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DOMAIN DECOMPOSITION ALGORITHMS FOR TWO
DIMENSIONAL LINEAR SCHRÖDINGER EQUATION

CHRISTOPHE BESSE † AND FENG XING ‡ §

Abstract. This paper deals with two domain decomposition methods for two dimensional linear
Schrödinger equation, the Schwarz waveform relaxation method and the domain decomposition in
space method. After presenting the classical algorithms, we propose a new algorithm for the free
Schrödinger equation and a preconditioned algorithm for the general Schrödinger equation. These
algorithms are studied numerically, which shows that the two new algorithms could accelerate the
convergence and reduce the computation time. Besides the traditional Robin transmission condition,
we also propose to use a newly constructed absorbing condition as the transmission condition.

Key words. Schrödinger equation, Schwarz waveform relaxation method, domain decomposi-
tion in space method

AMS subject classifications. 35Q55, 65M55, 65Y05, 65M60

1. Introduction. The aim of this paper is to apply domain decomposition al-
gorithms to two dimensional linear Schrödinger equation defined on (0, T ) × Ω with
a real potential V (t, x, y)

(1.1)
{

L u := (i∂t + ∆ + V )u = 0, (t, x, y) ∈ (0, T )× Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ Ω,

where Ω = (xl, xr) × (yd, yu), xl, xr, yd, yu ∈ R is a bounded spatial domain and the
initial datum u0 ∈ L2(Ω). The equation is complemented with the following boundary
conditions:

∂nu = 0, y = yd, yu, ∂nu+ Sbu = 0, x = xl, xr,

where ∂n denotes the normal directive, n being the outwardly unit vector on ∂Ω, and
the operator Sb is some transmission operator.

We consider in this paper two domain decomposition methods. One is the Schwarz
waveform relaxation method without overlap (SWR) [,,], which is based on the
time-space domain decomposition. The time-space domain (0, T )× Ω is decomposed
into some subdomains (0, T ) × Ωj , j = 1, 2, ..., N . The solution is computed on
each subdomain and the time-space boundary values are transmitted via transmission
conditions. The derivation of efficient transmission conditions is one of the key points
of the SWR method. For Schrödinger equation, some transmission conditions are
proposed in [,,], such as Robin transmission condition, optimal transmission
condition etc..

Another method is the domain decomposition in space method (DDS) [,].
The time dependent equation is first discretized in time with an implicit scheme on
the entire spatial domain, which leads to a stationary equation on space. Then the
domain decomposition methods (such as the optimized Schwarz method [,,])
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are applied to this stationary equation. The DDS method requires a conforming
time discretization. However, it does not cause any problem for us since there is no
potential needs to use a nonconforming discretization for the Schrödinger equation,
even for the Gross-Pitaevskii equation [,], which is one model for Bose–Einstein
condensate.

This paper is organized as follows. In Section, we present in detail the classi-
cal SWR algorithm and the classical DDS algorithm. The classical DDS algorithm
is interpreted as a combination of some classical SWR algorithms. The discretiza-
tion of the Schrödinger equation and the transmission conditions are also provided.
The discrete problem is written globally in time and the global discrete form of the
transmission condition is given. In Section, we construct the interface problem and
analyze its properties. Based on these properties, we propose new algorithms and
preconditioned algorithms in the two following sections. In Section, we study nu-
merically the performances of these algorithms. A conclusion is drawn in the last
section.

2. Domain decomposition algorithms.

2.1. Geometric configuration. The interval (xl, xr) is divided into N subin-
tervals (aj , bj) without overlap. The points aj and bj denote the ends of the subin-
tervals (aj , bj). Thus, the entire domain Ω is decomposed into N non overlapping
subdomains Ωj = (aj , bj) × (yd, yu), j = 1, 2, ..., N (see Figure for N = 3). We
denote the normal directive on subdomain Ωj by ∂nj .

x

y

n2 n2

xl = a1 b1 = a2 b2 = a3 b2 = xr

Ω1 Ω2 Ω3

Fig. 1. Geometric configuration.

There are obviously other ways to decompose the entire domain. One way is illus-
trated in Figure (left) for N = 4. The intervals (xl, xr) and (yd, yu) are decomposed
into subintervals simultaneously in both spatial directions. In this configuration, an
artificial cross point appears. It is well known that the domain decomposition method
with cross points is a difficult problem in mathematics since the problem becomes sin-
gular at this point. Another possibility is illustrated in Figure (right) for N = 3.
The entire domain is decomposed into a circle and some rings. This approach has
many disadvantages for parallel computing. The sizes of the interfaces are very differ-
ent, especially if N is large. It is also difficult to control the sizes if the subdomains are
similar. Thus, we restrict ourselves in this paper to the first description (see Figure1).
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Fig. 2. Two other ways of domain decomposition.

2.2. Classical SWR algorithm. The classical SWR algorithm is given by

(2.1)


L ukj = 0, (t, x, y) ∈ (0, T )× Ωj ,
ukj (0, x, y) = u0(x, y), (x, y) ∈ Ωj ,

Bju
k
j = Bju

k−1
j−1 , x = aj ,

Bju
k
j = Bju

k−1
j+1 , x = bj ,

∂nj
ukj = 0, y = yl, yd,

with a special treatment for the two extreme subdomains (0, T )×Ω1 and (0, T )×ΩN
since the boundary conditions are imposed on x = a1 and x = bN

B1u
k
1 = 0, x = a1, BNu

k
N = 0, x = bN .

The notation ukj denotes the solution on subdomain (0, T )×Ωj at iteration k = 1, 2, ...
of the algorithm. The boundary condition at interface nodes aj and bj is given in term
of operator Bj defined by

(2.2) Bj = ∂nj
+ Sj , j = 1, ..., N,

where Sj is the transmission operator. Besides the classical widely used Robin trans-
mission condition

(2.3) Sj = −ip, p ∈ R+, j = 1, 2, ..., N,

we use in this paper a newly constructed absorbing boundary condition Sm2p [,] as
the transmission condition

(2.4) Sj = −i
√
i∂t + ∆Γj + V , j = 1, 2, ..., N,

where Γ1 = {b1} × (yd, yu), Γj = {aj , bj} × (yd, yu), j = 2, 3, ..., N − 1 and ΓN =
{aN} × (yd, yu).

