ON THE LINKS-GOULD INVARIANT AND THE SQUARE OF THE
ALEXANDER POLYNOMIAL

BEN-MICHAEL KOHLI

ABSTRACT. This paper gives a connection between well chosen reductions of the Links-
Gould invariants of oriented links and powers of the Alexander-Conway polynomial. We
prove these formulas by showing the representations of the braid groups we derive the
specialized Links-Gould polynomials from can be seen as exterior powers of copies of
Burau representations.
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INTRODUCTION

The Links-Gould invariants of oriented links LG""™(L; to,t1) are two variable polynomial
quantum invariants. In [1], David De Wit, Atsushi Ishii and Jon Links proved the following
equalities :

LGY™(Ls to, e2™/migly = AL (1)
where Ap(t) is the Alexander-Conway invariant of L. So the Links-Gould invariants con-
tain some topological information. We reinforce that statement by proving the following
identity, that the authors we just cited had already conjectured and proved for particular
links :
LG™ (L;tg, t5 ") = Ap(to)"

when n = 2,3. There is no known set of complete skein relations for the square of the
Alexander polynomial, so the ideas used in [1] cannot be transposed to our case easily. On
the other hand, Ivan Marin and Emmanuel Wagner give a complete set of skein relations
for LG?>! in [11]. So evaluating them and testing whether the square of the Alexander
polynomial satisfies these evaluated skein relations or not is a possible strategy. However,
the cubic skein relation is barely practicable, and such an approach can not be generalized
to n greater than 2.

Our strategy will be to use the robustness of the braid structure to encode links. We
express the Alexander-Conway polynomial as a quantum trace as it is done in [12], appendix
C. Then we prove the R-matrix representation of braid group B, used to define reduced
Links-Gould invariant LG?! (resp. LG*!) is isomorphic to the exterior power of a direct
sum of Burau representations. That way, the specialized Links-Gould invariants can be
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written as products of terms, each of which can be identified with the Alexander polynomial
of our link seen as a quantum trace.

Our result along with the one we cited at the beginnig of this introduction can also be
thought of as a counterpart to the well known result stating that the Jones polynomial and
it’s square can both be recovered as evaluations of the two variable Kauffman polynomial.
See 9], Proposition 16.6, p. 180.

Let us also mention the work of Nathan Geer and Bertrand Patureau-Mirand who ex-
tended the Links-Gould invariant to a multivariable link invariant in the same fashion the
multivariable Alexander polynomial arises from it’s traditional counterpart [5]. We suspect
that our results remain true in some sense in that multivariable context.

In section 1, we recall the definition of the Links-Gould invariant of oriented links, and
an expression of the Alexander-Conway polynomial in terms of a partial trace. In section
2 we show that the specialized Links-Gould invariant LG*' can be written as a product by
proving two representations of the braid group are isomorphic. We then identify in section
3 each part of the product with the Alexander-Conway invariant. Section 4 is dedicated
to extending the proof to the next Links-Gould invariant LG>!.

1. DEFINITIONS AND MAIN RESULT

1.1. The Alexander-Conway polynomial.

Definition 1.1. (Reduced and non-reduced Burau representations of a braid)

Set K := (C(ti%). Let W, =< f1,..., fn > be a n-dimensional K-vector space, and B,, be
the braid group on n strands. We denote by o1, ...,0,_1 the standard Artin generators of
the group. The non-reduced Burau representation Wy, : B, — GL(W),,) is given by :

(L =t)fi +t' 2 fin ifj =i,
Vw, (0:)(f;) =4 t'/2f; ifj=i+1,
fj otherwise.
Denote by 6, 1=t~ (=D/2f 4 4=(=2)/2 ¢, 4 4 4=1/2f, 4 f.. One can verify that for any
b € By, Y, (b)(6n) = n. Hence the reduced Burau representation Wy : B, — GL(W:)
is given by :

Ui (0)(T) = Y, (0)(x)

n

where ﬁ/\n =W,/ < 0y >.

Recall that the Alexander theorem states that any link can be obtained as the closure of
a given braid. Moreover, the Markov theorem allows us to define link invariants through
braids with closure the link. A possible definition of the classical Alexander link invariant
uses that procedure.

Definition 1.2. (Alezander polynomial of a link through the Burau representation)
The Alexander polynomial of an oriented link L is defined as :
« 1—t
where b is any braid in B, with closure L, and the notation = means equality up to
multiplication by a unit of C[t*!].

However, it is not this definition of the Alexander polynomial that will be useful to us in
the following. Next theorem gives another expression, that will be the one we will consider.
In particular, this definition removes the ambiguity that relied in the multiplication by a
unit.
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Definition 1.3. Let V be a 2-dimensional K-vector space, and (eg, e1) be a basis of V.
We define a representation Wy en : B, — GL(V®") of B, :

\I’V@m (O'Z) = Z'd%?vi_l R R ® ’id%n_i_l

where
1 0 0 0
0 0 72 o0
p— E
0 0 0 —t

is an R-matrix, that is a solution of the Yang-Baxter equation.

Theorem 1.4. Let L be an oriented link and b € By, be any braid with closure L. We

define
20

Then :
1) 3 ¢ € K such that traces s n((idy @ h®" 1) o Uyan (b)) = c.idy,
2) ¢ is a link invariant and is equal to the Alexander polynomial of L, Ar(t).

For a detailed proof, see [12], appendix C.

Remark 1.5. R-matrix R; can be recovered from the universal R-matrix of ribbon Hopf
algebra U¢(sla) at root of unity ¢ = —1 thanks to a one parameter family of irreducible
representations of U¢(slz) on V. For precise explanations, see [12|, p.95-97, or [14]. It
may also be derived from the quantized universal enveloping algebra of gi(1|1), that is
U,(gl(1]1)). See [14] or [13] for details.

