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Introduction

In 1972 Zakharov and Shabat solved the nonlinear Schrodinger equation (NLS) [START_REF] Gaillard | Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation[END_REF][START_REF] Gaillard | Deformations of third order Peregrine breather solutions of the NLS equation with four parameters[END_REF] using the inverse scattering method [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF][START_REF] Zakharov | Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media[END_REF]. The case of periodic and almost periodic algebro-geometric solutions to the focusing NLS equation were first constructed in 1976 by Its and Kotlyarov [START_REF] Its | Explicit expressions for the solutions of nonlinear Schrödinger equation Dockl[END_REF]. The first quasi-rational solutions of NLS equation were constructed in 1983 by Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF], nowadays called worldwide Peregrine breathers. In 1986 Akhmediev, Eleonski and Kulagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF][START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF]. Other families of higher order 3 and 4 were constructed in a series of articles by Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF], using Darboux transformations. In 2011, solutions of the NLS equation have been presented as a quotient of two wronskians of order 2N in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF]. In 2012, Guo, Ling and Liu have constructed an other representation of the solutions of the NLS equation, as a quotient of two determinants [?] using generalized Darboux transform. A new approach has been presented in [?] where solutions of the NLS equation have been expressed by means of a determinant, obtained from Hirota bilinear method. Then it was found in [START_REF] Gaillard | Degenerate determinant representation of solutions of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] for the order N (for determinants of order 2N), solutions depending on 2N -2 real parameters. With this method, we construct new solutions of the focusing one dimensional nonlinear Schrödinger equation which appear as deformations of the (analogue) Peregrine breather of order 10 with 18 real parameters : when all the parameters are equal to 0, we recover the famous P 10 breather. These solutions are completely expressed as a quotient of two polynomials of degree 110 in x and t by an exponential depending on t. We dont have the space to present them here; we only present plots in the (x; t) plane to analyse the evolution of the solutions in function of the different parameters.

Solutions of NLS equation in terms of determinant

2.1 Quasi-rational limit solutions of the NLS equation

We consider the one dimensional focusing NLS equation

iv t + v xx + 2|v| 2 v = 0. (1) 
We recall briefly the results obtained in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Degenerate determinant representation of solutions of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. We consider 2N parameters λ ν , ν = 1, . . . , 2N satisfying the relations

0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N. (2) 
We define the terms κ ν , δ ν , γ ν by the following equations,

κ ν = 2 1 -λ 2 ν , δ ν = κ ν λ ν , γ ν = 1-λν 1+λν , (3) 
and

κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , 1 ≤ j ≤ N. (4) 
The terms x r,ν (r = 3, 1) are defined by

x r,ν = (r -1) ln γν -i γν +i , 1 ≤ ν ≤ 2N. ( 5 
)
The parameters e ν are defined by

e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, (6) 
where a j and b j , for 1 ≤ j ≤ N are arbitrary real numbers. The terms ǫ ν are defined by :

ǫ ν = 0, 1 ≤ ν ≤ N ǫ ν = 1, N + 1 ≤ ν ≤ 2N.
We use the following notations :

Θ r,ν = κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν , 1 ≤ ν ≤ 2N .
We consider the functions

φ r,ν (y) = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν (y) = cos Θ r,ν , N + 1 ≤ ν ≤ 2N. W r (y) = W (φ r,1 , . . . , φ r,2N ) is the wronskian W r (y) = det[(∂ µ-1 y φ r,ν ) ν, µ∈[1,...,2N ] ].
Then we get the following statement [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF] Theorem 2.1 The function v defined by

v(x, t) = W 3 (0) W 1 (0) exp(2it -iϕ). ( 7 
)
is solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0.
To obtain quasi-rational solutions of the NLS equation, we take the limit when the parameters

λ j → 1 for 1 ≤ j ≤ N and λ j → -1 for N + 1 ≤ j ≤ 2N .
For that, we consider the parameter λ j written in the form

λ j = 1 -2j 2 ǫ 2 , 1 ≤ j ≤ N. (8) 
When ǫ goes to 0, we obtain quasi-rational solutions of the NLS equation given by :

Theorem 2.2 The function v defined by v(x, t) = exp(2it -iϕ) lim ǫ→0 W 3 (0) W 1 (0) , (9) 
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0.

Expression of solutions of NLS equation in terms of a quotient of two determinants

We construct the solutions of the NLS equation expressed as a quotient of two determinants which does not involve a passage to the limit. We use the following notations :

A ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, B ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in (3), ( 4) and ( 5).

The parameters e ν are defined by [START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF].

