietly in the scanner with their eyes closed
(6 min). 72 T ∗

2 -weighted images were acquired at each of 26 contiguous slices of data in an oblique axial plane
using the GE LX EchoSpeed system (General Electric, Milwaukee WI) at CHU in Caen, France: time to echo
(TE) 60 ms, time to repetition (TR) =5 sec, 64 × 64 voxel slices (N = 64, J = 6), inplane resolution 3.5 × 3.5
mm, slice thickness = 5 mm. In each time series, the 4 first volumes were eschewed to ensure magnetization
stabilization.

For all of the null experimental data the same general approach to regression model specification was adopted.
An Nt = 68-length boxcar vector was constructed to indicate which images were acquired during presentation
of an activation condition and which were acquired during presentation of a baseline condition. This vector was
convolved with a Poisson kernel, parameterised by λ = 4s. This Poisson-convolved input function was combined
with a unitary constant column vector to form the (Nt × 2) design matrix X. To assess the influence of the
experimental design complexity, high (0.032 Hz), intermediate (0.016 Hz) and low (0.008 Hz) frequency boxcar
functions were modelled. For all time series, the design matrix was fit using the WLS algorithm21 after motion
correction of each observed fMRI time series; we did not initially detrend the time series in any way.

4.1.2. Event-related experimental datasets at 1.5T

We studied 5 single male subjects during a discrete-trial or event related (ER) experiment. The task was simply
to oppose finger and thumb of the right hand repeatedly. During this experiment, 26 slices of gradient echo
echoplanar imaging data were acquired using a 1.5T GE MRI system with acquisition parameters as above. This
simple experiment is expected to activate areas of the brain that are important in motor tasks.

4.2. Results

4.2.1. Null datasets

We assessed the relative performance of our hypothesis testing procedures in terms of type 1 error control using
the null fMRI datasets. We tested the null hypothesis (in the wavelet domain) over a range of critical values
corresponding to probabilities of type 1 error α in the range [0, 0.5]. For each null dataset and design matrix,
the WLS algorithm was applied and the resulting statistical maps were estimated using the hypothesis testing
methods described above: the FDR controlling global threshold; the recursive hypothesis testing method using
a level and orientation-adaptive threshold; and the Bayesian methods. In all cases, the Daubechies wavelet with
4 vanishing moments was used with a coarsest thresholded level Jc = 2.

For a valid hypothesis testing method with a pre-specified type 1 error probability level α, the number
of intra-cranial positive voxels observed in the wavelet domain when the null hypothesis is true, as presum-
ably it is in these data, should be less than or equal to the expected number of positive voxels = α ×
Number of intra-cranial voxels in the wavelet domain. The results are shown graphically in Fig.1.

As expected for the FDR method, the observed FPF is always much less than the pre-specified risk α. This
is true for all null datasets and simulated design matrices. On the one hand, the FDR method appears to be
somewhat more conservative than the recursive hypothesis testing method at low risk levels although these two
methods become comparable at high α values (> 0.5). On the other hand, the Bayesian approach performs well
in average but fails in controlling the FPF in some datasets especially at low α.

A key issue is to find out which wavelet and coarsest thresholded level are best suited for the detection of
activation patterns in terms of some measure of quality. For the moment, we only used the FPF rate as a measure
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Figure 1. Observed FPF rate versus pre-specified risk α. Each dashed curve corresponds to results of thresholding a
time series statistic maps based on analysis of a single null fMRI dataset with an arbitrary design matrix. The black filled
circles correspond to the average curve. The solid line is the identity line.

of quality. This index only reflects the performance of the methods under the null hypothesis, and one must
ideally also know how the hypothesis testing techniques work under conditions where the alternative hypothesis
is true.

Effect of the wavelet regularity We studied the influence of the wavelet regularity on the false discovery rate
by varying the number of vanishing moments of the Daubechies wavelet; in all cases, the coarsest decomposition
level was J = 2. The results are depicted in Fig.2. The observed FPF for the FDR method tends to decrease as
the Daubechies wavelet becomes more regular. The observed false positive fraction of the recursive hypothesis
testing method shows a slight increase with the wavelet regularity while no significant change is observed on the
FPF given by the Bayesian method. However, from these preliminary results, no firm conclusion can really be
drawn concerning the best choice of wavelet order since only the FPF was taken into account as a quality measure.
In future, we intend to refine this evaluation by taking into account other measures such as the detection power
or the false negative fraction.

Effect of the coarsest level In our notation, the resolution levels are numbered from 0 to J −1, with 0 being
the coarsest level (see 2). From Fig.3, the observed FPF systematically decreases as the decomposition level
increases for all the thresholding methods presented. This is not surprising as the number of wavelet coefficients,
and thus the number of hypotheses being tested, simultaneously increases as the decomposition level decreases.
Again, these plots should be read carefully since only the FPF was used as a quality measure.
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Figure 2. Observed FPF as a function of the number of vanishing moments of the Daubechies wavelet. The coarsest
decomposition level was 2.

4.3. Functional MRI: activation mapping

As shown in Fig.4, the brain areas which show significantly large values are located in the expected motor areas
(primary and supplementary motor areas, and cerebellum). Because of its soft thresholding rule, the recursive
hypothesis testing method gives a smoother activation map. Moreover, the Bayesian methods appear to provide
a somewhat fuller or more sensitive characterization of the cerebral response. On the one hand, this seems to
confirm the relatively conservative behaviour of the FDR method. On the other hand, one should probably
expect a higher power level (sensitivity) for the recursive hypothesis testing and the Bayesian approaches.

5. CONCLUSION

In this paper, we proposed a fully wavelet-based hypothesis testing framework for activation mapping based on
functional magnetic resonance images of the human brain. Algorithms from the statistical theory of wavelets
were adapted to the case of analysing 2D spatial maps of linear model parameters estimated by analysis of the
fMRI time series observed at each voxel. Two classical and one Bayesian method for multiple hypothesis testing
were presented. Our preliminary results are very promising. Nevertheless, our measure of quality, which was
based solely on the false positive fraction rate throughout this paper, has to be refined by taking into account
other measures such as the detection power or the false negative fraction. This is the focus of ongoing work in
our group.
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