Remark 1.6. Identifying algebras End(V®") and End(V)®", the partial trace operator
verifies traces s n(f1 ® ... ® fn) := trace(fa)trace(f3) ... trace(fn)fi € End(V) for any
fiyeooy fn € End(V).

Corollary 1.7. With the same notations, this formula follows from theorem 1.4 :
1
Ar(t) = 3 trace((idy @ hE" 1) o Wy on(b)).

Proof. Applying the trace operator on each side of the formula that defines constant ¢, we
obtain :

2¢ = trace(tracea s, ((idy @ R 1) o Uy an(b))).
But :

trace(traces s n(fi®...® fn)) = trace(trace(f2)trace(fs)...trace(fyn)f1)

= trace(fo)trace(fs) ...trace(fn)trace(fi) = trace(fi @ ... fn)

Since the trace and the partial trace are linear maps, we can extend the equality to any
f € End(V®") ~ End(V)®", which provides the result. CQFD

1.2. The Links-Gould invariant LG?! of links.

1 1
Definition 1.8. Set LL := (C(t(j]EQ,th). Let W =< eq,...,e4 > be a four-dimensional IL-

vector space. The following linear map R, expressed in basis (e; ® e1,€1 ® €2,€1 R €3,€1 ®
eq,e3 ®e1,e9 e, 9 e3,...), is an automorphism of W ® W and an R-matrix [2], p.186
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—tl/? ‘
1/2
. —th :
—tl/? 1ty .
1—toty . B T 7 o /i »
: ‘ —t!
— i 11—t . . .
: ty/24 . . S -y :
1 .
S . . . S . e
o e . -y .. —y? : .
—t1/? . 1—t,
2
1/ 1=t .
—t

where Y = ((to — 1)(1 — t1))/2.
We denote by b the representation of braid group B,, derived from this R-matrix. It is
given by the standard formula :

V(o) =idiyy '@ Reidy 1 Ji=1,...,n— 1
Theorem 1.9. Let L be an oriented link, and b € By, a braid with closure L. Define i the
following linear map :
-1
to
=t . .
m = til € E’I’Ld(W)
. . - 0 .
1

Then :

1) 3 c € L such that tracess  n((idw @ p®"=1) o b (b)) = c.idw,

2) ¢ is an oriented link invariant called Links-Gould invariant of L. We will denote it by
LG?Y(L;to,t1), or simply LG(L;to,t1) when it is not ambiguous to do so.

Remark 1.10. With the notations used in [2], LG(L; ¢~ 2%, ¢***2) is the Links-Gould invari-
ant introduced in that paper, using a one parameter family of representations of quantum
superalgebra Ug(gl(2[1)).

Remark 1.11. As in corollary 1.7, we explicit a formula for LG, that will be useful to us :
1
LG(L;to, t1) = 1 trace((idy @ p®"1) o bR (b)).

1.3. The conjecture. The Links-Gould polynomial we just defined is a particular case
of a larger family of Links-Gould invariants, introduced by David De Wit in [3]. We will
write LG™", where m, n are positive integers. Each invariant is associated with a highest
weight Ug(gl(m|n)) representation. The invariant we explicited corresponds to case (2,1).
In [1], D. De Wit, A. Ishii and J. Links conjectured that, in their set of variables, well
chosen reductions of LG™" recover powers of the Alexander-Conway polynomial :

LG™™(Ly,e™™) = Ap(r")™.

In the same paper, they prove the conjecture in cases (1,n), as well as in case (2,1) for a
certain class of braids, using representation theory of U,(gl(n|1)). Using a new strategy,
we prove the conjecture completely in cases (2,1) and (3,1). We believe that the method
can be generalized to cases (n, 1) after extended and extensive computation.
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In the next two sections, we prove case (2,1). We express the conjecture in the set of
variables we used to introduce LG*'. We want to prove :

LG*Y(L;7,—1) = Ap(r?)%

Variables (7,q) and (to,t;) are related by : t}/Q =771, té/z = 7 (and therefore té/zt}/Q =
q). Since in our case ¢ = —1, we obtain :

o212 = 1 2 =gy =7
Thus, once it is formulated in a convenient way, our main result states :
Theorem 1.12. For any oriented link L, LG*'(L;tg,t5") = Ap(to)?.

Remark 1.13. Since LG?! is symmetric in to and t; [2, 3], LG?!(tg,t5 ") is symmetric
in g and ¢, 1 So if we chose Ay, to be the Conway symmetric version of the Alexander
polynomial, we are sure the equality is only up to a sign 4+1. In particular, when L is a
knot, Ishii shows in [7] that LG*!(¢,1) = LG>'(1,t) = 1. So LG*'(1,1) =1 > 0. Since
Ap(1)? > 0, we see that in this case the equality holds.

2. THE REDUCED LINKS-GOULD INVARIANT EXPRESSED AS A PRODUCT

We derive a representation of the braid group B, from the Burau representation. We
identify it with a specialization of the R-matrix representation given in subsection 1.2.
Then we use this identification to express the specialized Links-Gould invariant as a prod-
uct.

2.1. A representation of B, isomorphic to b}(to, %, 1). Denote by F' the following

Burau representation of B, on vector space W,, =< f1,..., fn > where we replace tg by
tal :
_ —-1/2 e .
(1= tg ) fi+tg PP firn ifj=1i,
Foi)(f5) = ;"% f; ifj=i+1,
fi otherwise.

In a similar way, let G be the representation of B,, on n-dimensional vector space W, =<
g1,---,9n > given by :

1/2 e
—to/ Git1 itj=1,
G(oi)(gj) = —ti%g;+ (1 —to)giss fj=i+1,
gj otherwise.