Here, the parameters a j and b j , for 1 ≤ N are chosen in the form

a j = N -1 k=1 ãk ǫ 2k+1 j 2k+1 , b j = N -1 k=1 bk ǫ 2k+1 j 2k+1 , 1 ≤ j ≤ N. ( 10 
)
We consider the following functions :

f 4j+1,k = γ 4j-1 k sin A k , f 4j+2,k = γ 4j k cos A k , f 4j+3,k = -γ 4j+1 k sin A k , f 4j+4,k = -γ 4j+2 k cos A k , (11) 
for 1 ≤ k ≤ N , and

f 4j+1,N +k = γ 2N -4j-2 k cos A N +k , f 4j+2,N +k = -γ 2N -4j-3 k sin A N +k , f 4j+3,N +k = -γ 2N -4j-4 k cos A N +k , f 4j+4,k = γ 2N -4j-5 k sin A N +k , (12) 
for 1 ≤ k ≤ N . We define the functions g j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, we replace only the term A k by B k .

g 4j+1,k = γ 4j-1 k sin B k , g 4j+2,k = γ 4j k cos B k , g 4j+3,k = -γ 4j+1 k sin B k , g 4j+4,k = -γ 4j+2 k cos B k , (13) 
for 1 ≤ k ≤ N , and

g 4j+1,N +k = γ 2N -4j-2 k cos B N +k , g 4j+2,N +k = -γ 2N -4j-3 k sin B N +k , g 4j+3,N +k = -γ 2N -4j-4 k cos B N +k , g 4j+4,N +k = γ 2N -4j-5 k sin B N +k , 4 (14) 
for 1 ≤ k ≤ N . Then we get the following result :

Theorem 2.3 The function v defined by v(x, t) = det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) e (2it-iϕ)
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0,
where n j1 = f j,1 (x, t, 0),

n jk = ∂ 2k-2 fj,1 ∂ǫ 2k-2 (x, t, 0), n jN +1 = f j,N +1 (x, t, 0), n jN +k = ∂ 2k-2 fj,N+1 ∂ǫ 2k-2 (x, t, 0), d j1 = g j,1 (x, t, 0), d jk = ∂ 2k-2 gj,1 ∂ǫ 2k-2 (x, t, 0), d jN +1 = g j,N +1 (x, t, 0), d jN +k = ∂ 2k-2 gj,N+1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions f and g are defined in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF],( 12), ( 13), [START_REF] Gaillard | Wronskian representation of solutions of NLS equation and seventh order rogue waves[END_REF].

The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it -iϕ) × Q(x, t)
where Q(x, t) is defined by :

f 1,1 [0] . . . f 1,1 [N -1] f 1,N +1 [0] . . . f 1,N +1 [N -1] f 2,1 [0] . . . f 2,1 [N -1] f 2,N +1 [0] . . . f 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . f 2N,1 [0] . . . f 2N,1 [N -1] f 2N,N +1 [0] . . . f 2N,N +1 [N -1] g 1,1 [0] . . . g 1,1 [N -1] g 1,N +1 [0] . . . g 1,N +1 [N -1] g 2,1 [0] . . . g 2,1 [N -1] g 2,N +1 [0] . . . g 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . g 2N,1 [0] . . . g 2N,1 [N -1] g 2N,N +1 [0] . . . g 2N,N +1 [N -1]
3 Quasi-rational solutions of order 10 with eighteen parameters

Wa have constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] and in other papers on the archive hal, solutions for the cases from N = 1 until N = 9 with 2N -2 parameters.

We do not give the analytic expression of the solution of NLS equation of order 10 with eighteen parameters because of the length of the expression. The computations were done using the computer algebra systems Maple and TRIP [START_REF] Gastineau | TRIP : A computer algebraic system dedicated to celestial mechanics and perturbation series[END_REF].

The number of terms of the polynomials of the numerator d3 and denominator d1 of the solutions are shown in the table above (3) when other a i and b i are set to 0.

N=10 number of terms W 3(a 1 , b 1 , x, t) 397478 W 1(a 1 , b 1 , x, t) 202314 W 3(a 2 , b 2 , x, t) 153368 W 1(a 2 , b 2 , x, t) 78087 W 3(a 3 , b 3 , x, t) 82200 W 1(a 3 , b 3 , x, t) 41832 W 3(a 4 , b 4 , x, t) 53991 W 1(a 4 , b 4 , x, t) 27488 W 3(a 5 , b 5 , x, t) 38526 W 1(a 5 , b 5 , x, t) 19616 
Table 1: Number of terms for the polynomials d3 and d1 of the solutions of the NLS equation.

We construct figures to show deformations of the tenth Peregrine breather. We get different types of symmetries in the plots in the (x, t) plane. We give some examples of this fact in the following

Peregrine breather of order 10

If we choose ãi = bi = 0 for 1 ≤ i ≤ 8, we obtain the classical Peregrine breather 

Variation of parameters

With other choices of parameters, we obtain all types of configurations : triangles and multiple concentric rings configurations with a maximum of 45 peaks. 

