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 MODEL ORDER REDUCTION OF MULTI-INPUT NON-LINEAR SYSTEMS

BASED ON POD AND DEI METHODS

T. Henneron1 and S. Clénet2
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L2EP/Université Lille1, Cité Scientifique - 59655 Villeneuve d’Ascq, France 

2
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The Proper Orthogonal Decomposition combined with the Discrete Empirical Interpolation Method is investigated in order to 

reduce a finite element model of a multi-input non-linear device. The non-linear reduced problem is solved using the Newton-Raphson 

method. The transient state of a three phase transformer with a variable load is studied with the proposed reduction method for 

different configurations of the supply voltage.   

Index Terms— Discrete Empirical Interpolation Method, DEIM, Model Order Reduction, Non-linear Problem, Proper Orthogonal 

Decomposition, POD, Static fields. 

I. INTRODUCTION 

ODEL order reduction methods can be very effective in

reducing the computational time of time-dependent 

numerical model. These methods consist in performing a 

projection of the solution of the full problem onto a reduced 

basis. The size of the equation system to solve can be then 

highly reduced. In the literature, the Proper Orthogonal 

Decomposition (POD) combined with the snapshot approach 

has been widely used to solve problems in engineering [1][2]. 

In the case of non-linear problems, the direct application of the 

POD requires additional calls to the full model cancelling out 

partially the advantages offered by the POD method in terms 

of memory requirements and calculation time. The Discrete 

Empirical Interpolation Method (DEIM) is an interesting way 

to avoid the calls to the full model [3][4]. In computational 

electromagnetics, the POD-DEIM technique with single input 

device has been used to study a single phase transformer [5]. 

The fixed point technique has been used to solve the non-

linear problem which is very robust but has a poor speed of 

convergence. Even thought, a significant speed up has been 

obtained, it can be expected to gain time by using more 

efficient non-linear solvers like the Newton-Raphson method. 

Besides that, it is well known that the accuracy of the reduced 

model vs the full model is directly related to the choice of the 

snapshots. In a single input problem, the choice of the 

snapshots is quite straightforward because the flux path (i.e. 

the field distribution) is almost the same whatever the value of 

the input. When the problem has multiple inputs, the flux 

paths can change a lot from a given input configuration to 

another. The snapshots should be chosen in order to be able to 

retrieve the field distribution corresponding to any input 

configurations. The snapshot determination becomes then 

more complex.  

In this paper, we propose to apply the POD-DEIM approach 

to study a non-linear magnetostatic problem with multiple 

inputs solved using the Finite Element Method. The multiple 

inputs are the voltages of stranded inductors imposed by 

external circuit equations. To solve the non-linear reduced 

model, the Newton-Raphson (NR) method will be also 

introduced. The full model is first presented. Secondly, the 

POD-DEIM approach is developed. Finally, a three phase 

transformer is studied with the proposed reduction method. 

The results obtained with the reduced models are compared in 

terms of accuracy and computation time with the full model. 

II. NON-LINEAR MAGNETOSTATIC PROBLEM COUPLED WITH 

ELECTRIC CIRCUITS 

Let us consider a domain D of boundary Γ (Γ=ΓB∪ΓH and 

ΓB∩ΓH=0) (Fig. 1). The problem is solved on D×[0,T] with T 

the width of the time interval. The inductors are supposed to 

be stranded. The eddy current effect is neglected.   
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Figure 1. Non-linear magnetostatic problem coupled with electric circuits 

In magnetostatics, the problem can be described by the 

following equations: 

∑
=

=
stN

1j
jj (t))i(t),( xNxH curl

 div B(x,t)  = 0 

 H(x,t)  = ν(B) (x) B(x,t) 

(1) 

(2) 

(3) 

with B the magnetic flux density, H the magnetic field, Nj 

and ij the unit current density and the current flowing through 

the j
th

 stranded inductor, Nst the number of stranded inductors

and ν(B)(x) the magnetic reluctivity. For the ferromagnetic 

materials with a non-linear behaviour law, ν(B)(x) depends on 

the field B. To impose the uniqueness of the solution, 

boundary conditions must be considered such that:  