Proposition 2.1. Representation G is isomorphic to the Burau representation of B,.
Proof. One can verify that for i =1,2,...,n—1: J,o Wy, (0;) = G(0;) o J,, where J,, can

be defined inductively : Jy = (_01 (1)> and

(—1)2t(n_2)/2
Jp = In1 (_1)n;lt1/2
(—1)"t0/2
(_1)n+1t7(n72) 2 (_1)n+1t71 2 (_1)n+1t70 2 0

Moreover, evaluating the determinant of .J,,, we deduce that J,, is an automorphism. In-

deed, detJ,11 = (—1)"+1(t1/2 +t_1/2)detJn +detJ,_1. So detJ, € Z[til/Q] is invertible in

Q(t*'/?) since it has degree n — 2 in both variables t'/2 and t~1/2. CQFD
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Definition 2.2. If F'® G is the representation of the n-strand braid group on W,, & W,,
built from F' and G, we consider the exterior representation ¥,, := A(F @ G) on exterior

algebra A(W,, & W,,).

Remark 2.3. Note that b (to, tal) and W,, both are 4" = 22" —dimensional representations.

We are going to show these two representations are isomorphic. For that we study first
the case where n = 2. Since t; =t ! we have a simpler R-matrix R :

—to .
1/2
_tO
—ty? 1ty .
. . 1
R= ‘1 2
—t3/ :
-1 -Y .
t81/2
where Y = t(l)/2 — tal/2.

—t3/? .
. -1
-1 -y .
) tal/2
1—to :
: -y
1 .
. : tg 1/
-y B :
. 1—ty" .
—1/2 —1
tg "/ 1-t; »

R-matrix R can be rewritten in basis B = (|e; ® e1], |es ® e4, |e2 R ea|, |es @ es], |e1 ®e2, e ®
e1],le1 @es, e3 @ e, ez @ eq,ea @esl, lea ®es,es @ eal,|e1 @ es, 62D €3, €3 VW €2, e4 ®eq ) as

follows :
—to .
—tyt .
1.

1. .

0 —t)?
—t? 1t .
0 —t)?
71—ty

Family (f1, f2, g1, g2) is a basis for Wy @ Wha.

0 tal/Z
ot .
0 tal/?
A T
0 0 0 -1
0 0 -1 -Y
0 -1 0 -Y
-1 -y -y -y?

Since By =< g1 >, we are looking for a linear

automorphism I : W®2 — A (W, @ Ws) such that Wy(oq) o I = I o bk(o1).
~—

R
In basis (f1, f2, 91,92),
_ —1/2
R
12 0 _ )
(FoG)(o)=] ° 1/2
0 -t
A



Therefore, computation of Wy(oq) shows that in basis C = (|g1 A g2l [f1 A fal,|1], ]| f1 A
foNgiAgalilgr, g2ls | fa N gL A ga, i Agi A gals [fi A fa A g, fL A fa Agals | fas fils [ fa A gr, fa A
92, f1 A g1, f1 A\ g2|) we obtain the same matrix :

—ty .
—tyt .
1

0 —t?
-t 1—t . .
0 —t)?
% 11—t .
0 tal/2
o 1t .
0 tal/?
o -5t S
: 0 0 0 -1
0 0 -1 -Y
0 -1 0 -V
-1 -y -y -y?

Setting I : W®2 — A(Wy @ Wa) the linear map that transforms B into C, we obtain an
automorphism that preserves the C[Bs]-module structure :

Uy(o1)ol =10R.

The idea is to generalize that construction for n larger than 2. We choose the following
reference basis for A(W,, ® W,,) :

(fir Ao e A fiy NGy Ao A G )1<in <.<ip<n , 1<) <. <jm <"

When we refer to Reord(u;, A. . .Au;, ), where the u;, are distinct elements of {f1, ..
we mean that we rewrite the element so that it becomes part of the reference basis we just
mentioned.

w — /\(Wl D Wl) W®2 — /\(W2 D WQ)
er — g ei®@er — Ii(e;) A\ go

Weset I1 = es — 1 and I, = e ey +—— Il(el-) .
ez +—— f1 N g1 e ey +—— Reord([l(ei) A f2 A\ 92)
es — N1 e;®eqy — Reord(Ii(e;) A fa)

An elementary calculation shows that I = I. We can extend these maps by induction
setting :

.,fn,gl,...

wen — AW, & W,)
e, ®...Q0€e, _Qep —> ILii(e;®@...Q0¢€, ,)A\gn
I, = e, ®...0¢, e +— In—l(eil ®...®ein71)
e, ®...Q¢e, _,®e3 —> Reord(In_1(e;; @...0¢€; )N fngn)
€, ®...0€;, ,®es — Reord(In_i(e;, ®...0¢€;, )N fn)

It is easy to see that map I,, sends the natural basis of W®" derived from (eq, e, e3,e4)
on our reference basis of A(W,, & W,,). In particular, I, is a linear automorphism. Note
that map I,, can also be written directly :

Ifeiy ®...@ei,)=( N\ f)n( N\ o)

k: =34 k=13
Proposition 2.4. Map I, is a C[By,]-module automorphism. That is, for any b € By, :

U, (b) o I,, = I, o b (D).
7
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Proof. We prove the commutation by induction on n. For details, see section 5 where we
do the necessary computations. CQFD

2.2. A convenient expression for LG?!. Now we have built an exterior representation
that is isomorphic to b (o, ¢ 1), we use it to write the reduction of the Links-Gould poly-
nomial as the product of two quantities we will then identify.

