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A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF RELATIVITY 

UN MODÈLE  PLATONICIEN  (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA RELATIVITÉ RESTREINTE 

 

Alain JEGAT 

 

 

Abstract 

The usual framework for Einstein’s special theory of relativity is the pseudo-Euclidean space-

time proposed by Hermann Minkowski. 

This article aims at proposing a different model. 

The framework is a four-dimensional Euclidean space in which all the objects move regularly 

(i. e. the distances covered are equal regardless of the trajectories), and the events are 

considered in projection according to a privileged direction, as we are going to explain. 

The rather surprising remark which is the object of this article is that we thus find the Lorentz 

transformation and all the equations of the special relativity. 

 

 

Résumé 

Le cadre géométrique usuel de la Relativité Restreinte est l’espace-temps pseudo-euclidien de 

Minkowski. 

Cet article a pour but d’exposer un modèle différent. 

Le cadre en est un espace euclidien de dimension quatre, dans lequel les objets se déplacent tous 

de façon uniforme (c'est-à-dire qu'entre deux observations, quelle que soit leur trajectoire, ils 

parcourent tous la même distance), mais où les événements sont vus en projection selon une 

direction privilégiée, comme nous allons l'expliquer.  

La remarque, assez surprenante, qui fait l'objet de cet article est qu'on retrouve ainsi les trans-

formations de Lorentz et toutes les formules de la Relativité Restreinte.  
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1. Coordinate system in this space, uniform motion, speed measurement. 

( ), , , ,O i j k h
� � � �

 is a frame for the four-dimensional Euclidean space whose axes are denoted ( )OX , 

( )OY , ( )OZ , ( )Ow ; the direction of the projection is that of the vector h
�

. 

We consider a punctual mobile P in rectilinear uniform motion and associate to this mobile the 

hyperplane HP which contains it and is orthogonal to the direction of its motion. The points of 

this hyperplane, which thus have parallel trajectories to that of P, constitute what we will refer 

to as the "observers" of the reference frame related to P. 

To simplify the following diagrams, we shall consider only mobiles whose motion is located in 

the plan ( )XOw , as well as the "observers" connected to P located in this plan. 

We will name dα  the straight line traveled by P, uα

���

 its guiding vector (oriented in the direction 

of the motion), Rα  the reference frame related to P, α  the angle ( ),i uα

� ���

. 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram above represents the observation by the reference frame Rα  of a second punctual 

mobile M whose rectilinear trajectory dβ  is guided by the vector uβ

���

, with ( ),i uβ β=
� ���

.  

M is observed by the reference frame Rα  when it is located in M1 and in M2. 

We will suppose here that α is not a multiple of π . 

The event "M is in M1" occurs while the mobile P is in P1: in projection, this event is perceived by 

the observer A1. 

The event "M is in M2" occurs while the mobile P is in P2: in projection, this event is perceived by 

the observer B2, while the observer A1 is now in A2. 

Between the two observations, both mobiles traveled the same distance 1 2 1 2r PP M M∆ = = , by 

hypothesis (cf. the abstract). 
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In the reference frame Rα  we will define: 

1.1 The algebraic distance x∆  separating both events "M is in M1" and "M is in M2" from the 

Euclidian distance A2B2, affected by a positive or negative sign according to the situations (we 

will use the relation 2 2A B xiα= ∆
������ ��

where sin cosi i hα α α= −
�� � �

). 

 

1.2  The time interval t∆  separating these two events in Rα  by the relation 

2 1( ) ( )c t w B w A∆ = − , where c  is a strictly positive constant (we will see that c corresponds to 

the light speed in the space). 

 

 

Lemma.  The speed 
x

v
t

∆=
∆

 of M measured by Rα   is:  
cos cos

1 cos cos
v c

β α
α β
−=

−
.   (1) 

Proof.  By identifying vectors with their columns of coordinates in the basis ( ),i h
� �

, we have: 

( )1 2
cos
sin

rM M r
β
β

∆= ∆
�������

,  ( )1 2
cos
sin

rA A r
α
α

∆= ∆
�����

, 

 

and   ( )2 2
sin
cos

xA B xi xα
α
α

∆= ∆ = −∆
������ ��

,   hence ( )1 2
cos sin
sin cos

r xA B r x
α α
α α

∆ + ∆= ∆ − ∆
�����

. 

 

However,  ( ) ( ) ( ) ( )2 1 2 1X M X M X B X A− = − ,  so cos sin cosr x rα α β∆ + ∆ = ∆ . 

 

It can be deduced that:       
cos cos

sin
x r

β α
α

−∆ = ∆ ,      (2) 

 

and the relation 2 1( ) ( ) sin cosc t w B w A r xα α∆ = − = ∆ − ∆  becomes: 

 

1 cos cos

sin
c t r

α β
α

−∆ = ∆ .     (3) 

 

The lemma results from (2) and (3).          � 

 

 

Remarks. The lemma implies that we always find v c≤ . Regardless of the reference frame of 

observation Rα , we obtain v c=  for 0β =  and v c= −  for β π= ±  (mod. 2π ); and in the 

cases where mα π=  (m is an integer), regardless of the value of β  (not a multiple of π ), the 

values of x∆  and c t∆  aim towards the infinity but their quotient leads to v c= − if 0α = or 

v c=  if α π= ± (mod. 2π ). 
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2. Lorentz transformation 

Two reference frames Rα  and Rβ  in uniform translation (i.e. with rectilinear trajectories) are 

considered here, and two events E1 and E2 are observed. 

