
HAL Id: hal-01164981
https://hal.science/hal-01164981

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Checking and Game theory for Synthesis of
Safety Rules

Mathilde Machin, Fanny Dufossé, Jérémie Guiochet, David Powell, Matthieu
Roy, Hélène Waeselynck

To cite this version:
Mathilde Machin, Fanny Dufossé, Jérémie Guiochet, David Powell, Matthieu Roy, et al.. Model-
Checking and Game theory for Synthesis of Safety Rules. 2015 IEEE 16th International Symposium
on High Assurance Systems Engineering (HASE), Jan 2015, Daytona Beach Shores, United States.
pp.36-43, �10.1109/HASE.2015.15�. �hal-01164981�

https://hal.science/hal-01164981
https://hal.archives-ouvertes.fr

Model-checking and Game Theory
for the Synthesis of Safety Rules

Mathilde Machin, Fanny Dufossé, Jérémie Guiochet, David Powell, Matthieu Roy, Hélène Waeselynck
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Université de Toulouse, LAAS, F-31400 Toulouse, France

Abstract—Ensuring that safety requirements are respected is
a critical issue for the deployment of hazardous and complex
reactive systems. We consider a separate safety channel, called a
monitor, that is able to partially observe the system and to trigger
safety-ensuring actuations. We address the issue of correctly
specifying such a monitor with respect to safety and liveness
requirements. Two safety requirement synthesis programs are
presented and compared. Based on a formal model of the system
and its hazards, they compute a monitor behavior that ensures
system safety without unduly compromising system liveness. The
first program uses the model-checker NuSMV to check safety
requirements. These requirements are automatically generated
by a branch-and-bound algorithm. Based on a game theory
approach, the second program uses the TIGA extension of
UPPAAL to synthesize safety requirements, starting from an
appropriately reformulated representation of the problem.

Index Terms—Model checking, Game theory, Supervisor syn-
thesis, Safety Monitoring, Safety Rules, Reactive Systems.

I. INTRODUCTION

Ensuring safety is a critical issue for the deployment of
hazardous and complex reactive systems such as autonomous
robots or uninhabited vehicles. The complexity of such sys-
tems makes it difficult to check their correctness statically.
Therefore, we consider the implementation of runtime safety
measures in a device called a safety monitor [1] that is
independent from the main controller channel and simple
enough to be verifiable. The monitor is equipped with the
necessary means for context observation (i.e., sensors) and
able to trigger, when necessary, appropriate safety interven-
tions. The monitor is in charge of ensuring a safe behavior of
the system with minimal impact on the system’s functionality,
which we characterize by the notion of permissiveness. The
monitor behavior is specified declaratively by a set of safety
rules of the form: if condition then intervention.

We address the issue of specifying such a monitor. Our
previous work [2] defined a process to elicit the safety rules
starting from an analysis of hazards. This is an offline process
that aims to produce safety rules that can be implemented in
an online safety monitor (implementation issues are however
not discussed in this paper). While the process was originally
manual, we recently started to investigate the use of formal
methods to automate some of its steps [3]. This paper fo-
cuses on one of the steps: the synthesis of permissive rules
for a given safety invariant. It presents two alternative rule
synthesis programs we developed based on off-the-shelf tools,
respectively a model checker and a game theory tool.

First, Section II presents the concepts and the formal support
for the safety rules and Section III the synthesis approach.
Then, the two safety rule synthesis programs are presented: in
Section IV, a program using the model checker NuSMV [4]
is developed to provide all satisfying safety rules; in Section
V, a game theory model allows the rules to be synthesized by
TIGA [5], the game theory extension of the UPPAAL model-
checker. These rule synthesis tools are compared in Section
VI. Section VII discusses related work.

II. FORMALISATION

We first present the safety monitoring concepts and defini-
tions to formally express a discrete model of the system, and
the properties the safety rules should comply with.

A. Concepts

We consider safety monitors as described in the IEC 61508
standard [1]. We assume the following:
• The monitor is independent of the control channel.
• Variable values observed by the monitor are correct.
• Monitor reaction is faster than the control channel.
• Safety interventions are always successful.

The monitor must accommodate any variation of the environ-
ment and any dysfunction of the control channel, including
arbitrary behavior of the latter, e.g., when it is faulty.

We propose a method based on a hazard analysis to syn-
thesize safety rules that together specify a safety monitor.
This hazard analysis results in a set of safety invariants.
A safety invariant (SI) is a property that ensures hazard
avoidance. SI violation places the system in a catastrophic
state, from which we assume that no recovery is possible.
To prevent SI violation, the monitor is able to trigger safety
interventions. Safety interventions are expressed as constraints
on how system variables can change. Safety rule synthesis
consists in deciding what intervention to apply and when. We
distinguish two types of safety interventions:
• A safety inhibition prevents a change in system state.