Using proposition 2.4, we can write :

1
LG(L;tg, ty ') = 1 trace(I, o (idy @ p®" 1) o I, 1 oW, (b)).

m
We wish to explicit fi.

Lemma 2.5. Map i can be expressed on the reference basis of N(W,, & W,,) :
AlFi Ao A iy Ngiy A A ) = tg D () (1) #EE R anpears)
(—1)#kERmdlon appears} g A A A gi AL A G

Proof. If fi A A fi, Ngji A . .Agj,, is an element of the basis of A (W, ®W,,), we denote by
e, ®@...®ey, it’s image under I, 1. That way, I,,(e;, ®...®ey,) = fi, A .Afi, AgGj, A . . AGj,, -

P(fis Ao A fig Ngj A A gj) = Iy o (idw @ p&" (e, @ ... @er,)
_ ta("*l)(_1)#{ke{2,...,n}\lk:2}(_1)#{ke{2,...,n}|lk:3}

In(ell R...xQ eln)
_ ta(”*l)(_1)#{k€{2,...,n}\lk:2}

(—1) R e=3E £ A A A g A A G

But :
(=1 )#RE L2 Hl=2} () #{he 20 m1=3)

= (_1)n—1(_1)#{k6{2,---7n}|lk:1}(_1)#{k6{27---7n}|lk:4}
(_1)1%1(_1)#{k€{2,---7n}|lk=1}(_1)#{k€{27~~7n}|lk=4} ((_1)#{k€{2,---7n}|lk=3})2
(_1)n—1(_1)#{k6{2,...,n}|lk:3 or lk:4}(_1)#{ke{2,...,n}\lk:1 or lp=3}
(_1)n—1(_1)#{k€{2,---7n}|fk appearS}(_1)#{166{27---,”}\91@ appears }

This provides the result.
CQFD

Given the expression for ji we just obtained, and the special form of representation ¥,
we have :

Proposition 2.6. Invariant LG(L; to,tal) can be written as a product, with each term
depending only on one of the copies of the Burau representation.

Proof. Recall LG(L;to, ty') = 1 trace((idw ® p®"1) o b%(b)), where :

—1
ts »
_to )
to?



Using that we can write :
LG(Lito, ty') = = trace(ji o ¥, (b))

o a A NG (o) (i A A gi))

1<ig <...<ip<n
1<j1<...<jm<n

NG NG

where (f;; A...Agj,,)" indicates a vector of the dual basis of the reference basis. But given
lemma 2.5,

(fir Ao A gi)* (o Wn(B)(fiy Ao A gj,)) = (—tg)~ "1 (= 1) #ARE (2 mlJk appears)
(_1)#{]96{2,...,n}|g,rC appears }

(fir Ao NG )" (W () (fiy Ao AN g )

Also, (fiy Ao o N fi, Ngin Ao o NG ) (Wn (D) (fiy Avo o A fiy ANy Ao N gin))

(
N F®)(fiy A ALip AN G(0)(g51 A AGjry)
= (fi Ao o - AN fi,)INEO)(fiy Ao A i) (G Ao AN g3 ) (NG O) (g0 Ao A gj)-

That way we have the following expression for LG(L;to,ty 1):

(—tg)~ (=1 Z <(_1)#{k€{2,...,n}fk appearsh( £ A A fi)"( /\F iy Ao A fip))>

1<i1<...<ip<n

% Z <(_1)#{k€{2,...,n}|gk appeenﬂs}(gj1 ALA gjm)*(/\ Gb)(gjy A ... A gjm))>

1<j1<...<jm<n

A~

CQFD

Now we wish to show that each of these two sums is equal to A (tp) up to multiplication
by a unit of C[ta—Ll], that is up to multiplication by +t{, n € Z.

3. PROOF OF THE MAIN THEOREM

A careful analysis of [12], appendix C, shows that we have a coefficient in front of the
partial trace in the expression of the Alexander-Conway polynomial :

n 1 . _
A(m—%<”/2mmmw®wmnm%m@y
So we can write more simply :

Ap(tg) =

N |

trace((idy @ h®"™1) o Uyen (b)), where h = <(1) _01> .

Proposition 3.1. Let J, : VO — AW,, ¢, ®...®¢e;, — N\ fx. Then J, is a
k: Zkil

C[By)-module automorphism :

N\ ¥w,.(b) 0 Jn = Jy 0 Wyen(b), Vb € By

The proof is quite similar to the one we did in the previous section. It is detailed in
[12], appendix C, where what we just called J,, is denoted by I,, and is introduced by
induction.
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Applying J,,, we can express the Alexander polynomial differently :
° 1
Ar(ty) = 3 trace( Jy, o (idy @ h®" 1) o gt /\\1an

p1

Where :
,u,l(fil/\.../\fip):Jno(idv®h®n71)(€0®...®€0® el ®eg R ... Reyx ® el ®)
it" position ith position
= (—1)#HFERntli=th g A A fi
_ (_1)#{]96{2,...,n}|f,rC appears}fi1 ALA fip-

Therefore,

Ap(to) 2 % Z <(_1)#{ke{2,...,n}|fk appears}(fl.l/\‘ . ‘/\fz /\ Ty (b)(fi, A . Afz,,)))

1<iy<..<ip<n

But F' and Wy, are identical once you change to into t; ! That way we can identify
the first factor of our product with Ay (¢, 1). But the Alexander polynomial is symmetric
: Ar(to) = Ar(tg!) [4]. So the only remaining problem is to identify the second sum
with the Alexander invariant to be able to conclude. To do that we have to modify the
representation of V™ we used up to now to define A (ty), and especially R-matrix Ry we
introduced at the beginning.