In our case, the Laplace–Beltrami operator ∆Γj is ∂2
y . This absorbing boundary

condition is constructed by using some pseudo differential techniques. Numerically,
this operator is approximated by Padé approximation where m denotes its order. If
the potential V = 0 and the spatial domain is R2, then it could be proven by using
Fourier transform in time t and space y that the transmission condition Sm2p is optimal.
However, the optimal transmission condition is not always available. That’s one of
the reasons for using the absorbing operator. To avoid the theoretical problem in
continues case, we consider only the discrete version of the transmission operators in
this paper.

The classical SWR algorithm is initialized by an initial guess of Bju0
j |x=aj ,bj ,

j = 1, 2, ..., N . As shown in () for N = 3, at iteration k, the Schrödinger equation
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is solved on each subdomain (0, T ) × Ωj (Solve) to compute ukj and the boundary
values are communicated (Comm.) via transmission conditions.
(2.5)

· · · →


B1u

k
1 |x=b1

B2u
k
2 |x=a2

B2u
k
2 |x=b2

B3u
k
3 |x=a3

 Solve−−−−→

uk1uk2
uk3

→

B2u

k
1 |x=b1

B1u
k
2 |x=a2

B3u
k
2 |x=b2

B2u
k
3 |x=a3

 Comm.−−−−−−→


B1u

k+1
1 |x=b1

B2u
k+1
2 |x=a2

B2u
k+1
2 |x=b2

B3u
k+1
3 |x=a3

→ · · ·
Let us define the flux at iteration k by

gk = (B1u
k
1 |x=b1 , · · · , Bjukj |x=aj , Bju

k
j |x=bj , · · · , BNukN |x=aN )T ,

where "·T " is the standard notation of the transpose of a matrix or a vector. Thus,
the algorithm could be written as

(2.6) gk+1 = Rcgk,

where Rc is a linear operator. Thus, the continuous interface problem is

(2.7) (I −Rc)g = 0,

where I is identity operator and g = limk→∞ gk.
We now turn to the discretization of () and (). The time interval (0, T )

is discretized uniformly with NT intervals, ∆t = T/NT is the time step. A semi-
discrete approximation for the linear Schrödinger equation on (0, T )×Ωj is given by
the Crank-Nicolson scheme

i
ukj,n − ukj,n−1

∆t
+ ∆

ukj,n + ukj,n−1

2
+
Vn + Vn−1

2

ukj,n + ukj,n−1

2
= 0, 1 6 n 6 NT ,

where Vn = V (tn, x, y), tn = n∆t. It is useful to introduce new variables vkj,n =

(ukj,n + ukj,n−1)/2 with vkj,0 = u0 and Wn = (Vn + Vn−1)/2. The scheme could be
written as

(2.8)
2i

∆t
vkj,n + ∆vkj,n +Wnv

k
j,n =

2i

∆t
ukj,n−1.

The semi-discrete transmission condition is given by

Bjv
k
j,n = Bjv

k−1
j−1,n, x = aj , Bjv

k
j,n = Bjv

k−1
j+1,n, x = bj ,

where Bj = ∂nj
+ Sj , and Sj is the semi-discrete form of Sj

Robin : Sjv
k
j,n = −ip · vkj,n, j = 1, ..., N,(2.9)

Sm2p : Sjv
k
j,n = −i

m∑
s=0

ams v
k
j,n + i

m∑
s=1

ams d
m
s ϕ

n−1/2
j,s , j = 1, ..., N,(2.10)

where ams = eiθ/2/(m cos2( (2s−1)π
4m )), dms = eiθ tan2( (2s−1)π

4m ), s = 0, 2, ...,m, θ = π
4 .

For the transmission condition Sm2p, the auxiliary functions ϕn−1/2
j,s , s = 1, 2, ...,m are

defined as the solutions of the following set of equations
( 2i

∆t
+ ∆Γj

+Wn + dms
)
ϕ
n−1/2
j,s − vkj,n =

2i

∆t
ϕn−1
j,s ,

ϕnj,s = 2ϕ
n−1/2
j,s − ϕn−1

j,s , ϕ0
j,s = 0.
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Let us introduce the semi-discrete fluxes lkj,n and rkj,n, j = 1, 2, ..., N by

lkj,n(y) = ∂nj
vkj,n(aj , y) + Sjv

k
j,n(aj , y), y ∈ (yd, yu),

rkj,n(y) = ∂njv
k
j,n(bj , y) + Sjv

k
j,n(bj , y), y ∈ (yd, yu),

with two special cases lk1,n = rkN,n = 0. It is easy to see that on each subdomain, the
boundary conditions are

∂nj
vkj,n + Sjv

k
j,n = lkj,n, x = aj , ∂nj

vkj,n + Sjv
k
j,n = rkj,n, x = bj .

Besides, the semi-discrete transmission conditions could be written as

(2.11)
{
lkj,n(y) = −rk−1

j−1,n(y) + 2Sjv
k−1
j−1,n(bj−1, y), j = 2, 3, ..., N,

rkj,n(y) = −lk−1
j+1,n(y) + 2Sjv

k−1
j+1,n(aj+1, y), j = 1, 2, ..., N − 1.