B(x,t).n=0 on ΓB  and  H(x,t)×n=0 on  ΓH (4) 

M 



with n the outward unit normal vector. In order to impose 

the voltage at the terminals of the stranded inductors, the 

following relations must be considered:  

stjjj

j
N .., 1,j  with (t)v(t)iR

dt

(t)dΦ
==+

(5) 

with Rj the resistance,  Φj the flux linkage and vj the voltage of 

the j
th

 stranded inductor. To solve the previous problem, the 

vector potential formulation is used. From (2), the potential A 

is defined such that B(x,t)=curlA(x,t) with A(x,t)××××n=0 on ΓB. 

To take into account the non-linear behavior of the 

ferromagnetic materials, the magnetic field H(x,t) is expressed 

by H(x,t)=νfpB(x,t)+Hfp(B(x,t)) with νfp a constant and 

Hfp(B(x,t))=(ν(B)(x) - νfp)B(x,t) a virtual magnetization vector. 

According to (1) and (5), the equations to solve are: 
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The fields A(x,t) and Nj(x) are discretised using edge and facet 

elements [6]. We denote Ai(t) the line integral of A along the 

i
th

 edge and Ne the number of edges. Then, applying the

Galerkin method to (6) and (7), a system of differential 

algebraic equations is obtained under the form: 

(t))((t)
dt

(t)d
(t) fp XMF

X
KMX −=+ (8) 

with X(t) the vector of unknowns of size Nun=Ne+Nst such 

that (Xi(t))1≤i≤Ne =(Ai(t))1≤i ≤Ne and (Xi(t))Ne+1≤i≤Ne+Nst =(ii(t))1≤i 

≤Nst. M and K are Nun×Nun matrices and F(t) and Mfp(X(t)) 

Nun×1 vectors. To solve (8), an implicit Euler scheme is 

applied, the time step is denoted ∆t. At each time step, the NR 

method is applied to solve the non linear problem. We denote 

X
j
(ti) the solution associated with the i

th
 time step and with the

j
th

 iterative of the NR loop. The residual vector R[X
j
(ti)] and

the jacobian matrix J[X
j
(ti)] are defined by:
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with ∆t the time step, Jfp[X
j
(ti)] the jacobian matrix

corresponding to the vector Mfp[X
j
(ti)]. For each iteration of

the NR loop, the following matrix system is solved: 

( )[ ] ( ) ( )[ ] tt t i
j

i
j

i
j XRXXJ =∆ (11) 

Finally, the vector X
j
(ti) is obtained by
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i
j
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with α a relaxation coefficient. 

III. MODEL ORDER REDUCTION WITH DEIM-POD

In order to reduce the computation time required to solve 

the previous problem, the POD technique combined with the 

DEIM approach is applied [3][4]. The POD-DEIM method has 

been introduced in [5] to reduce a non-linear single input 

magnetostatic problem. The reduced problem has been derived 

directly from (8) and solved using the fixed point technic 

which is very robust but suffers from a slow convergence rate. 

In the following, to improve the convergence rate, we propose 

to reduce the non linear equation system (11) obtained by 

applying the NR method on (8). The reduced problem inherits 

then a faster speed of convergence from the full model (11). 

A. Proper Orthogonal Decomposition 

By applying the POD method, the vector X(t) is approximated 

in a reduced basis by a vector Xr(t) of size Ns (Ns<<Nun). To 

determine a discrete projection operator ΨΨΨΨ such that X(t) = 

ΨΨΨΨXr(t), the Snapshot approach is applied. The full model is 

solved for the first Ns time steps (snapshots) using the NR 

procedure. The snapshot matrix Ms is defined by Ms=(X
j
)1≤j≤Ns

with Xj the solution X(t) at the jth time step. Using a singular 

value decomposition form, the matrix Ms is decomposed 

under the form: 

∑
=
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t
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with VNun×Nun and WNs×Ns orthogonal matrices of singular 

vectors and ΣΣΣΣNun×Ns the diagonal matrix of the singular values. 

