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A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF RELATIVITY UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA RELATIVITÉ RESTREINTE

The usual framework for Einstein's special theory of relativity is the pseudo-Euclidean spacetime proposed by Hermann Minkowski. This article aims at proposing a different model. The framework is a four-dimensional Euclidean space in which all the objects move regularly (i. e. the distances covered are equal regardless of the trajectories), and the events are considered in projection according to a privileged direction, as we are going to explain. The rather surprising remark which is the object of this article is that we thus find the Lorentz transformation and all the equations of the special relativity.

Résumé

Le cadre géométrique usuel de la Relativité Restreinte est l'espace-temps pseudo-euclidien de Minkowski. Cet article a pour but d'exposer un modèle différent. Le cadre en est un espace euclidien de dimension quatre, dans lequel les objets se déplacent tous de façon uniforme (c'est-à-dire qu'entre deux observations, quelle que soit leur trajectoire, ils parcourent tous la même distance), mais où les événements sont vus en projection selon une direction privilégiée, comme nous allons l'expliquer. La remarque, assez surprenante, qui fait l'objet de cet article est qu'on retrouve ainsi les transformations de Lorentz et toutes les formules de la Relativité Restreinte.

1.

Coordinate system in this space, uniform motion, speed measurement.

( ) , , , , O i j k h is a frame for the four-dimensional Euclidean space whose axes are denoted ( ) OX , ( ) OY , ( ) OZ , ( )

Ow ; the direction of the projection is that of the vector h .

We consider a punctual mobile P in rectilinear uniform motion and associate to this mobile the hyperplane H P which contains it and is orthogonal to the direction of its motion. The points of this hyperplane, which thus have parallel trajectories to that of P, constitute what we will refer to as the "observers" of the reference frame related to P.

To simplify the following diagrams, we shall consider only mobiles whose motion is located in the plan ( )

XOw , as well as the "observers" connected to P located in this plan.

We will name d α the straight line traveled by P, u α its guiding vector (oriented in the direction of the motion), R α the reference frame related to P, α the angle ( )

, i u α .
The diagram above represents the observation by the reference frame R α of a second punctual mobile M whose rectilinear trajectory d β is guided by the vector u β , with ( )

, i u β β = .
M is observed by the reference frame R α when it is located in M 1 and in M 2 .

We will suppose here that α is not a multiple of π .

The event "M is in M 1 " occurs while the mobile P is in P 1 : in projection, this event is perceived by the observer A 1 . The event "M is in M 2 " occurs while the mobile P is in P 2 : in projection, this event is perceived by the observer B 2 , while the observer A 1 is now in A 2 . Between the two observations, both mobiles traveled the same distance

1 2 1 2 r PP M M ∆ = =
, by hypothesis (cf. the abstract).

In the reference frame R α we will define:

1.1

The algebraic distance x ∆ separating both events "M is in M 1 " and "M is in M 2 " from the Euclidian distance A 2 B 2 , affected by a positive or negative sign according to the situations (we will use the relation 2 2

A B xi α = ∆ where sin cos i i h α α α = -
).

1.2

The time interval t ∆ separating these two events in R α by the relation

2 1 ( ) ( ) c t w B w A ∆ = -
, where c is a strictly positive constant (we will see that c corresponds to the light speed in the space).

Lemma. The speed

x v t ∆ = ∆ of M measured by R α is: cos cos 1 cos cos v c β α α β - = - . ( 1 
)
Proof. By identifying vectors with their columns of coordinates in the basis ( )

, i h , we have: ( ) 1 2 cos sin r M M r β β ∆ = ∆ , ( ) 
1 2 cos sin r A A r α α ∆ = ∆ , and 
( ) 2 2 sin cos x A B xi x α α α ∆ = ∆ = -∆ , hence
( )

1 2 cos sin sin cos r x A B r x α α α α ∆ + ∆ = ∆ -∆ . However, ( ) ( ) ( ) ( ) 2 1 2 1 X M X M X B X A - = - , so cos sin cos r x r α α β ∆ + ∆ = ∆ .
It can be deduced that:

cos cos sin x r β α α - ∆ = ∆ , (2) 
and the relation

2 1 ( ) ( ) sin cos c t w B w A r x α α ∆ = - = ∆ -∆ becomes: 1 cos cos sin c t r α β α - ∆ = ∆ .
(3)

The lemma results from ( 2) and (3). 

Remarks

v c = -if 0 α = or v c = if α π = ± (mod. 2π ).