The spatial approximation is realized by the standard Q1 finite element method.
The mesh size of a discrete element is (∆x,∆y). We denote by Nx (resp. Ny) the
number of nodes in x (resp. y) direction on each subdomain. Let us denote by vkj,n
(resp. ukj,n) the nodal interpolation vector of vkj,n (resp. ukj,n), lkj,n (resp. rkj,n) the
nodal interpolation vector of lkj,n (resp. rkj,n), Mj the mass matrix, Sj the stiffness
matrix and Mj,Wn the generalized mass matrix with respect to

∫
Ωj
Wnvφdx. Let MΓj

the boundary mass matrix, SΓj the boundary stiffness matrix andMΓj

Wn
the generalized

boundary mass matrix with respect to
∫

Γj
WnvφdΓ. We denote by Qj,l (resp. Qj,r)

the restriction operators (matrix) from Ωj to {aj} × (yd, yu) (resp. {bj} × (yd, yu))
and QTj = (QTj,l, Q

T
j,r). The matrix formulation for the transmission condition Robin

is therefore given by

(2.12) Robin :
(
Aj,n + ip ·MΓj

)
vkj,n =

2i

∆t
Mju

k
j,n−1 −MΓjQTj

(
lkj,n
rkj,n

)
,

where Aj,n = 2i
∆tMj − Sj + Mj,Wn

. The size of this linear system is Nx × Ny. If we
consider the transmission condition Sm2p, we have
(2.13)

Sm2p :



(
Aj,n + i(

m∑
s=0

ams ) ·MΓj

)
vkj,n =

2i

∆t
Mju

k
j,n−1

+ i

m∑
s=1

ams d
m
s MΓjQTj ϕ

n−1/2
j,s −MΓjQTj

(
lkj,n
rkj,n

)
,

−QjMΓjvkj,n +Qj(
2i

∆t
MΓj − SΓj + MΓj

Wn
+ dms MΓj )QTj ϕ

n−1/2
j,s

=
2i

∆t
QjMΓjQTj ϕ

n−1
j,s , for 1 6 s 6 m,

ϕ0
j,s = 0 for 1 6 s 6 m.

It is a linear system with unknown (vkj,n,ϕ
n−1/2
j,1 , ...,ϕ

n−1/2
j,m ) where ϕ

n−1/2
j,s is the

nodal interpolation of ϕn−1/2
j,s on the boundary. Considering (), the discrete form
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of SWR algorithm is given by

(2.14) Robin :



rk+1
j−1,n = −lkj,n + 2Qj,l · S̃jvkj,n, j = 2, 3, ..., N,

lk+1
j+1,n = −rkj,n + 2Qj,r · S̃jvkj,n, j = 1, 2, ..., N − 1,

S̃jv
k
j,n = −ip · vkj,n,(

Aj,n + ip ·MΓj

)
vkj,n =

2i

∆t
Mju

k
j,n−1 −MΓjQTj

(
lkj,n
rkj,n

)
,

(2.15) Sm2p :



rk+1
j−1,n = −lkj,n + 2Qj,l · S̃jvkj,n, j = 2, 3, ..., N,

lk+1
j+1,n = −rkj,n + 2Qj,r · S̃jvkj,n, j = 1, 2, ..., N − 1,

S̃jv
k
j,n = −i(

m∑
s=0

ams )vkj,n + i

m∑
s=1

ams d
m
s ϕ

n−1/2
j,s ,

Equation ( .13).

The equations () and () can be written globally in time. The two following
propositions show that the difference between the two transmission conditions appears
only on the definition of a matrix. We first define the discrete interface vectors

gk1 = (rk,T1,1 , r
k,T
1,2 , · · · , r

k,T
1,NT

)T ∈ CNy×NT ,

gkN = (lk,TN,1, l
k,T
N,2, · · · , l

k,T
N,NT

)T ∈ CNy×NT ,

gkj = (lk,Tj,1 , · · · , l
k,T
j,NT

, rk,Tj,1 , · · · , r
k,T
j,NT

)T ∈ C2Ny×NT , j = 2, 3, ...N − 1.

It is not hard to verify the following proposition by evaluating the block matrix-
vector product for the Robin transmission condition.

Proposition 2.1. For the Robin transmission condition, the global form in time
of the equation () is

(2.16) (Aj −Bj)v
k
j = Fj −MΓjQT

j g
k
j , j = 1, 2, ..., N,

where Bj = −ip·MΓj = −ip·diagNT
{MΓj}, QT

j,l = diagNT
{QTj,l}, QT

j,r = diagNT
{QTj,r}

and

Aj =


Aj,1
− 4i

∆tMj Aj,2
4i
∆tMj − 4i

∆tMj Aj,3
...

...
. . .

− 4i
∆tMj Aj,NT

 , vkj =



vkj,1
vkj,2
...
...

vkj,NT

 ,

Fj =
2i

∆t


Mju

k
j,0

−Mju
k
j,0

...
(−1)NT−1Mju

k
j,0

 , QT
j =


QTj,l QTj,r

QTj,l QTj,r
. . . . . .

QTj,l QTj,r

 .

Proposition 2.2. If we consider the transmission condition Sm2p, then the equa-
tion () could be written globally in time as ()

(Aj −Bj)v
k
j = Fj −MΓjQT

j g
k
j , j = 1, 2, ..., N,
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but with a different definition of Bj, given by
(2.17)

Bj = −



caMΓj + Y1,1
j

Y2,1
j caMΓj + Y2,2

j

Y3,1
j Y3,1

j caMΓj + Y3,3
j

...
...

. . .
YNT ,1
j YNT ,2

j YNT ,3
j · · · caMΓj + YNT ,NT

j

 ,

where ca = i(
∑m
s=0 a

m
s ).

Proof. According to (), for s = 1, 2, ...,m, n = 1, 2, ..., NT , we have

−QjMΓjvkj,n + Dnj,sϕ
n−1/2
j,s =

2i

∆t
QjMΓjQTj ϕ

n−1
j,s , n > 1,

⇒ ϕ
n−1/2
j,s = (Dnj,s)−1QjMΓjvkj,n + (Dnj,s)−1 2i

∆t
QjMΓjQTj ϕ

n−1
j,s ,

and ϕn−1
j,s = 2ϕ

n−3/2
j,s −ϕn−2

j,s , ϕ0
j,s = 0, n > 2,

where Dnj,s = Qj(
2i
∆tM

Γj − SΓj +MΓj

Wn
+ dms MΓj )QTj . By induction, we could have an

expression of ϕn−1/2
j,s :

(2.18) ϕ
n−1/2
j,s =

n∑
p=1

Ln,pj,s v
k
j,p,

where Ln,pj,s are matrix. Replacing ϕ
n−1/2
j,s by vkj,p in the first formula of () gives

(
Aj,n + i(

m∑
s=0

ams ) ·MΓj

)
vkj,n +

n∑
p=1

Yn,pj vkj,p =
2i

∆t
Mju

k
j,n−1 −MΓjQTj

(
lkj,n
rkj,n

)
,

(2.19)

where Yn,pj := −i
∑m
s=1 a

m
s d

m
s MΓjQTj L

n,p
j,s since

−i
m∑
s=1

ams d
m
s MΓjQTj ·

n∑
p=1

Ln,pj,s v
k
j,p = −i

n∑
p=1

( m∑
s=1

ams d
m
s MΓjQTj L

n,p
j,s

)
vkj,p.

