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ABSTRACT

The Linear Mixing Model is often used to perform Hyperspec-
tral Unmixing because of its simplicity, but it assumes that
a single spectral signature can be completely representative
of an endmember. However, in many scenarios, this assump-
tion does not hold since many factors such as illumination
conditions and intrinsic variability of the endmembers have
consequences on the spectral signatures of the materials. In
this paper, we propose a simple yet flexible algorithm to unmix
hyperspectral data using a recently proposed Extended Linear
Mixing Model. This model allows a pixelwise variation of
the endmembers, which leads to consider scaled versions of
reference endmember spectra. The results on synthetic data
show that the proposed technique outperforms other methods
aimed at tackling spectral variability, and provides an accu-
rate estimation of endmember variability along the observed
scene thanks to the scaling factors estimation, provided the
abundance of the corresponding material is sufficient.

Index Terms— Hyperspectral imaging, spectral unmixing,
spectral variability, extended linear mixing model

1. INTRODUCTION

Spectral Unmixing (SU) is an inverse problem in hyperspectral
remote sensing aimed at recovering the signatures of the mate-
rials (endmembers) composing the observed scene, as well as
their relative proportions (abundances) in every pixel. In most
applications, a Linear Mixing Model (LMM) is assumed, con-
sidering that the contributions of each endmember sum up in a
linear way [1]. The main two factors hampering the efficiency
of the LMM have been identified as nonlinearities and spectral
variability. Indeed, many physical processes such as multiple
scattering and intimate mixing can contribute to the measured
radiance or reflectance spectra in a nonlinear fashion. Spectral
variability is also an important factor that the LMM does not
take into account: each endmember is implicitly assumed to
be perfectly represented by a single spectral signature. This
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implicit but strong assumption often does not hold for real
datasets since the measured radiance or reflectance of a mate-
rial can significantly change, e.g. depending on the geometry
and topography of the scene, of atmospheric effects or even
because of the intrinsic variability of the material, due to the
variation of a hidden parameter (e.g. concentration of chloro-
phyll in vegetation).
Although nonlinear unmixing has recently received much at-
tention in the community, spectral variability has been less
addressed in comparison. Still, recent overviews of the spec-
tral variability issue exist and summarize some of the methods
that take it into consideration [2, 3]. In the following, we
introduce a new algorithm to perform SU taking into account
spectral variability. It is based on the recently proposed Ex-
tended Linear Mixing Model (ELMM) [4], which can address
endmember variability while preserving the LMM framework.
The remainder of this paper is organized as follows: Section 2
presents some of the mixing models and techniques related to
the proposed approach, which is presented in Section 3. Re-
sults are presented in Section 4, and some concluding remarks
are gathered in Section 5.

2. RELATED WORK

Let us denote a hyperspectral image by X ∈ RL×N and the
abundance matrix by A ∈ RP×N , where L is the number
of spectral bands, N the number of pixels in the image, and
P is the number of endmembers. The different endmember
matrices we will use will be denoted as S ∈ RL×P , possibly
indexed by k if allowed to vary spatially in the image. E ∈
RL×N is an additive noise. With these notations, the LMM
writes, for the pixel xk ∈ RL, whose abundance vector is
ak ∈ RP :

xk =

P∑
p=1

akpsp + ek = Sak + ek (1)

with the abundance non-negativity constraint (ANC) akp ≥ 0
since all the physical quantities involved are positive, and possi-
bly the abundance sum-to-one constraint (ASC)

∑P
p=1 akp =

1,∀k, which means that each pixel has to be completely ex-
plained by the contributions of the endmembers. sp is the
pth column of S. In the following, some existing approaches



to perform SU by taking into account spectral variability are
presented.

2.1. Spectral Bundles

Spectral bundles [5] are a simple way to address endmember
variability by building a candidate endmember dictionary. One
possibility to do so is to run several times any Endmember
Extraction Algorithm (EEA) [1] on randomly chosen subsets
of the image. Each time the EEA is run, new instances of
each endmember should be extracted. As the extracted sources
suffer from the so-called permutation problem, i.e. the end-
members are not aligned from one subset to the other, a clus-
tering step is required to group the candidate endmembers into
classes. Then the abundances can be extracted in several ways,
e.g. by performing a sparse regression of the data on the dic-
tionary, for instance unsing the SUnSAL algorithm [6]. To get
global abundance maps, one only has to sum the contributions
of every candidate in each endmember class. Another option
to recover abundances once the spectral bundles have been
extracted is to use the Fisher Discriminant Nullspace (FDN)
approach [7]. This technique searches for a projection of the
dataset onto a low-dimensional subspace such that intra class
variability of the endmember bundles is minimized and their
interclass variability is maximized. Finally, one can unmix the
projected data using the traditional Fully Constrained Least
Squares Unmixing (FCLSU), enforcing both the ANC and
the ASC (assuming the data lies in a simplex spanned by the
sources) using the centroids of the bundles as endmembers.