Then, the operator ΨΨΨΨ is a selection of vectors of the matrix VΣΣΣΣ 

corresponding to the singular value higher than a given 

threshold fixed arbitrarily. According to (11), the reduced 

model to solve is: 
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With the vector R and the matrix J given by (9) and (10) 

respectively. The solution of this reduced problem requires the 

calculations of the vector Mrfp [X
j
(ti)]=ΨΨΨΨ

t
 Mfp[ΨΨΨΨXr

j
(ti)] and the

jacobian matrix Jrfp=ΨΨΨΨ
t
Jfp[ΨΨΨΨXr

j
(ti)]ΨΨΨΨ. These calculations

require to project the reduced solution Xr
j
(ti) back to the full

problem (the term ΨΨΨΨXr
j
(ti)) and to compute the two matrices

which can be time consuming. To avoid this problem, the 

DEIM is applied which enables to approximate Mfp and Jfp 

above by calculating only a small number of their 

components. 

B. Discrete Empirical Interpolation Method 

From the solution of the full problem for the Ns first time 

steps, a NunxNs matrix S of the Mfp(X(ti)) (1≤i≤Ns) is defined. 

The matrix S is decomposed under the form given in (13) 

using a SVD. In the original DEIM, only the Nm most 

significant modes Vi, which corresponds to the higher singular 

values ΣΣΣΣi (see (13), are stored to construct the projector 

operator U. Applying a greedy algorithm, a matrix PNunxNs 

composed of Ns vectors of the identity matrix INunxNun is 

defined from the indices of the most significant entries of U. 



The vector Mrfp and the matrix Jrfp can be then approximated 

by: 

Mrfp [Xj(ti)]≈ΨΨΨΨ
t
 U(P

t
 U)

-1
 P

t
 Mfp[ΨΨΨΨXr

j
(ti)]

Jrfp [Xj(ti)]≈ΨΨΨΨ
t
 U(P

t
 U)

-1
 P

t
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j
(ti)] ΨΨΨΨ

(15) 

According to (15), to determine the vector Mrfp, the matrix 

P
t
Mfp[ΨΨΨΨXr

j
(ti)] is calculated, this is equivalent to determine Ns

entries of the vector Mfp[ΨΨΨΨXr
j
(ti)]. In the same way, the

approximation of Jrfp is determined by calculating only Ns 

vectors of the jacobian matrix Jfp. The DEIM, by reducing 

dramatically the number of matrix entries of the full problem 

to be calculated, enables to speed up the solution of the non-

linear reduced problem. 

IV. APPLICATION

A 3D magnetostatic example, consisting of a three phase 

transformer supplied by sinusoidal voltages, is studied. The 

supply frequency is 50 Hz. Due to the symmetry, only one 

quarter of the transformer is modeled (Fig. 2-a). The non-

linear magnetic behavior of the iron core is considered (Fig. 2-

b). The 3D spatial mesh is made of 12636 nodes and 66382 

tetrahedra. The number of time steps per period is 30. 
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Figure 2. Example of application (a: geometry, b: non-linear curve of the core) 

The aim of the study is to evaluate the accuracy of the 

POD-DEIM model for different values of supply voltage and 

the transformer load. For the first configuration, the typical 

tests at no load and in short circuit have been simulated. For 

the second case, the reduced model is tested on the whole 

operating range of the transformer by modifying the resistive 

load. For the third and last configuration, the POD-DEIM 

approach is evaluated for different voltage phase shifts.  For 

all configurations, we compare the primary currents obtained 

from the reduced model with those obtained using the full 

model. The error εi is given by:  

∑
=

−
=

3

1j
2refj,

2redj,refj,

iε
i

ii
(16) 

with ij,ref and ij,red the vectors of current values associated 

with the j
th

 primary winding at each time step obtained from 

the reference and the reduced model respectively. 

A. First configuration 

For the first configuration, the transformer is considered 

first at no load and second in short circuit. At no load, 65 

periods (T=1.3s) are required to reach the steady state of the 

primary currents. The number of snapshots has been increased 

step by step manually to construct an accurate reduced model. 