Then, we could define the matrix Bj according to (), which leads to ().

2.3. Classical DDS algorithm. The other algorithm we consider in this paper
is the domain decomposition in space algorithm (DDS). The equation () is first
discretized in time on the entire domain (0, T )× Ω. We use the notations defined in
the previous subsection. The time interval (0, T ) is discretized uniformly with NT
intervals. The Crank-Nicolson scheme on (0, T )× Ω reads

i
un − un−1

∆t
+ ∆

un + un−1

2
+
Vn + Vn−1

2

un + un−1

2
= 0, 1 6 n 6 NT .

By introducing new variables vn = (un + un−1)/2 with v0 = u0 and Wn = (Vn +
Vn−1)/2, we get a stationary equation defined on Ω with unknown vn

(2.20) Lxvn := (
2i

∆t
+ ∆ +Wn)vn =

2i

∆t
un−1,
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and un = 2vn − un−1. Then, the optimized Schwarz algorithm is applied to the
stationary equation (). We denote by Rj , j = 1, 2, ..., N the restriction operator
from Ω to Ωj . At time tn, the classical algorithm reads

(2.21)


Lxv

k
j = 2i

∆tRjun−1, (t, x, y) ∈ (0, T )× Ωj ,

∂njv
k
j + Sjv

k
j = ∂njv

k−1
j−1 + Sjv

k−1
j−1 , x = aj ,

∂njv
k
j + Sjv

k
j = ∂njv

k−1
j+1 + Sjv

k−1
j+1 , x = bj ,

∂nj
vkj = 0, y = yl, yd.

with a special treatment for the two extreme subdomains: ∂n1
vk1 + S1v

k
1 = 0, x = a1,

∂nN
vkN +SNv

k
N = 0, x = bN . Since the interval (tn−1, tn) contains only one time step,

the DDS algorithm could be numerically interpreted as a combination of some SWR
algorithms

Algorithm 1: DDS algorithm
The initial datum is u0.
for n = 1, 2, ..., NT do

Apply the SWR algorithm to{
L u = 0, (t, x, y) ∈ (tn−1, tn)× Ω,
u(0, x, y) = un−1(x, y), (x, y) ∈ Ω,

where tn = n∆t.

3. Discrete interface problem. The aim of this section is to study the discrete
form of the interface problem (). We show in the next propositions that the N
problems () on each subdomain could be written globally as

(3.1) gk+1 = Lhgk + d,

where the global interface vector is defined by

gk = (gk,T1 ,gk,T2 , ...,gk,TN )T ∈ C(2N−2)×Ny×NT ,

d is a vector and Lh is a block matrix
(3.2)

Lh =



MPI 0︷︸︸︷ MPI 1︷ ︸︸ ︷ MPI 2︷ ︸︸ ︷ MPI N−2︷ ︸︸ ︷ MPI N−1︷︸︸︷
X2,1 X2,2

X1,4

X3,1 X3,2

X2,3 X2,4

· · ·
X3,3 X3,4

XN−1,1 XN−1,2

· · ·
XN,1

XN−1,3 XN−1,4



.

The matrix Lh is called interface matrix in this paper. The formula () is the
discrete form of the interface problem (). Actually, it could be interpreted as the
fixed point method for the linear system

(3.3) (I − Lh)g = d.
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Interpreting () as () allows to use the Krylov methods [] (ex. Gmres and
Bicgstab), which could accelerate the convergence according to the numerical tests in
Section. We remark that in the classical algorithm, the matrix Lh is not explicitly
known. It is considered as an operator. To implement the fixed point method or
Krylov methods, it is enough to define the application of I − Lh to a vector.

Proposition 3.1. If we consider the Robin transmission condition, the discrete
form of the interface problem is given by () .

Proof. According to (), () and the definitions of gk, it is easy to verify
that

(3.4)

Xj,1 = −I − 2ip ·Qj,l(Aj −Bj)
−1MΓjQT

j,l,

Xj,2 = −2ip ·Qj,l(Aj −Bj)
−1MΓjQT

j,r,

Xj,3 = −2ip ·Qj,r(Aj −Bj)
−1MΓjQT

j,l,

Xj,4 = −I − 2ip ·Qj,r(Aj −Bj)
−1MΓjQT

j,r.

Proposition 3.2. If we consider the transmission condition Sm2p, then () is
the discrete form of the interface problem.

Proof. By using (), () and (), we have

S̃jv
k
j,n = −cavkj,n + i

m∑
s=1

ams d
m
s

n∑
p=1

Ln,pj,s v
k
j,p = −cavkj,n + i

n∑
p=1

( m∑
s=1

ams d
m
s Ln,pj,s

)
vkj,p.

We could easily verify that

(3.5)

Xj,1 = −I + 2Qj,lB
S
j (Aj −Bj)

−1MΓjQT
j,l,

Xj,2 = 2Qj,lB
S
j (Aj −Bj)

−1MΓjQT
j,r,

Xj,3 = 2Qj,rB
S
j (Aj −Bj)

−1MΓjQT
j,l,

Xj,4 = −I + 2Qj,rB
S
j (Aj −Bj)

−1MΓjQT
j,r,

where the matrix BS
j is defined by

BS
j =


−caI + i

∑m
s=1 a

m
s d

m
s L1,1

j,s

i
∑m
s=1 a

m
s d

m
s L2,1

j,s −caI + i
∑m
s=1 a

m
s d

m
s L2,2

j,s
...

...
. . .

i
∑m
s=1 a

m
s d

m
s LNT ,1

j,s i
∑m
s=1 a

m
s d

m
s LNT ,2

j,s · · · −caI + i
∑m
s=1 a

m
s d

m
s LNT ,NT

j,s

 .