Lemma 3.2. We can slightly modify R-matriz Ry so that the new representations pyen of
the braid groups we obtain that way still verify :

o 1 . = Sn—
Ar(ty) = 3 trace((idy @ h®" 1) o pyaen(b)).

Proof. For the moment, we can write : Ay (tg) = 3 trace((idy ® hE" 1) 0 Wi 0 (b)), where
1 0 0 0

0 0 7 o0
Wy en is the representation associated to R-matrix Ry = 1/2
0 t/" 1—t O
0 0 0 —t
;10 0 0
! 0 0~ o
We can replace Ry by Ry = —t; Ry = “1/2 1 in the definition
0 —t 1—-t, 0
0 0 0 1
of Uyen, and we will still have Ap(tg) = 1 trace((idy ® hE"1) 0 Wien (D). At last,
—to 0 0 0
1, . 0 0 -t 0
we replace tg by ;" in Ry to obtain Rz = 1/2 We define the
0 —ty° 1—to O
0 0 0 1

representation of B,, associated with Rg3 :
Py en (O'Z) = Z'd?;iil ® R3 ® idgniiil.
Since the Alexander polynomial is symmetric, we have the following expression for Ay (tg),

that will help us to conclude :

Ap(te) = = trace((idy @ h®" 1) o pyen(b)).

10
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CQFD

Using the same strategy as previously, we wish to find K, : V®" — AW, such that
for any b € B, : NG(b) o K,, = K, 0 pyan(b).

Vv — /\ W1
Proposition 3.3. Weset K1 =¢ e; — 1 and, forn > 2,
€ — Q1
yen — AW,
K, = e, ®...Qe, Qe +— Ky 1(e;, ®...®¢€i, ) N\gn
e ®... e, ®er — Ky (e, ®...0¢€, )

Then, for any b € By, : N G(b) o K,, = K, 0 pyen(b).

Proof. We leave it to the reader to verify that a proof by induction resembling the one we
did with I,, concludes. CQFD

That way,

AL(ty) = = trace((idy @ h®" 1) o pyan(b))

N = N =

trace(K, o (idy @ h®" 1o K- 1o /\ G(b)).

v

We can set Kp(e;; ®...®¢€;,) = gj, N...Agj,. That allows us to explicit the values of
v on the natural basis of A\ W,.

V(gjy Ao A Gj) = Knoidy @ ¥ e, ®...®e;,)
_ (_1)#{k€{2,...,n}|ik:1}Kn(eil ®...0e)
= (—1) (=R in=0t g A A gy
= (—1) 1 (—1)HkE2 ) appears}gjl A Ngj.
So :

Ap(tg) = = trace(v o /\G(b))

N = N =

Z ((_1)#{k€{2,...,n}|gk auploeams}(gj1 ALA gjm)*(/\ Gb)(gj, A ... A gjm))> .

1<51<...<jm<n
And finally LG(L; to,ty ") = AfL(to)? for any link L.

4. GENERALIZING THE PROOF

4.1. Writing the conjecture in case (n, 1) and other considerations. The completely
general conjecture states, using variables (7,q) :

LG™™(L;, em/n) = Ap(r*™)™ | for any link L.

We can rewrite it using variables (¢, ¢1). Indeed, since ¢ = e™/ the variables are related
by t}/ 2 = 7=leim/n and té/ S Therefore, the conjecture can be expressed the following
way :
LG™"(L;to, e%/"tal) = AL(ty)™ , for any link L.
We can now explore in which cases it seems reasonable to attempt to generalize the strategy
we used to evaluate the reduction of LG*!. An obvious obstruction to that concerns
the dimension of both representations we built and showed they were isomorphic. Let’s
11



calculate the dimensions of the natural generalizations of these representations in case
(m,n).

The vector space corresponding to what we denoted W is the highest weight U, (gl(m|n))-
module used to define LG™". It is 2" -dimensional. So the representation of braid group
B, defined thanks to the corresponding R-matrix is 2"""P-dimensional. On the other hand,
the representation of B, we want to define to produce Ay (tf)™ is :

AW, @...eW,)

m times

where each W), is a C[Bp]-module isomorphic to a version of Wy, where ¢y is replaced
by tf)t". Such a representation is 2"P-dimensional. These two representations can not be
isomorphic if n > 1.

That is why a straightforward use of our method can only be applied to prove cases
(m, 1).

4.2. Proof of case (3,1). We give the essential steps to prove the result that interests us
in the case (m,n) = (3,1). We follow the same ideas we used to study LG?1.

Theorem 4.1. For any oriented link L, LG>'(L;to, t;') = Ap(to)?.

For an explicit definition of LG, see [3], p.17. The author uses variables (7,q), but
denotes 7 = ¢~. We will only use the reduced version of LG>!. It is obtained by setting

g=—-1and g % = t(l]/2.
Remark 4.2. Since we are going to set ¢ = —1 in the R-matrix of [3], we have to chose

precisely what the roots that are written formally are. We have chosen : [a + 1]1/ 2 =
g ?[a]'/? and [a 4 2]1/2 = —[a]'/2.