The POD-DEIM model requires 55 snapshots in order to 

obtain an acceptable error equal to 4% between the reduced 

and full models.  Figures 3 and 4 present the evolution of the 

currents obtained from the full and reduced models for the 

beginning of the transient and at steady state. In our example, 

the currents in steady state are unbalanced due to the fact that 

the problem is not symmetric for the three phases. Figure 5 

presents the edges selected automatically in the magnetic core 

by the DEIM approach. As expected, these edges are located 

in the saturated area. To determine the matrices of the reduced 

model, the entries of Mfp and Jfp (Section III.B) are only 

calculated for these corresponding edges. It means that if the 

i
th

 edge has been selected with the DEIM, the i
th

 entry of Mfp

and the entries of the i
th
 row of Jfp are calculated which

consists in calculating an integral on a small volume (the 

elements connected to the i
th

 edge).  
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Figure 3. Evolution of the currents obtained from the full and reduced models 

at the beginning of the transient state 
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Figure 4. Evolution of the currents obtained from the full and reduced models 

at the steady state 

Figure 5. DEIM edges in the magnetic core 

In terms of computation time, the reference model requires 

210min and the reduced model 2.7min which corresponds to a 

speed up of more than 77. In short circuit, the time interval is 

T=0.04s. The POD-DEIM approach requires 10 snapshots in 



order to obtain an error close to 3% and the time speed up is 

68. The computation time for the reduced model does not take

into account the computation time required for the snapshots. 

B. Second configuration 

For the second configuration, the idea is to evaluate a 

reduced model on the whole operating range of the load of the 

transformer. In electrical engineering, typical tests are 

proposed in order to determine the parameters of an equivalent 

circuit which enables to model the electrical device on the 

whole operating range. The idea is to apply the same approach 

with POD by combining snapshots obtained by simulating 

these typical tests. In our example, the snapshots obtained 

from the typical tests at no load and in short circuit (Section 

IV-A) are then merged in the same snapshot matrix. Then, the 

POD-DEIM approach is applied. Figures 6 and 7 show the 

evolutions of the primary currents obtained from the full and 

reduced models for three values (5 and 10Ω) of the load 

resistor connected to the secondary windings. For all cases, the 

error is close to 0.6%. The ratio of computation time between 

the full and reduced models is then equal to 16. 
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Figure 6. Evolution of the currents obtained from the full and reduced models 

for a load resistor equal to 5Ω 
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Figure 7. Evolution of the currents obtained from the full and reduced models 

for a load resistor equal to 10Ω 

C. Third configuration 

For the third configuration, the idea is to evaluate a reduced 

model for different phase shift ϕ of the phase 1. The load 

resistor is 10Ω. The full model is solved for the three extreme 

cases of the phase (ϕ=0, 2π/3 and 4π/3). For each simulation, 

55 snapshots are extracted. All snapshots are merged in a 

unique matrix of snapshots. Then, the POD-DEIM approach is 

applied. In order to limit the size of the projector ΨΨΨΨ, the SVD 

(equation (13)) is truncated. Figure 8 and 9 present the 

evolutions of the primary currents obtained from the full and 

reduced models for two values of the phase ϕ (π/6 and 5π/6). 

The error is equal to 5.4% and 2.6% respectively. The ratio of 

computation time between the full and reduced models is close 

to 9. 
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Figure 8. Evolution of the currents obtained from the full and reduced models 

for a phase equal to π/6 
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Figure 9. Evolution of the currents obtained from the full and reduced models 

for a phase equal to 5π/6 

V. CONCLUSION 

The Proper Orthogonal Decomposition combined with the 

Discrete Empirical Interpolation Method has been developed 

with a FEM vector potential formulation in order to solve a 3D 

non-linear magnetostatic problem coupled with electric 

circuits. The Newton-Raphson approach has been introduced 

to increase the convergence speed of the non linear loop. From 

the application example, the POD-DEIM model enables to 

reduce dramatically the computation time while obtaining 

good precision. It has been shown that it was possible to 

construct an efficient reduced model from snapshots extracted 

to different simulations such that a reduced model valuable on 

the whole operating range from the typical tests at no load and 

in short circuit. 
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