We are interested in the structure of the subblock of Lh for time independent
potential V = V (x, y)

(3.6)

X1,4 = {x1,4
n,s}16n,s6NT

,

Xj,1 = {xj,1n,s}16n,s6NT
, Xj,2 = {xj,2n,s}16n,s6NT

,

Xj,3 = {xj,3n,s}16n,s6NT
, Xj,4 = {xj,4n,s}16n,s6NT

, j = 2, 3, ..., N − 1,

XN,1 = {xN,1n,s }16n,s6NT
.

where xj,1n,s, xj,2n,s, xj,3n,s, xj,4n,s ∈ CNy×Ny are submatrices.
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This structure is described in Figure for 3 time steps and 6 nodes on the interface
between two subdomains. Each sub-diagonal block is identical. We present this
property mathematically in proposition with the transmission condition Robin or
Sm2p. The demonstration is similar to that for one dimensional Schrödinger equation
[]. The formal difference is that the flux are scalar in one dimension, but here lkj,n
and rkj,n are vectors.

Fig. 3. Block structure, NT = 3, Ny = 6.

Proposition 3.3. For the transmission Robin (resp. Sm2p), assuming that the
linear system () (resp. () ) is not singular, if V = V (x, y), then the matrix
X1,4, Xj,1,Xj,2, Xj,3, Xj,4, j = 2, 3, ..., N − 1 and XN,1 are block lower triangular
matrices and they satisfy

x1,4
n,s = x1,4

n−1,s−1,

xj,1n,s = xj,1n−1,s−1, x
j,2
n,s = xj,2n−1,s−1,

xj,3n,s = xj,3n−1,s−1, x
j,4
n,s = xj,4n−1,s−1, j = 2, 3, ..., N − 1,

xN,1n,s = xN,1n−1,s−1,

for 2 6 s 6 n 6 NT .
We now consider the structure of the sub-blocks of Lh for V = 0.
Proposition 3.4. Assuming that the matrix Aj − Bj is not singular with the

Robin or Sm2p transmission condition, if the potential V = 0 and the size of subdomains
Ωj are equal (b1 − a1 = b2 − a2 = ... = bN − aN ), then the subblocks of Lh satisfy

(3.7)
X2,1 = X3,1 = · · · = XN,1, X2,2 = X3,2 = · · · = XN−1,2,

X2,3 = X3,3 = · · · = XN−1,3, X1,4 = X2,4 = · · · = XN−1,4.

Proof. Under the assumptions, it is easy to see that

A1 = A2 = · · · = AN , Mj,Wn = 0, MΓ1 = MΓ2 = · · · = MΓN ,

and

Q1,l = Q2,l = · · · = QN,l, Q1,r = Q2,r = · · · = QN,r.

Thus

A1 = A2 = · · · = AN , B1 = B2 = · · · = BN , Q1 = Q2 = · · · = QN ,

and BS
1 = BS

2 = · · · = BS
N for the transmission condition Sm2p. The conclusion is

obvious from () or ().
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4. New algorithms for free Schrödinger equation.

4.1. New SWR algorithm. Based on the propositions in the previous section,
we propose here a new SWR algorithm for the free Schrödinger equation V = 0. We
always suppose that the size of each subdomain is identical.

Algorithm 2: New SWR algorithm, V = 0

1: Build Lh and d in (I − Lh)g = d explicitly.
2: Solve the linear system (I − Lh)g = d by an iterative method

(fixed point method or Krylov methods).
3: Solve the Schrödinger equation on each subdomain on

(0, T )× Ωj using the flux obtained from step 2.

Mathematically, this new SWR algorithm is identical to the classical one. The
difference is that in the new algorithm, we construct explicitly the matrix Lh and the
vector d (the first step). We are going to show that this construction is not costly
and it is super-scalable in theory. In the formulas () and (), we consider lkj,n
and rkj,n as inputs, and lk+1

j+1,n and rk+1
j−1,n as outputs:

inputs: lkj,n, r
k
j,n −→

Robin : ()
Sm2p : () −→ outputs :lk+1

j+1,n, r
k+1
j−1,n.

It is obvious that

d =


d1,r

d2,l

d2,r

...
dN,l

 = Rh · 0, where dj−1,r =


rk+1
j−1,1

rk+1
j−1,2
...

rk+1
j−1,NT

 , dj+1,l =


lk+1
j+1,1

lk+1
j+1,2
...

lk+1
j+1,NT

 ,

and the vectors rk+1
j−1,n and lk+1

j+1,n, n = 1, 2, ..., NT are obtained by () or ()
with

lkj,n = rkj,n = 0, n = 1, 2, ..., NT , j = 1, 2, ..., N.

The Schrödinger equation is solved on each subdomain (0, T )×Ωj , j = 1, 2, ..., N one
time. The vector is stored in a distributed manner using the PETSc library []

d = 2



d1,r

...
dj,l
dj,r
...

dN,l



}
MPI 0, NT ×Ny elements}
MPI j, 2NT ×Ny elements

}
MPI N , NT ×Ny elements

We have seen in Proposition and Proposition that if the geometries of the
subdomains are identical and the potential is zero, then it is sufficient to compute four
subblocks to explicitly build the matrix Lh. Without loss of generality, we build the
blocks X2,1, X2,2, X2,3 and X2,4. We define the vectors es = (0, 0, ..., 1, ...0) ∈ CNT ,
where all the elements are zero except the s-th, which is one. The columns s, s =



12

1, 2, ..., Ny of X2,1 and X2,3 are

X2,1


es
0
...
0

 =


rk+1

1,1

rk+1
1,2
...

rk+1
1,NT

− d1,r and X2,3


es
0
...
0

 =


lk+1
3,1

lk+1
3,2
...

lk+1
3,NT

− d3,l,

where the vectors rk+1
1,n and lk+1

3,n , n = 1, 2, ..., NT are obtained by the formula ()
or () with

lk2,1 = es, l
k
2,n = 0, n = 2, 3, ..., NT ,

rk2,n = 0, n = 1, 2, ..., NT .