Conclusion

We have constructed explicitly solutions of the NLS equation of order 10 with 18 real parameters. The explicit representation in terms of polynomials of degree 110 in x and t is too large to be published in this text. The method described here provides a powerful tool to get explicitly solutions of the NLS equation. As my knowledge, it is the first time that the Peregrine breather of order ten with its deformations with eighteen parameters is presented. It confirms the conjecture about the shape of the breather in the (x, t) coordinates, the maximum of amplitude equal to 2N + 1 and the degree of polynomials in x and t here equal to N (N + 1). By different choices of these parameters, we obtained new patterns in the (x; t) plane; we recognized ring shape as already observed in the case of deformations depending on two parameters [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solutions of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. We get news triangular shapes and multiple concentric rings.

It is important to underline the symmetrical role played by the parameters a j and b j ; the configurations obtained for one of these two parameters a j = 0 or b j = 0 for the index j are the same ones. We can mention important applications for example in the fields of nonlinear optics and hydrodynamics; we can cite in particular the works of Chabchoub et al [START_REF] Chabchoub | Super rogue waves : observation of a higher-order breather in water waves[END_REF] or Kibler et al. [START_REF] Kibler | The Peregrine soliton in nonlinear fibre optics[END_REF]. This study gives a classification of the solutions of order 10 of the NLS equation as it was begun recently, but differently for lower orders in [START_REF] Kedziora | Classifying the hierarchy of the nonlinear Schrödinger equation rogue waves solutions[END_REF] and try to bring a better understanding of the phenomenon of the rogue waves. It would be important in the future, to try to classify the solutions of NLS equation in the general case of the order N .

Figure 1 :

 1 Figure 1: Solution of NLS, N=10, all parameters equal to 0, Peregrine breather P 10 .

Figure 2 :

 2 Figure 2: Solution of NLS, N=10, ã1 = 10 3 : triangle with 55 peaks; on the right, sight of top.

Figure 3 :

 3 Figure 3: Solution of NLS, N=10, b1 = 10 3 : triangle with 55 peaks; on the right, sight of top.

Figure 4 :

 4 Figure 4: Solution of NLS, N=10, ã2 = 10 5 : 8 rings without a peak in the center; on the right, sight of top.

Figure 5 :

 5 Figure 5: Solution of NLS, N=10, b2 = 10 5 : 8 rings without a peak in the center; on the right, sight of top.

Figure 6 :

 6 Figure 6: Solution of NLS, N=10, ã3 = 10 7 : 4 rings with in the center P 3 ; on the right, sight of top.

Figure 7 :

 7 Figure 7: Solution of NLS, N=10, b3 = 10 7 : 4 rings with in the center P 3 ; on the right, sight of top.

Figure 8 :

 8 Figure 8: Solution of NLS, N=10, ã4 = 10 8 : 5 rings with a central peak; on the right, sight of top.

Figure 9 :

 9 Figure 9: Solution of NLS, N=10, b4 = 10 8 : 5 rings with a central peak; on the right, sight of top.

Figure 10 :

 10 Figure 10: Solution of NLS, N=10, ã5 = 10 10 : 5 rings without a central one peak; on the right, sight of top.

Figure 11 :

 11 Figure 11: Solution of NLS, N=10, b5 = 10 10 : 5 rings without a central one peak; on the right, sight of top.

Figure 12 :

 12 Figure 12: Solution of NLS, N=10, ã6 = 10 10 : 4 rings with in the center the Peregrine breather of order 2; on the right, sight of top.

Figure 13 :

 13 Figure 13: Solution of NLS, N=10, b6 = 10 10 : 4 rings with in the center the Peregrine breather of order 2; on the right, sight of top.

Figure 14 :

 14 Figure 14: Solution of NLS, N=10, ã7 = 10 16 : 3 rings with in the center the Peregrine breather of order 4; on the right, sight of top.

Figure 15 :

 15 Figure 15: Solution of NLS, N=9, b7 = 10 16 : 3 rings with in the center the Peregrine breather of order 4; on the right, sight of top.

Figure 16 :

 16 Figure 16: Solution of NLS, N=10, ã8 = 10 19 : 2 ring with in the center the Peregrine breather of order 6; on the right, sight of top.

Figure 17 :

 17 Figure 17: Solution of NLS, N=10, b8 = 10 19 : 2 ring with in the center the Peregrine breather of order 6; on the right, sight of top.

Figure 18 :

 18 Figure 18: Solution of NLS, N=10, ã9 = 10 19 : one ring with in the center the Peregrine breather of order 8; on the right, sight of top.

Figure 19 :

 19 Figure 19: Solution of NLS, N=10, b9 = 10 19 : one ring with in the center the Peregrine breather of order 8; on the right, sight of top.