
HAL Id: hal-01165221
https://hal.science/hal-01165221

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ControVol: Let yesterday’s data catch up with today’s
application code

Thomas Cerqueus, Eduardo Cunha de Almeida, Stefanie Scherzinger

To cite this version:
Thomas Cerqueus, Eduardo Cunha de Almeida, Stefanie Scherzinger. ControVol: Let yesterday’s
data catch up with today’s application code. 24th International Conference on World Wide Web,
May 2015, Florence, Italy. �hal-01165221�

https://hal.science/hal-01165221
https://hal.archives-ouvertes.fr


ControVol: Let yesterday’s data catch up
with today’s application code

Thomas Cerqueus
Université de Lyon, CNRS

Lyon, France
thomas.cerqueus@insa-

lyon.fr

Eduardo Cunha de
Almeida

Federal University of Paraná
Curitiba, Brazil

eduardo@inf.ufpr.br

Stefanie Scherzinger
OTH Regensburg

Regensburg, Germany
stefanie.scherzinger@oth-

regensburg.de

ABSTRACT
In building software-as-a-service applications, a flexible de-
velopment environment is key to shipping early and often.
Therefore, schema-flexible data stores are becoming more
and more popular. They can store data with heterogeneous
structure, allowing for new releases to be pushed frequently,
without having to migrate legacy data first. However, the
current application code must continue to work with any
legacy data that has already been persisted in production.
To let legacy data structurally “catch up” with the latest ap-
plication code, developers commonly employ object mapper
libraries with life-cycle annotations. Yet when used with-
out caution, they can cause runtime errors and even data
loss. We present ControVol, an IDE plugin that detects
evolutionary changes to the application code that are in-
compatible with legacy data. ControVol warns developers
already at development time, and even suggests automatic
fixes for lazily migrating legacy data when it is loaded into
the application. Thus, ControVol ensures that the structure
of legacy data can catch up with the structure expected by
the latest software release. A demo video on ControVol is
available at http://tinyurl.com/mh7a743.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Integrated envi-
ronments; D.2.4 [Software Engineering]: Software/Program
Verification—Reliability, Validation

General Terms
Design, Reliability, Verification

Keywords
NoSQL web development, software- and schema evolution

1. INTRODUCTION

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
Include the http://DOI string/url which is specific for your submission.

In agile development of software-as-a-service applications,
software developers commonly strive to ship early and of-
ten: A first release is made as early as possible, to catch the
time-to-market window. The software is then evolved incre-
mentally, to improve performance and to account for user
feedback. This approach requires flexible development and
production environments. For instance, platform- and data-
base-as-a-service products such as Google App Engine [1]
and Google Cloud Datastore are very popular software stacks,
especially in the startup community:

1. When applications are hosted by a platform-as-a-service
provider, the developers can focus on application de-
velopment, without having to worry too much about
the scalability of their infrastructure.

2. Platform-as-a-service providers commonly support so-
phisticated release management tasks out-of-the-box.
For instance, they can host different versions of an ap-
plication running against the same data store, to allow
for A/B-testing of new features1.

3. If the data is persisted in a NoSQL data store, es-
pecially when provided as-a-service, developers do not
need to worry about storage limits. Moreover, schema-
flexible NoSQL data stores can persist structurally het-
erogeneous data. This makes it possible to re-release
the application without prior data migration, since the
data stored in production up to that point need not be
migrated immediately.

Yet eventually, the legacy data needs to structurally“catch
up” with the latest application code, to allow for long-term
maintainability and efficiency in software development.

We illustrate this in Figure 1(a). Above the time line, we
see Java class declarations for players in an online role play-
ing game. Players are identified by their login. In the initial
release, each player has a name and is playing at a certain
level. The object mapper annotation @Entity makes player
objects persistable. Object mapper libraries such as Objec-
tify [2] simplify application development by taking care of
persisting and loading objects. The annotation @Id marks
the identifying attribute. Below the time line to the left, we
see a JSON entity persisted according to the initial release.
NoSQL data stores are commonly accessed programmati-
cally, by a simple API with a put() command for storing,
and a get() command for loading objects by their key.

In the subsequent release, attribute level is renamed to
rank . While all incoming user requests are now being served

1E.g., traffic splitting in Google App Engine https:
//cloud.google.com/appengine/docs/adminconsole/
trafficsplitting.

http://tinyurl.com/mh7a743
https://cloud.google.com/appengine/docs/adminconsole/trafficsplitting
https://cloud.google.com/appengine/docs/adminconsole/trafficsplitting
https://cloud.google.com/appengine/docs/adminconsole/trafficsplitting


(a) Legacy-data agnostic application code can lead to data loss. (b) Legacy-data aware application code.