In the same way, the columns s, s = 1, 2, ...NT of X2,2 and X2,4 are

X2,2


es
0
...
0

 =


rk+1

1,1

rk+1
1,2
...

rk+1
1,NT

− d1,r and X2,4


es
0
...
0

 =


lk+1
3,1

lk+1
3,2
...

lk+1
3,NT

− d3,l,

where the vectors rk+1
1,n and lk+1

3,n , n = 1, 2, ..., NT are obtained by the formula ()
or () with

lk2,n = 0, n = 1, 2, ..., NT ,

rk2,1 = es, r
k
2,n = 0, n = 2, 3, ..., NT .

Concretely, the Schrödinger equation on a single subdomain (0, T )×Ω2 is solved
2Ny times to build the matrix Lh. The resolutions are all independent. We fix one
MPI process per domain. To construct the matrix Lh, we use the N MPI processes to
solve the equation on a single subdomain ((0, T )×Ω2) 2Ny times. Each MPI process
solves the Schrödinger equation on a single subdomain maximum

Nmpi := [
2Ny
N

] + 1 times,

where [x] is the integer part of x. This construction is super-scalable in theory. If N is
doubled, then the size of subdomain is divided by two and Nmpi is also approximately
halved.

The transposed matrix of Lh is stored in a distributed manner in the form of the
PETSc library. As shown by (), the first block column of Lh is in MPI process
0. The second and third blocks columns are in MPI process 1, and so on for other
processes. The size of each block is (NT × Ny) × (NT × Ny). Each block contains
(NT + 1)×NT /2×N2

y nonzero elements.

4.2. New DDS algorithm. We denote the interface problem of{
L u = 0, (t, x, y) ∈ (tn−1, tn)× Ω,
u(0, x, y) = un−1(x, y), (x, y) ∈ Ω,

by (I − Lh,n)gn = dn where Lh,n is matrix and dn is vector. According to () or
(), the interface matrix is independent of the initial datum, thus we have
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Proposition 4.1. For the transmission Robin and Sm2p, the interface matrix
satisfy

Lh,1 = Lh,2 = ... = Lh,NT
.

We have interpreted the DDS method as combination of some SWR algorithms
(Algorithm). As a direct corollary of the new SWR algorithm, we propose here a
new DDS algorithm

Algorithm 3: New DDS algorithm, V = 0

1: Build Lh,1 explicitly.
2: The initial datum is u0.
for n = 1, 2, ..., NT do

2.1: Build dn on time tn,
2.2: Solve the linear system (I − Lh,n)gh,n = dn by an
iterative method, where the initial vector is chosen as
gh,n−1.
2.3: Solve the Schrödinger equation on each subdomain
(tn−1, tn)×Ωj using the flux from step 2.2 to compute un.

5. Preconditioned algorithms for general linear potential. In the case of
a non zero potential, the proposition does not hold. Thus we could not construct
easily the matrix Lh. The aim of this section is to present preconditioned algorithms
for the Schrödinger equation () with a nonzero potential V = V (t, x, y). Adding a
preconditioner in () leads to a preconditioned SWR algorithm

(5.1) P−1(I − Lh)g = P−1d,

We propose here

P = I − L0,

where L0 is the interface matrix in () defined for the free Schrödinger equation. As
mentioned in the previous section, it could be easily constructed numerically and it
is stored in a distributed manner. We have explained that the consumed memory of
each MPI process is 4(Ny)2 for j = 2, 3, ..., N − 1 and 2(Ny)2 for j = 1, N . The size
of the matrices for each subdomain is Nx × Ny. Thus, the memory consumed by a
direct LU method is about (Nx×Ny)2. It is usually much larger than 4(Ny)2. Thus,
the storage of P is not very important.

For any vector y, the vector x := P−1y is computed by solving the linear system

Px = y.

with Krylov methods (Gmres or Bicgstab). However, the size of P increases linearly
with the number of subdomains N . Also the number of operations for multiplying
L0 and a vector (which is the basic operation of Krylov method) is not negligible
compared with solving the equations on each subdomain if N is large. Thus, the
application of the preconditioner increases.

We could derive straightforwardly a preconditioned DDS algorithm from the point
of view of Algorithm. The preconditioner for all time steps n = 1, 2, ..., NT is always
chosen as

P = I − L0,1,
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where L0,1 is the interface matrix of{
i∂tu+ ∆u = 0, (t, x, y) ∈ (0,∆t)× Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ Ω.

To construct this preconditioner, it is enough to solve the free Schrödinger equation
on subdomain (0,∆t)× Ω2.

6. Numerical results. The complete domain Ω = (−16, 16)× (−8, 8) is decom-
posed into N equal subdomains (ex. for N = 3 see Figure). The size of element is
∆x×∆y. We consider two different meshes

∆x = 1/128, ∆y = 1/8;

∆x = 1/2048, ∆y = 1/128.

With the first mesh, it is possible to solve the Schrödinger equation () on the entire
domain on a simgle node of a cluster composed of 92 nodes (16 cores/node, Intel
Sandy Bridge E5-2670, 32GB memory/node). Thus we could observe if the parallel
algorithms allow to reduce the total computation time of the sequential algorithm.
We are interested in the strong scalability up to 1024 subdomains. To make sure that
each subdomain contains enough nodes, the second mesh is used for large N . The
initial datum in this section is

(6.1) u0(x, y) = e−x
2−y2−0.5ix. (see Figure)

Fig. 4. Initial datum |u0|, u0 = e−x2−y2−0.5ix.

This section is composed of two subsections, one consider the free Schrödinger
equation (V = 0), the other consider the Schrödinger equation with a linear potential
V = x2 + y2.

6.1. The free Schrödinger equation. In this part, first we compare the SWR
method and the DDS algorithm. Next, the classical DDS algorithm and the new DDS
algorithm are compared. Finally, the influence of parameters is studied in Section6.1.3.
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6.1.1. SWR vs. DDS. We compare the SWR method and the DDS method
in the framework of classical algorithm. The time step is fixed as ∆t = 0.01. The
mesh is ∆x = 1/128, ∆y = 1/8. Both methods are applied to (0, T ) × Ω with
some different final time T . We denote by NS

iter the number of iterations required
for convergence of the SWR method, ND

iter the number of iterations of the first time
step of the DDS method and TS (resp. TD) the total computation time of the SWR
method (resp. DDS method). Table presents the numbers of iterations and the
computation times of both methods for N = 2 and N = 32, where the transmission
condition is Sm2p,m = 5. The initial vector is the zero vector and the Gmres method
is used on the interface problem. We could see that NS

iter increase with the final time
T and NS

iter > ND
iter. Thus TS > TD. In the following subsections, without special

Table 1
Number of iterations and computation time of the SWR method and the DDS method for

N = 2, 32.