Definition 4.3. (R-matriz S)

Set F := (C(tglﬂ). Let W =< eq,...,eg > be a 8dimensional F-vector space. We define
S an automorphism of W ® W as the direct sum of the following automorphisms (.S is

/2

globally multiplied by ¢, 2 in comparison with the R-matrix explicited in [3]) :

1

in basis (e; ® e1,e2 ® eg,e3 R e3,e4 Q ey, €5 X €5, €6 R €g, 7 R e7,e3 D eg) ;

0 t;'?
g 15!

in bases (e; ® ea,ea ®e1), (61 ®es,e3®e1) and (€] @ eq,e4 R eq) ;

—-1/2
t52< ?/2 ‘o / )
- -1
Ly 1 -1,

12
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several copies of

in bases (ey ® eg, ez ® e7), (e @ es, es ® eg) and (e @ eg, ez D e5) ;
0 1/2

o (to )

in bases (e2®e5, e5Qe2), (e3@es, es@e3), (e2®eq, egRer), (e4®ep, eg@ey), (e3@er, er@es)
and (e4 ® e7,e7 @ eyq) ;

to
1—t?

several copies of

1
12 ,—1/2
. t(f/Q_touz
' 121 e ap aap B
e R R (e e e

1
to?

in bases (€1 ®e5,e2 ez, e3Re9,e5R€1), (€1 Reg, 2R ey, e4Reg,e6R@e1) and (eq @ e7,e3®
es,e4 @ e€3,67 @ eq) ;

several copies of

. 1
2 . 1 12 g 12
0 1 /2 tal/Q

. . 0
1 té/Q B t0_1/2 t(1)/2 B ta1/2 (té/z B ta1/2)2

in bases (e4 ®eg, e R e7,e7 R eg, es R ey), (e3Reg, e5 R er, er ez, eg @ eg) and (ex @ eg, €5 @
€6, €6 @ €5, 65 @ €2) ;

. 1
. 1
_ . 1 . .
ty 3/2 1/2 -1/2 1/2 -1/2
. 1 . ty! " —t, ty' " —t,
. 1 A . /2 — g2
1 t(1)/2 _ tgl/Q t(1)/2 _ t51/2

1/2 —-1/2 1/2 —-1/2 1/2 —-1/2 1/2 —1/2\2 1/2 —1/2\2 1/2 —1/2\2
1 tO/ - tO / tO/ - tO / tO/ - tO / (tO/ - tO / ) (tO/ - tO / ) (tO/ - tO / )
in basis (e; ® eg, e4 ® e5,e3 ® €5, €2 ® e7,e7 ® €2, e5 Q €3,e5 Q ey, €3 ® €1).

Then S is an R-matrix. So we can denote by b the representation of braid group B,
derived from S. It is given by the usual expression :

V(o) =idiy ' @ S @idir !

1,...,n—1.

Definition 4.4. Reduced Links-Gould invariant LG
Let L be any oriented link, and b € B,, be a braid with closure L. The reduced version of
Links-Gould invariant LG is given by the following formula :

1
LG3YN(Lito, tg ') = 3 trace((idw @ p®" ) o b2(b))
13
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where

1 .
-1 .
.. =1 .
. R
= t8/2 1 € End(W).
1 .
1 .
-1
We set three n-dimensional vector spaces < f1,..., fn >, < g1,...,9n, >and < hy, ..., hy >

that will be all refered to as W,,. On each of them, we define a representation isomorphic
to the Burau representation :

—1 2 e
fl+1 lfj =1 bl
Flo)(fj) =4 1/zfz F A=ty Hj=i+1,
fi otherwise.

We designate by G and H representations on < gi,...,¢g, > and < hy,...,h, > defined
by the exact same formula. Then we set ®,, the representation of B,, on /\( W W, &W,)
given by :

¢, := N\(FoGeoH).

When n = 2, one can compute ®2(01) and notice that its matrix is equal to S in a well
chosen basis. A precise look at this basis gave us the idea to define the following map by
induction. Note that retrospectively one can recover this basis simply by computing the
image by our map of the basis we used to express S when n = 2.

(V. — AW

eq1 — 1

ez — f1

€3 > g1

Theorem 4.5. We set I1 = es — hy and, forn > 2,

es — fiAgq

es — fiANh

er — g1 Ahy

eg > fiNgi AN

( yen — AW,
e1®e, | ®...0e;, > In1(e, ; ®...Q¢;)
ea®e, | ®...Q0e, > Reord(In_i(e, , ®...®e€;y) N fn)
e3s®e;, |, ®...Q0e, > Reord(l,_i1(e, , ®...®e€i)Agn)
I,=¢ es®e;,  ®...Q0e,; +— In_1(e, .. ®e“)/\hn

es®e, | ®...Q0e, > Reord(l,—i(e;, .®ei ) N fn A gn)
eg®e,  ®...0¢e, > Reord(I,_i(e;, , .®€i) A fn Ahy)
er®e,  ®...0¢, > Reord(I,_i(e;, , .®€i) A gn A hy)
es®e;, | ®...Qe, +—> Reord(I,—1(e;, L@ e )N fa Agn A hy)

Then the following identity holds forn > 1 and b € B,
®,,(b) o I, = I, o b (b).

Remark 4.6. As in the previous sections, Reord refers to a reference basis of A\(W,, & W,, ®
W,,) that is :

(fis Ao e N iy Ngjg Ao e NG Ny Ao AN B ) 1<y < <ip<n, 1<1 <. <jim<n, 1<ki <...<kq<n
14



Remark 4.7. For b = afll .. UZ’ € B,,, we define b= aff,l-l .. Ui’iip. b is braid b "looked at

from the other side". That way we have elementary properties : closure(b) = closure(b) ;
Or =0pn_g ; forany o, 7 € B, : 0T =67.

We can use I, to express LG>! differently.