For the convenience of calculations, we will refer to the notations indicated on the diagram 

below and we will put ( ) ( )2 1X X E X E∆ = − . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem (Lorentz transformation). Supposing that sin sin 0α β > , then: 

2

2

'

1

x v t
x

v

c

∆ − ∆∆ =
−

,        
2

2

'

1

v
c t x

cc t
v

c

∆ − ∆
∆ =

−
    (4) 
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Proof.   We have ( ) ( )1 2
cos sin
sin cos

r x XA B r x c t
α α
α α

∆ + ∆ ∆= =∆ − ∆ ∆
�����

,  

from which we find   
cos

sin

X r
x

α
α

∆ − ∆∆ =    and   
cos

sin

r X
c t

α
α

∆ − ∆∆ = .    (5) 

Similarly, we find   
cos

'
sin

X r
x

β
β

∆ − ∆∆ =    and  
cos

'
sin

r X
c t

β
β

∆ − ∆∆ =     (6) 

(1) and (5) result in:   
( )cos sin

1 cos cos

X rv
x c t

c

β α
α β

∆ − ∆
∆ − ∆ =

−
 

As (1) and sin sin 0α β > result in 
2

2

sin sin
1

1 cos cos

v

c

α β
α β

− =
−

, then: 

2

2

cos
'

sin
1

v
x c t X rc x

v

c

β
β

∆ − ∆ ∆ − ∆= = ∆
−

. 

Similarly, we obtain 
( )cos sin

1 cos cos

r Xv
c t x

c

β α
α β

∆ − ∆
∆ − ∆ =

−
, then finally: 

2

2

cos
'

sin
1

v
c t x r Xc c t

v

c

β
β

∆ − ∆ ∆ − ∆= = ∆
−

.       � 

 

Remarks: 

1. The formulae of Lorentz (4) may also be written as follows: 

( ) ( )1 cos cos cos cos
'

sin sin

x c t
x

α β β α
α β

− ∆ − − ∆
∆ = ; 

( ) ( )1 cos cos cos cos
'

sin sin

c t x
c t

α β β α
α β

− ∆ − − ∆
∆ = .     (7) 

(Contrary to what formulae (7) suggest, the relations (6) clearly show that the quantities 'x∆  

and 'c t∆  measuring the space and the time separating the events E1 and E2 in the reference 

frame Rβ  are independent from the reference frame Rα .)  
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2. We thus find all the well-known formulae of the special theory of relativity and in 

particular the formula of speed addition which results from the following identity: 

 

cos cos cos cos
cos cos1 cos cos 1 cos cos

cos cos cos cos 1 cos cos1 .
1 cos cos 1 cos cos

β α γ β
γ αα β β γ

β α γ β α γ
α β β γ

− −+
−− − =− − −+

− −

. 

 

3.  If a punctual mobile M in the four-dimensional Euclidian space describes a curved 

trajectory (i.e. the angle β  depends on r), at identical linear speed with the other mobiles, it will 

be seen in a reference frame Rα  in uniform translation as a mobile in accelerated motion. 

Its acceleration aα measured by the reference frame Rα will be given (see (3) and (1))  

by:   
( )

( )
3

32

sin sin ( )
.

1 cos cos ( )

vda d rc
c cdt dr r

α β α β
α β

−= =
−

 

i.e.     

3
2 2

2 2 2

1
1

sin ( )

a d v

c dr r c
α β

β
 −= − 
 

 

where v  is the speed of M measured in Rα ;  

resulting in, for two such reference frames Rα  and Rγ :  

( )
( )

33

33

1 cos cos ( )sin

sin 1 cos cos ( )

r
a a

r
γ α

α βγ
α γ β

−
=

−
,   i.e.   

3 32 2 2 2

2 2
1 1

v v
a a

c c
γ α

γ α

−
   

= − −    
  

 

(where vγ  and vα  are the speeds of M measured in Rγ  and Rα ). 

 

3. Conclusion 

This model offers a geometrical formulation of the special theory of Relativity that differs from 

Minkowski’s one. However, it raises two major issues from a physical point of view: 

 

3.1 The first one concerns the motion of objects (observed mobiles, reference frames): we 

impose them to travel the same distance between two observations, regardless of their 

trajectories. 

This constraint evokes undulatory phenomena where wave speed is defined by the propagation 

medium. 

 

 3.2 The second, of course, concerns projection: in this model, everything takes place as if an 

event E was considered in the same way by a given reference frame regardless of its coordinate 

w  (cf. the second diagram, where both events observed are seen in A1 and B2 regardless of their 

coordinates w). 

 