2.2. Extended Linear Mixing Model

Ideally, the endmembers should be allowed to vary in every
pixel of the image, while the mixing process could remain
linear. In [4], an Extended Linear Mixing Model (ELMM) is
presented to allow a pixelwise variation of each endmember:

xk =

P∑
p=1

akp fkp(sp) + ek (2)

where fkp are mappings fkp : RL → RL. As shown in [4], the
spectral bundles approach can also be seen as a special case
of (2), where the function fkp is not explicitly but implicitly
modeled by some outcomes of this spectral variability function
forming the endmember dictionary. If we assume fkp(sp) =
ψkpsp, i.e. that the spectral variability consists in scalings
of some reference endmembers collected in the matrix S0 ∈
RL×P , (2) rewrites:

xk =

P∑
p=1

akpψkps0p + ek = S0ψkak + ek (3)

with ψi ∈ Rp×p a diagonal matrix with the ψkp on the di-
agonal. With these definitions, an observed pixel is a linear
combination of scaled versions of each endmember depend-
ing on the spatial dimensions of the image (lying in a convex

cone spanned by the endmembers in S0). This special case
of the model has appeared implicitly in [8, 9] to explain vari-
ability due to the geometry and illumination conditions of
the scene. In addition, [4] shows that the nonnegative least
squares (CLSU) algorithm can be seen as a special case of
equation (3) when the scaling factor is identical for each end-
member and the ASC is assumed. Thus, one can recover
the scaling factor (and hence the abundances) in a pixel by
ψk =

∑P
p=1 φ̂

p
k =

∑P
p=1 akpψk, where φ̂pk is the quantity

estimated by CLSU in pixel k for endmember p. This scaled
version of CLSU will be denoted by S-CLSU hereafter. Yet,
there is, to our knowledge, no algorithm specifically designed
to unmix hyperspectral data according to the model (3).

3. PROPOSED APPROACH

We define the following optimization problem to perform spec-
tral unmixing using the ELMM (we denote by ψ the scaling
factors rearranged in a RP×N matrix):

J (A,S,ψ) = 1

2

N∑
k=1

(
||xk − Skak||2F + λS ||Sk − S0ψk||2F

)
(4)

A reference endmember matrix S0 is required, and can
be extracted by any EEA. All quantitites involved have to
be nonnegative, and in addition we enforce the ASC. Since
we are estimating the actual abundances and not a product of
the abundances and the scaling factors, the ASC is physically
meaningful, and also acts as a calibration of the scaling fac-
tors (without it, there would be a scaling ambiguity on the
abundances and scaling factors: the product of an abundance
coefficient in one pixel for one endmember and the correspond-
ing scaling factor is the same if one of the two quantities is
mutliplied and the other divided by the same constant). Note
that compared to eq. (3), a small perturbation on the model is
allowed, depending on the value of λS . Since the problem we
wish to solve is not convex w.r.t. all variables simultaneously,
but convex w.r.t. each of them, we propose to find a stationary
point by iteratively optimizing the criterion in an Alternating
Nonnegative Least Squares (ANLS) way. The iterations termi-
nate when the relative variations (measured using Frobenius
norms) between consecutive iterates of A and S = {Sk} are
below εA and εS , respectively. In the experiments, we set
εA = εS = 10−4.

3.1. Optimization w.r.t. S

Rewriting the terms of Eq. (4) depending on S, we see that we
have to solve:

Ŝ = arg min
S≥0

1

2

N∑
k=1

(
||xk − Skak||2F + λS ||Sk − S0ψk||2F

)
(5)

This problem is completely separable over the N pixels, so its
closed form solution may be computed separately for each of
them:

Ŝk ← (xka
>
k + λSS0ψk)(aka

>
k + λSIP )

−1 (6)



where IP is the P ×P identity matrix. The solution Ŝk is then
projected onto the nonnegative orthant RL×P

+ by thresholding
the negative entries to 0.

3.2. Optimization w.r.t. ψ

Here, the minimization of Eq. (4) w.r.t. ψ rewrites:

ψ̂ = arg min
ψ≥0

1

2

N∑
k=1

λS ||Sk − S0ψk||2F (7)

Recall that for each k, ψk is a diagonal matrix, so it is only
necessary to update the diagonal coefficients ψp

k (the scaling
factor associated to the pth endmember of pixel k):

ψ̂p
k ←

sp0
>
spk

sp0
>
sp0

(8)

where sp0 and spk are the pth columns of the reference endmem-
ber matrix and the pixel k endmember matrix, respectively.
With this update rule, the coefficients ψ̂p

k are always nonneg-
ative since all quantities involved in their computations are
positive.

3.3. Optimization w.r.t. A

If we wish to minimize Eq. (4) w.r.t. A, we have to solve :

Â = arg min
A≥0,11×PA=11×N

1

2

N∑
k=1

||xk − Skak||2F (9)

1(·) is a matrix of ones whose size is given in index. This can
be readily solved in each pixel using FCLSU.