T N = 2 N = 32

NS
iter ND

iter TS TD NS
iter ND

iter TS TD

0.05 17 9 17.6 12.3 17 10 1.5 1.9
0.1 25 9 44.5 21.5 25 10 3.5 1.8
0.15 30 9 78.4 30.9 31 10 6.4 2.6
0.2 44 9 147.9 40.0 45 10 11.8 3.4
0.25 51 9 215.0 49.3 52 10 16.9 4.1
0.3 55 9 271.0 58.6 55 10 21.2 4.8
0.35 58 9 332.1 67.9 59 10 26.3 5.6
0.4 61 9 402.9 77.2 62 10 32.0 6.3
0.45 64 9 474.5 86.4 65 10 37.6 7.1
0.5 68 9 557.6 96.1 73 10 46.3 7.8

statement, we only consider the DDS method since it does requires less computation
time.

6.1.2. Comparison of classical and new algorithms. In this part, we are
interested in the performance (number of iterations and computation time) of the
classical and the new algorithms with the two transmission conditions. We observe the
strong scalability of the two algorithms. Both algorithms and transmission conditions
are compared in the framework of the DDS method. The final time is T = 0.5 and the
time step is fixed as ∆t = 0.01. The Gmres method is used on the interface problem.
The initial vector is the zero vector. Since there is no theoretical result for us on the
choice of the optimal parameter p in the Robin transmission condition, we make tests
with different p to find the numerically optimal one. However, we will see in the next
subsection that the number of iterations and the computing time are not sensitive to
p using the Gmres method on the interface problem. Thus, it is difficult to choose the
optimal one. We take p = 15 for the mesh ∆x = 1/128, ∆y = 1/8 and p = 10 for the
mesh ∆x = 1/2048, ∆y = 1/64. For the transmission condition Sm2p, we take m = 5
according to the tests conducted in the following subsection.

We first consider the mesh ∆x = 1/128, ∆y = 1/8. Figure presents the con-
vergence history of the first time step for N = 2 and N = 32. We also show the
number of iterations of the first time step and the total computation time in Table
for N = 2, 4, 8, 16, 32. Since the boundary condition is imposed on the boundary of Ω,
the computation time of solving the Schrödinger equation () on the entire domain
are not same. We denote by "Robin ref" for the Robin transmission condition and
"S5

2p ref." for the transmission condition S5
2p. We could see that



16

1. the new algorithm could reduce the computation time compared with the
classical algorithm,

2. the number of iterations is almost independent of the number of subdomains
and the algorithm is scalable,

3. the algorithm converges faster with the transmission condition Sm2p, but it
takes more computational time since the application of the transmission condition
Sm2p is more expensive than the Robin transmission condition.
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Fig. 5. Convergence history of the first time step for N = 2 (left) ,N = 32 (right).

Table 2
Number of iterations of the first time step and total computation time in seconds, T = 0.5,

∆t = 0.01, ∆x = 1/128, ∆y = 1/8.

N 2 4 8 16 32
Robin∗ 11 11 11 11 11Number of iterations
S5
2p 9 9 9 9 10

Robin ref. 16.0
Robin cls. 63.1 32.6 17.5 11.0 5.4
Robin new 30.0 9.7 4.4 2.5 1.3
S5
2p ref. 22.1

S5
2p cls. 96.1 49.8 26.7 15.0 7.8

Computation time

S5
2p new 38.2 14.7 6.6 3.4 1.8

*: p = 15.

Next we make tests with the mesh ∆x = 1/2048 ∆y = 1/64. The entire domain
is divided into N = 128, 256, 512, 1024 subdomains. We present in Figure the
convergence history for N = 256, 1024 and in Table the numbers of iterations and
the total computation time. We can see that the classical and the new algorithms
are not very scalable since the number of iterations increases with the number of
subdomains. However, the new algorithm takes less computation time. Besides, the
number of iterations required of the transmission condition Sm2p is less than the Robin
transmission condition, but the computation times are similar.

6.1.3. Influence of parameters. We study in this part the influence of param-
eters: m in the transmission condition Sm2p and p in the transmission condition Robin.
The time step is fixed as ∆t = 0.01. The mesh is ∆x = 1/128, ∆y = 1/8. Three differ-
ent methods are used on the interface problem: fixed point method, Gmres method
and Bicgstab method. Two initial vectors are considered: the zero vector and the
random vector. In our tests, the algorithm initialized with the zero vector converges
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Fig. 6. Convergence history of the first time step for N = 256 (left), N = 1024 (right).

Table 3
Number of iterations of the first time step and total computation time in seconds, T = 0.5,

∆t = 0.01, ∆x = 1/2048, ∆y = 1/64.

N 128 256 512 1024
Robin∗ 14 16 22 36Number of iterations
S5
2p 12 14 19 29

Robin cls. 250.2 143.8 92.5 101.4
Robin new 59.1 38.1 36.2 52.3
S5
2p cls. - 187.5 162.6 127.5Computation time

S5
2p new - 42.7 36.2 45.0

-: the memory is insufficient; *: p = 10.

faster than with the random vector. However, in this subsection, our goal is to study
the influence of parameters. As explained in [], initialization with a zero vector to
compute a smooth solution makes that the error contains only low frequencies and
could therefore draw the wrong conclusions. Thus we consider both of the two initial
vectors, but we have no wish to compare them.

The parameter m in the transmission condition Sm2p. The numbers of iterations
of the first time step with some differentm are presented in Table. We could see that
the number of iterations is not sensitive to the parameterm if the Gmres method or the
Bicgstab method is used on the interface problem. However, if the fixed point method
is used, increasing the order of Sm2p does not ensure better convergence property. The
transmission condition Sm2p is based on formal Padé approximation of square root
operator, this approximation may deteriorate for large m.