1
LG*! (L to, t5 ') = g trace((idw ® ) o b (b))

1 .
=3 trace(I, o (idy @ p®" 1) o I 1 0®,,(b)).

i

Denoting as we already did several times I(e;, ® ... ®e;;) = fi; A... A hy,, we can
compute [ :

A(fis Ao Nhiy) = I (idw @ p&" (e, © ... @ esy)
_ 753(1171)/2(_1)#{ke{1,...,nf1}|ike{2,3,4,8}}1n(ein ®...®e)

_ t3(n*1)/2(_1)#{k€{1,...,n71}| an odd number of the following appear : {fx,g%,hr}}
- "0

fil VAN hkq
_ 758(1171)/2(_1)#{k6{1,...,n—1}|fk appears}(_1)#{k6{1,...,n—1}|gk appears }

(—1)# ket n—1Hhy appears} ¢ A Ay
q

So
1 .
LG (Lito, ty!) = 5 trace(jio @y (b))
1 ) )
~ 8 Z (fis Ao Nhg) (o @p(b)(fiy Aev o Ahay))
1<i1<...<ip<n
1<j1<...<jm<n
1<ki<..<k,<n
But

(fir A e A by ) (70 @ (D) (fiy Ao Ahay))
_ tg(nfl)/2(_1)#{k:e{l,...,nfl}\f;C appears}(_1)#{k€{1,...,n71}|gk appears }

(_1)#{ke{1,...,n—1}\hk appears}(fil AL A hkq)*(q)n(i))(fil A A hkq))
=t ) (fiy A A B NFO(fi A A F)
(950 o A i) (NGOG Ao A i) (s Ao AP N H Gt A A )
So finally
— 3(n—1)/2 1 n— appears
LG?”I(L; to, tO 1) _ tO( )/ <§ Z (_1)#{k€{1,..., 1}| fr app }

1<i1<...<ip<n

(filA...Afip)*(/\F(l;)(fil/\.../\fip))> * ...

The only thing that remains to be shown is that each of the three terms in the product
is equal to Ay(t) = Ay(t). The proof is similar to the one we did for LG*'. The main
15



point is to find R-matrices associated to their representations on V" such that
1
Ap(t) = 3 trace((idy ® h®n_1) o Wy an(b))

and that up to conjugation the trace is one of the three sums. We will not detail this
argument.

4.3. A remark around case (n,1). To prove the identity
LG™Y(Lito, tg") = Ap(to)"

when n = 2, 3, we have used the crucial fact that we know an explicit formula for the R-
matrix and the left handle (the maps we called 1) in these two cases. Solving the conjecture
for any n using the same ideas therefore requires the R-matrix to be computed in all cases.
In [3], the calculations are explicit up to n = 4. However, we believe it is possible, with
a proper amount of sweat and will, to give a formula for any n. Indeed, U,(gl(n|1)) is
a quantum super-algebra and one can find expressions for universal R-matrices in that
context in [8] or [15]. More recently, M.D. Gould, P.S. Isaac and J.L. Werry wrote the
representation that derives the R-matrix from it’s universal counterpart in a practical basis
[6]. This allows to project the universal R-matrix to find the corresponding map.

5. APPENDIX : PROOF OF PROPOSITION 2.4
Here we prove the result we stated in proposition 2.4. That is : for any b € By,
U, (b) o I,, = I, o bip (D).

Proof. We show the commutation by induction on n, the number of strands in the braid
group we consider. Note that it has already been verified when n = 1, 2. Let us now
suppose the equality holds for n — 1, n > 3. We only need to prove the result for b = oy,
k=1,....,n—1.

= In(es ® R(elk ® 6ik+1) ® ® ei,)
= LU (o) (e, © ... ®ei,,) Vi)
In_l(bgfl(ak)(eil ®X...R einfl)) N gn ifi, =1
) L e @ @e) i i, = 2
Reord([n,l(b%_l(ak)(eil ®...Q¢€i, NNANfnAgn) ifi,=3
Reord(L,_1 (b} Hog) (e, ® ... @€ ,)) A fn) if i, = 4
( \Iln_l(ak)(fn_l(eil ®...xR einfl)) N gn ifi, =1
- \Iln 1(Uk)(In 1( ®...xR ein,l)) if in =2 . . .
= Reord(I,_ 1(b" ( )(e“ D @er ) AfaAgn) ifin=3 (inductive hypothesis)
Reord(1,—1(b},~ 1( k)€, @...0e, 1)) A fn) ifi, =4
On the other hand :
Vo (og)(In(en ® ... @e€,))
U, (ok)(I— 1(6“ ®...Q¢€i, ) N\gn) ifi, =1
_ Vo (ok)(In-1(ei; @ ... ®e4,_,)) if i, = 2
) V(o) (Reord(I,— 1(6,1 ®...Q€e, )ANfaAgn) ifi,=3
U, (o) (Reord(l—1(e;; @ ... Q@€ )N fn)) if i,, = 4
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(621 - ® ein_l)) A \I]n(o-k)(gn) ifi, =1

\I’n(ak)( n—1
_ ) Vnlow)Un-1(en ® ... @¢€,_,)) = Uno1(on)In-1(eiy ® ... @€y, ) i iy =2
) V(o) (Reord(I,— 1(6,1 ®...Q€i, )N aAgn)) if i,, =3
U, (o) (Reord(l—1(e;y @ ... Qe )N fn)) if i,, =4

For i, = 1, since ¥,,(0k)(gn) = gn, we obtain the result. We also observe the equality
holds when 4, = 2. We now study the two remaining cases.

Let p(e;;, ® ... ® e;,) be the total of the number of e; and the number of es in that
elementary tensor. Given the expression of I,, and our reference basis of A(W,, & W,,), it
is obvious that :

Reord(I,—1(e;, @ ... ®@e€;, )N fn) = (—1)“(62'1®"'®e%—l)In_l(ei1 ®...0¢€, )N fn
and

Reord(I_1(e;, ®...®¢i A falgn) = (—1)PEaE )L (e @... @€ )A falgn.