Figure 1: (a) Coding without regard to legacy data, the latest object mapper class declaration for players can
no longer map the legacy entities without data loss. The object mapper life-cycle annotations in (b) allow
legacy data to lazily “catch up” with the new application code when it is loaded into the application.

by the new application code, the NoSQL data store still con-
tains objects persisted by the earlier version. We consider
data like Frodo’s JSON entity with the outdated structure a
legacy entity. If Frodo’s player is now loaded into the appli-
cation, not all class member attributes can be mapped. The
unmapped rank attribute is set to null. Worse yet, when
the object is persisted (overwriting the legacy entity with
the put() command), the value of level is irretrievably lost.

Figure 1(b) shows a revised class declaration that allows
for the legacy data to “catch up” with what the latest ap-
plication code expects to load from storage: Several NoSQL
object mappers provide migration-specific life-cycle annota-
tions or have announced them on their feature roadmap [3].
For instance, due to the Objectify annotation @AlsoLoad,
Frodo’s legacy entity can be loaded by the latest application
code without data loss: Frodo’s level value is also loaded
and then assigned to the rank attribute. The next time that
Frodo’s player object is persisted, its level is stored as rank .

Today, the robustness of lazy data migration with the help
of object mappers completely relies on the developers’ disci-
pline and foresight to properly specify the annotations: De-
velopers work without any tool support that could reliably
catch problems already at development time, and ideally, to
automatically suggest the proper life-cycle annotations.

2. CONTRIBUTIONS AND OUTLINE
In our poster presentation, we lay out a generic setup for

building software-as-a-service applications. In particular, we
introduce Google App Engine and Google Cloud Datastore
as platform- and database-as-a-service products, and use the
Objectify object mapper for loading and storing objects.

1. We show how seemingly innocuous changes to the ap-
plication code can lead to runtime errors or data loss
when the released software encounters incompatible
legacy data. In particular, we consider problems in-
volving adding, removing, and renaming class member
attributes in class declarations. We also consider prob-
lems related to changes in the attribute types.

2. We demo ControVol, an Eclipse plugin that tracks all
changes to the source code and automatically checks

for compatibility with the complete release history, as
available in the source code repository.

3. ControVol detects the precarious changes from (1), is-
sues warnings, and even proposes to automatically fix
its findings. Thus, ControVol ensures that legacy data
can catch up with the data structures expected by
the latest code release, lazily migrating legacy data
through object mapper life-cycle annotations.

4. Our poster explains the internal typing rules by which
ControVol checks changes to object mapper class dec-
larations for backward compatibility. We introduce
these rules in [4] in greater detail.

5. An earlier version of ControVol has been demoed at
ICDE’15 [5]. As a new feature since that first proto-
type, our poster presentation at WWW will show how
ControVol detects a new class of problems caused by
re-introducing class member attributes that have been
removed from the source code in earlier releases, but
may still be resident in legacy data. We refer to [4]
for a more detailed discussion on the problem of re-
introducing attributes than can be given here.

Being integrated into the Eclipse IDE, ControVol guides
developers in building robust applications that are not only
backwards-compatible with legacy data, but that also allow
the data to catch up lazily with the latest application code.

3. REFERENCES
[1] D. Sanderson, Programming Google App Engine,

2nd ed. O’Reilly Media, Inc., 2012.

[2] “Objectify v5,” Mar. 2015,
https://code.google.com/p/objectify-appengine/.

[3] U. Störl, T. Hauf, M. Klettke, and S. Scherzinger,
“Schemaless NoSQL Data Stores – Object-NoSQL
Mappers to the Rescue?” in Proc. BTW’15, 2015.

[4] T. Cerqueus, E. C. de Almeida, and S. Scherzinger,
“Safely Managing Data Variety in Big Data Software
Development,” in Proc. BIGDSE’15, 2015.

[5] S. Scherzinger, E. C. de Almeida, and T. Cerqueus,
“ControVol: A Framework for Controlled Schema
Evolution in NoSQL Application Development,” in
Proc. ICDE’15, 2015.

https://code.google.com/p/objectify-appengine/

	Introduction
	Contributions and Outline
	References