The parameter p in the transmission condition Robin. We present in Table5 the numbers of iterations with some different p for N = 32. From the table, we
can see that the algorithm is not sensitive to p if the Gmres method or the Bicgstab
method is used on the interface problem, while it exists an optimal p (marked with
an underline) if the fixed point method is used. Besides, the Krylov methods could
accelerate the convergence, especially if the initial vector is the random vector.

In conclusion, the difference between the two transmission conditions is clear if
the fixed point method is applied to the interface problem and the initial vector is
the random vector (see Tables and together). The number of iterations for the
transmission condition Sm2p is less than that for the transmission condition Robin. But
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Table 4
Number of iterations for different m, N = 32.

Fixed point Gmres Bicgstab
m Zero Random Zero Random Zero Random
3 34 124 11 30 6 17
4 26 96 10 28 6 16
5 21 79 10 27 5 15
6 18 68 9 26 5 15
7 17 61 9 25 5 14
8 18 56 9 25 5 14
9 19 52 10 25 5 14
10 21 50 10 25 5 14
15 32 46 11 26 6 15
20 43 50 12 28 6 16

Table 5
Number of iterations for different p, N = 32.

Fixed point Gmres Bicgstab
p Zero Random Zero Random Zero Random
5 57 580 11 35 6 21
10 34 315 11 32 6 19
15 32 239 11 31 6 18
20 35 209 11 31 6 19
25 40 200 11 32 6 19
30 46 199 11 32 6 19
35 52 204 12 33 6 19
40 59 209 12 33 6 20
45 65 222 12 34 6 20
15 32
26 198

the difference is smaller using the Krylov methods and the zero vector as the initial
vector. From the point of view of computation time, the zero vector and the Gmres
method are a good choice. According to the tests in the previous subsection, the
computation time for the two transmission conditions are similar.

6.2. Case of non-zero potential. The aim of this section is to compare the
classical algorithm and the preconditioned algorithm in the framework of the DDS
method with the fixed point method used on the interface problem. We first consider
the potential V = x2 + y2. Let us donate by Nnopc (resp. Npc) the number of
iterations required for convergence of the classical algorithm (resp. the preconditioned
algorithm) and Tnopc (resp. Tpc) the computation time of the classical algorithm (resp.
the preconditioned algorithm).

First, we present in Figure the convergence history of the first time step for
N = 2, 32 subdomains. Table shows the number of iterations of the first time
step and the total computation time to realize a complete simulation. The mesh is
∆x = 1/128, ∆y = 1/8. As mentioned before, it is possible to solve the Schrödinger
equation on the entire domain with this mesh. The computation time is denoted by
T ref . We could see that

1. all algorithms are robust and the number of iterations is independent of
number of subdomains,

2. the classical algorithm and the preconditioned algorithm are both scalable,
3. the preconditioner allows to reduce the number of iterations and the total

computation time,
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4. Tnopc, Tpc are less than T ref if N is large.
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Fig. 7. Convergence history of the first time step of the classical the the preconditioned algo-
rithm, ∆t = 0.01, ∆x = 1/128, ∆y = 1/8, N = 2 (left), N = 32 (right).

Table 6
Number of iterations of the first time step and total computation time in seconds of the classical

algorithm and the preconditioned algorithm, T = 0.5, ∆t = 0.01, ∆x = 1/128, ∆y = 1/8.

N 2 4 8 16 32
Nnopc, m = 7 17 17 17 17 17
Npc, m = 5 5 5 5 5 5

T ref 16.1
Tnopc 142.7 75.3 40.1 23.9 12.1
Tpc 91.3 43.3 22.8 13.1 7.3

Next, we consider the mesh ∆x = 1/2048,∆y = 1/64. The convergence history
and the computation time are presented in Figure and Table. The parameters m
used are also presented in Table. We can see that the preconditioned algorithm is
more robust and requires much less number of iterations. However the computation
time of the two algorithms are not quite scalable since:

1. for the classical algorithm, the number of iterations increases with the number
of subdomains,

2. for the preconditioned algorithm, the size of preconditioner is (2N − 2) ×
NT × Ny. This increases with the number of subdomains N . Thus, the application
of preconditioner takes more computation time with bigger N .

Table 7
Computation time in seconds of the classical algorithm and the preconditioned algorithm, ∆t =

0.01,∆x = 1/2048,∆y = 1/64.

N 256 512

Classical algorithm m 8 12
Tnopc 417.9 344.9

Preconditioned algorithm m 5 6
Tpc 259.9 268.7

We finish this sub section by some numerical tests for a time dependent potential
V = 5(x2 + y2)(1 + cos(4πt)). We could get similar conclusion by the results shown
in table.

In conclusion, the preconditioner allows to reduce significantly the number of
iterations and the computation time.



20

0 5 10 15 20 25 30 35 40
Number of iterations

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

A
b
so

lu
te

 R
e
si

d
u
a
l

No Preconditioned
Preconditioned

0 10 20 30 40 50 60
Number of iterations

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

A
b
so

lu
te

 R
e
si

d
u
a
l

No Preconditioned
Preconditioned

Fig. 8. Convergence history of the first time step of the classical algorithm and the precondi-
tioned algorithm, ∆t = 0.01, ∆x = 1/2048, ∆y = 1/64, N = 256 (left), N = 512 (right).

Table 8
Number of iterations of the first time step and total computation time in seconds of the classical

algorithm and the preconditioned algorithm, T = 0.5, ∆t = 0.01, ∆x = 1/128, ∆y = 1/8.

N 2 4 8 16 32
Nnopc, p = −10 31 31 31 31 31
Npc, p = −10 9 9 9 9 9

T ref 263.2
Tnopc 272.6 138.5 72.4 40.5 19.5
Tpc 205.6 101.4 52.2 29.4 14.8

7. Conclusion. We applied the SWR method and the DDS method to the two
dimensional linear Schrödinger equation. We proposed a new algorithm if the poten-
tial V = 0 and a preconditioned algorithm for a general linear potential, which could
reduce the number of iterations and the computation time compared with the classical
one. According to the numerical tests, the preconditioned algorithm is not sensitive
to the transmission conditions (Robin, Sm2p) and the parameters in these conditions.
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