Lorentz transformation

Two reference frames R α and R β in uniform translation (i.e. with rectilinear trajectories) are considered here, and two events E 1 and E 2 are observed.

For the convenience of calculations, we will refer to the notations indicated on the diagram below and we will put

( ) ( ) 2 1 X X E X E ∆ = - .
Theorem (Lorentz transformation). Supposing that sin sin 0 α β > , then:

2 2 ' 1 x v t x v c ∆ -∆ ∆ = - , 2 2 ' 1 v c t x c c t v c ∆ -∆ ∆ = - (4) Proof. We have ( ) ( ) 1 2 cos sin sin cos r x X A B r x c t α α α α ∆ + ∆ ∆ = = ∆ -∆ ∆ ,
from which we find cos sin

X r x α α ∆ -∆ ∆ = and cos sin r X c t α α ∆ -∆ ∆ =
.

(5) we find cos ' sin

X r x β β ∆ -∆ ∆ = and cos ' sin r X c t β β ∆ -∆ ∆ = (6) 
(1) and ( 5) result in:

( ) cos sin 1 cos cos X r v x c t c β α α β ∆ -∆ ∆ -∆ = -
As (1) and sin sin 0

α β > result in 2 2 sin sin 1 1 cos cos v c α β α β -= - , then: 2 2 cos ' sin 1 v x c t X r c x v c β β ∆ -∆ ∆ -∆ = = ∆ - .
Similarly, we obtain ( )

cos sin 1 cos cos r X v c t x c β α α β ∆ -∆ ∆ -∆ = -
, then finally:

2 2 cos ' sin 1 v c t x r X c c t v c β β ∆ -∆ ∆ -∆ = = ∆ - .

Remarks:

1. The formulae of Lorentz (4) may also be written as follows:

( ) ( )

1 cos cos cos cos ' sin sin x c t x α β β α α β - ∆ - - ∆ ∆ = ; ( ) ( ) 1 cos cos cos cos ' sin sin c t x c t α β β α α β - ∆ - - ∆ ∆ = . ( 7 
)
(Contrary to what formulae (7) suggest, the relations (6) clearly show that the quantities ' x ∆ and ' c t ∆ measuring the space and the time separating the events E 1 and E 2 in the reference frame R β are independent from the reference frame R α .)

2.

We thus find all the well-known formulae of the special theory of relativity and in particular the formula of speed addition which results from the following identity: cos cos cos cos cos cos 1 cos cos 1 cos cos cos cos cos cos 1 cos cos 1 . 1 cos cos 1 cos cos

β α γ β γ α α β β γ β α γ β α γ α β β γ - - + - - - = - - - + - - . 3.
If a punctual mobile M in the four-dimensional Euclidian space describes a curved trajectory (i.e. the angle β depends on r), at identical linear speed with the other mobiles, it will be seen in a reference frame R α in uniform translation as a mobile in accelerated motion.

Its acceleration a α measured by the reference frame R α will be given (see ( 3) and ( 1))

by:

( )

( ) 3 3 2 sin sin ( ) .
1 cos cos ( )

v d a d r c c cdt dr r α β α β α β - = = - i.e. 3 2 2 2 2 2 1 1 sin ( ) a d v c dr r c α β β   - = -    
where v is the speed of M measured in R α ; resulting in, for two such reference frames R α and R γ :

( ) ( )

3 3 3 3 1 cos cos ( ) sin sin 1 cos cos ( ) r a a r γ α α β γ α γ β - = - , i.e. 3 3 2 2 2 2 2 2 1 1 v v a a c c γ α γ α -     = - -          
(where v γ and v α are the speeds of M measured in R γ and R α ).

Conclusion

This model offers a geometrical formulation of the special theory of Relativity that differs from Minkowski's one. However, it raises two major issues from a physical point of view:

3.1

The first one concerns the motion of objects (observed mobiles, reference frames): we impose them to travel the same distance between two observations, regardless of their trajectories. This constraint evokes undulatory phenomena where wave speed is defined by the propagation medium.

3.2

The second, of course, concerns projection: in this model, everything takes place as if an event E was considered in the same way by a given reference frame regardless of its coordinate w (cf. the second diagram, where both events observed are seen in A 1 and B 2 regardless of their coordinates w ).

.

  The lemma implies that we always find v c ≤ . Regardless of the reference frame of observation R α , we obtain v c an integer), regardless of the value of β (not a multiple of π ), the values of x ∆ and c t ∆ aim towards the infinity but their quotient leads to