4. RESULTS

We generated a simulated 200× 200× 224 hyperspectral im-
age incorporating spectral variability using the ELMM. Abun-
dance maps for three endmembers (randomly chosen in a li-
brary) consisting in overlapping circular regions was designed.
Separately, maps for the spectral variability factors (bounded
between 1 and 1.5 in a way such that the reflectance of the
sources would never become higher than 1) were generated us-
ing mixtures of Gaussians. In order not to be too similar to the
ELMM, a small wavelength-dependent nonlinear perturbation
(proportional to the square of the reflectance value in the con-
sidered band and pixel) was added to every endmember in each
pixel (the power ratio between the signal and this this perturba-
tion was set to 50dB). After the mixing process, an additional
30dB white Gaussian noise was added. A RGB representation
of the data can be seen in Fig. 1. In the following, we compare
the unmixing performance of 6 algorithms (FCLSU, CLSU,
S-CLSU, the bundle approach combined with SuNSAL and
FDN, and the proposed one), using the abundance overall Root
Mean Squared Error (RMSE):

RMSE =
1

N

N∑
k=1

√√√√ 1

P

P∑
p=1

(akp − âkp)2 (10)

The bundle used was created by running the Vertex Com-
ponent Analysis (VCA) [9] on 100 randomly chosen subsets
comprising 1% of the image pixels. Then the candidate end-
members were clustered using k-means with the spectral angle
as a similarity measure (it is insensitive to scalings and hence
adapted to the data). The regularization parameter for SuNSAL
was set to 5.10−4. As for the proposed approach, two initial-
ization strategies were considered. In the first, the reference
endmember matrix was initialized using VCA, the abundances
with the results of the FCLSU, and the scaling factors were
initially set to one. The Proposed Approach with this initializa-
tion is denoted by PA-FCLSU. In the second, the abundances
and scaling factors were initialized with the results of S-CLSU
(this initialization is denoted by PA-S-CLSU). In both cases,
we set an empirically defined value for λS = 6.25.10−1. The
resuts are shown in Figs. 2, 3 and in Table 1.

The results show that the proposed approach outperforms
all other approaches in terms of abundance estimation. FCLSU
gets the worst results since it does not take into account spec-
tral variability. The bundles approaches perform much better,
but they are not able to estimate the scaling factors, and erro-
neous patterns can still be observed in the abundance maps.
They also require a balanced and well clustered bundle, which
is not always the case depending on the runs. The CLSU ap-
proach gets results comparable to the bundle algorithms, but
it is not completely accurate because it does not estimate the
actual abundances, but their product with the scaling factors.
The S-CLSU algorithm performs much better, even though it
estimates the same scaling factors for all endmembers. This is
in fact not a problem so long as the abundance of one of the
materials is high enough. In this case, the estimated scaling
factor corresponds to this material. The proposed approach is
able to split the scaling factors into individual maps for each
material. In the case where the contribution of one endmember
is too low, the scaling factor cannot be retrieved, and stays
close to one for the proposed approach. Note that it is hard
to compare quantitatively the estimated scaling factors to the
true ones since the reference endmember matrix is not the
same (since for S-CLSU and the proposed approach it was
extracted from the image data). From Table 1, we see that the
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Fig. 1. A RGB representation of the simulated dataset. Note
the blob-like shapes corresponding to spectral variability (left).
True abundances displayed as a color image (middle). The
endmembers used in the experiments (right).
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Fig. 2. The estimated abundances of several algorithms.
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Fig. 3. The estimated scaling factors of S-CLSU and the PA-
FCLSU. The colormap ranges from blue (1) to red (1.5).

improvement of performance comes at the price of a higher
computational burden if the initialization is performed using
FCLSU and with no guess on the scaling factors. Even when
an already very good initialization is provided, the algorithm
is still able to improve the results in a short amount of time.
Hovewer, we believe the proposed approach is more robust
than S-CLSU, especially in real scenarios, where nonlineari-
ties, noise and wrong intrinsic dimensionality estimation are
likely to happen.

5. CONCLUSION

In this paper, we introduced a simple algorithm to perform
hyperspectral image unmixing taking into account spectral
variability. The approach is based an the recently proposed
Extended Linear Mixing Model, which allows local variations
of the endmember matrix using pixel and endmember depen-

Algorithm Overall RMSE Running Time (s)
FCLSU 0.12 11

BUNDLES + SUNSAL 0.049 14
BUNDLES + FDN 0.024 10

CLSU 0.045 10
S-CLSU 0.011 11

PA-FCLSU 0.0099 657
PA-S-CLSU 0.0099 24

Table 1. Quantitative results.

dent scaling factors. The experiments on a synthetic dataset
show the potential of the ELMM and the flexibility of the
proposed approach, which outperforms other methods tackling
spectral variability. Nevertheless, the approach still needs to
be validated on real datasets. This will be one of the focuses
of our future research. We are also currently working on a
reference-free formulation of the model, and on improving
the algorithm by incorporating a spatial regularization on the
estimated scaling factors, so as to obtain spatially more co-
herent maps and be able to estimate the scaling factors more
accurately when pixels are highly mixed.
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