Therefore :

U, (o )(Reord( (e“ ®...®¢€i_ 1) A fnAgn))
( 1)” (i ®- ®el” 1 \I’n(Uk)( n— 1(611 ®---®62n_1)/\fn/\g”)
(— 1) (i) ®...®ei,_, \I’n 1(0p)In-1(e;; ® ... ® ein_l)) A fn N gn

Moreover, given the specific form of matrix R, every term that appears in b’é_l(ak)(eil ®
.. ®e€;,_,) has the same total number of e; and ez as ¢;; ® ... ®e;, _,. Hence :

Reord([n_l(b%_l(ak)(eil ®...Q€, )N gn)
= (—1)Men®-Sen I o b op) (e @ ... @ ein 1) A fa A gn
_ (_1)“(61’1®---®€in71)\:[]n_1(o—k) oln_1(e;, ®...@ € ) A fngn

Thus we obtain the identity in case i, = 3. Similar calculations show it is also true
when i,, = 4. The only remaining question is for the last generator of B,,.

For 0,1 : We show that U,,(0,—1) 0 I(es; ®...®¢€;,) = Inobi(on_1)(€i, ®...®e;,) for
each of the 16 possible ordered pairs (i,—1,1%y) :

(1,1):

\Iln(o'n—l)(jn(eil ®...0e1 & 61))

=V (0n—1)In—2(€i, ®...Q €, ) A gn-1/ gn)

= Ina(en, @ ... @ ei, ) A (—tg 2gn) A (—tg 2 gn1 + (1= to)gn)
= —toIn,Q(eil R...&® ein_Q) A Gn-1 N\ gn

I,o(l®1®...QR)(e;;, ®...Qe1 Req)
=IL(e;,®...Q¢€, ,® —toer ® e1)
= —tOIn—2(ei1 K...Q® ein_g) ANGn-1N\Ggn

Now that we have explicited one case, we give the results for the remaining ones.

(44)|: Up(op—1)Ip(e;; ®...0e1Req)) =10 (1R1®...0 R)(e;; ®...Res® ey)

=ty a(ei, @ ... @€, ) A fae1 A fn
17



(2,2) :\I/n(O'n_l)(I (eil®---®62®62)):Ino(1®1®---®R)(ei1®---

=In2(e; ®...Q® Cip_ 2)

(33)]: Un(on 1)In(er, @... @ e3®e3) =[,0(101®...® R)(ei, @ ...

:In—Q(eh@ -® e, 2)/\fn 1A faNgn—1 N\ gn

M: U (on-1)In(es, ®...@e1®e)) =I,0(1®1®...@ R)(e;, ...

= —to In72(€@'1 ®...® ein_g) A dn

(2,1)|: Up(op-1)Ip(e;; ®...®ea®e1))=I,0(1®1®...0 R)(e;, ® ...

1/2
=Ip 206, ®...®e;,_,) A ( t62 g1 + (1 — t0)gn)

(1,3): Up(op—1)In(e ®...0e1®e3)) =1,0(101®...0 R)(e;; ®
= (_1)#(6¢1®~~~®6in_2®e1) 1/2 n 2(6“ R...Q ein_z) A fnfl /\gnfl /\gn

(3, 1) |: Up(op—1)Ip(e;; ®...0es®e1)) =10 (1l®1®...0 R)(e; ®

® eg ® e3)

® ez ® e3)

® e ®e)

®er @ eq)

..®€1®63)

. ®e3®er)

®..0e; /2
= (_1)M(e”® e "72)171—2(61'1 ®---®einf2)/\((1_tO)fn—l/\gn—l/\gn_tO JnNGgn—1/gn)

(34)|: Up(op—1)In(e ®...Qe3®ey)) =1,0(1R1®...0 R)(e;; ®
1/2 I, 2( ®---®ein_2)/\fn71/\fn/\gn

=t,

(4,3)|: Up(op—1)In(ey ®...0es®e3))=1,0(101®...0 R)(e;; ®

.®63®e4)

.®€4®€3)

=T o(en, @ ... @ e, ) Aty 2 fai A fa Agnot + 10 = t5 ) fac1 A fa A gn)

(2,4) | Up(opn_1)In(e, ®...Qea®eyq)) =10 (1R1®...0 R)(e;; ®
_ tO—I/Q(_l)M(eil®---®€in,2)]'n_2(eil R...® ein72) A fn—l

(472) : \I/n(o'n—l)(jn(eil X...0e1 X 62)) = In o (1 RIR...® R)(e”
= (—1)#(&‘1®...®ein—2)In,2(6il ®...®e, o) N((1—-1ty )fn L+ t71/2fn)

(LA)|: Up(op-1)Ip(e;; ®...0e1Re4)) =10 (1R1®...0 R)(e; ®
—(-1 )u(e,1® ®ein o) (e, @ ... ® €, ) A a1 A gn

—~
DO

3)
(—
) Up(on_1)In(e, ®@...Qe3®e)) =L,0(1R1®...0 R)(e;, ®
(—-1) (e“®"'®ei”‘2)fnf2(€i1 R ... @€ ) N=Y faci ANgn — fu A gn)

(4,1)|: Up(op—1)Ip(e;; ®...0e4®e1))=I,0(1®1®...0 R)(e; ®

U (on1)(In(ei, @ ... @ es®e3)) = Lo (191®...® R)(ei, @

—_

—
vw
[\

—_

i ®-@ein D) [ (e @ ... @ ei, o) AM=fu1 Agn1—Y fa1 A gn)

. ®ex®ey)

R es®er)

. ®e Rey)

.®€2®€3)

.®€3®€2)

L.Res®er)

= (—1) (ei1®"'®ein*2)fn_2(eil R...Q® ein%) A\ (_an—l NGn—1— fn NGpn—1— Y2fn_1 N Gn —

Y fr A gn)

Which ends the proof.
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