When triggered, an inhibition is supposed to be immedi-
ately operational.

• A safety action triggers a change in system state (and
implicitly prevents other state changes).

A safety rule is a high-level specification of the mon-
itor, of the form: if [safety trigger condition] then [safety
intervention]. The intervention is applied when the safety

Warning states

Catastrophic states

Safe states

Path aborted
by action

Path aborted
by inhibition

safety '
action

xs
xc xw

SI

safety
inhibition

Fig. 1: Partition in catastrophic, warning and safe states

trigger condition is true. This condition has also to meet the
intervention precondition. For example, locking a door is only
meaningful when the door is closed.

As illustrated in Fig. 1, the safety invariant (SI) defines
a partition between catastrophic states and non-catastrophic
states of the system. Interventions have to be applied to prevent
catastrophes. They thus add constraints to the physically
possible system behavior to prevent SI violation. The set
of non-catastrophic states is partitioned into warning states,
where interventions are required, and safe states, in which the
system operates without constraint. The warning states, which
correspond to the safety margin, are defined such that every
path from a safe state xs to a catastrophic state xc, passes
through a warning state xw (see Fig. 1).

The objective of the method is to provide for each SI a set
of safety rules to avoid the violation of SI. We define this set
of safety rules as a satisfying safety strategy, that ensures:
• Safety, the ability to ensure that the safety invariant is

never violated, i.e., that catastrophic states are unreach-
able.

• Permissiveness, the ability to allow the system to perform
its tasks.

• Validity, that ensures that no intervention is applied while
its precondition does not hold.

Safety and permissiveness are antagonistic. We take this
antagonism into account by designing the strategy to be
maximally permissive with respect to safety, i.e., to restrict
the permissiveness only to the extent necessary to ensure
safety. However, since interventions must be applied in non-
catastrophic states, some reduction in permissiveness must
usually be accepted in order to ensure safety. The more the
safety margin is extended, the less the monitor is permissive.

B. Discrete model

A safety invariant is expressed formally in the discrete
model with predicates on variables that are observable by the
monitor. We focus for now only on predicates involving a
variable compared to a fixed threshold. This type of safety
threshold is most amenable to formal verification and is used in
many real systems. Moreover, to keep models simple enough
to be validated, we model each invariant in a separate model.

We consider as a running example a mobile robot with
a folding manipulator arm, with the two following monitor
observations: v the velocity of robot movement, in absolute
value, and foldedarm a Boolean observation of the arm posi-
tion. The considered safety invariant is v < V0∨foldedarm =
true, i.e., the robot must either respect a (low) velocity limit
V0 or keep its arm folded. The safety monitor interventions are:
braking (further denoted by b) and locking the arm (denoted
by (a, as precondition, the arm must already be folded).
Interventions are modeled by use of the observable variables.

To specify the set of warning states, we try to partition the
value sets defined by the safety invariant for each variable.
For example, the velocity interval [0, V0[from the safety
invariant is partitionable, according to a safety margin m, into
two intervals [0, V0 −m[and [V0 −m,V0[. This margin will
enable interventions to be applied only in the states where
v ∈ [V0 − m,V0[. As the system cannot reach v ≥ V0 (set
of catastrophic states) without passing through [V0 − m,V0[
(set of warning states), an adequate intervention applied in
[V0 −m,V0[should prevent the system from reaching states
where v ≥ V0 (see Fig. 1). In the case of arm position, the
observation is Boolean. The set of values is the singleton
{true}, so it cannot be partitioned and no margin exists.

The domains of one observable variable is partitioned, and
each class of partition is now considered as a enumerated
value. For example, v ∈ {[0, V0 − m[may be represented
by v=0, v ∈ [V0 −m,V0[by v=1. The discrete model is the
Cartesian product of the classes of the partitions. For example,
Fig. 2 is the model built from the domains of v and foldedarm.
Each state of the discrete model is a region state, i.e., a sub-
set of system states. As defined, the partitions ensure that
each region contains only catastrophic system states or only
non-catastrophic system states. One region state is defined as
initial. The warning region states are those that lead the system
to the catastrophic region state in one step.

No assumption is made about the controller behavior. The
system model contains what is physically possible in the
system without a monitor. Safety interventions only remove
transitions. , i.e. possible behaviors, and cannot add transitions,
i.e., add physically impossible behaviors. Interventions model

W2

W1

W3

C

S1

S2

v < V0-m
foldedarm

V0-m≤v<V0
foldedarm

v ≥V0
¬foldedarm

v ≥V0
foldedarm

V0-m≤v<V0
¬foldedarm

v < V0-m
¬foldedarm

V=0 V=1 V=2

Fig. 2: The example discrete model with partitions
{true, false} for arm folding, and
{[0, V0 −m[, [V0 −m,V0[, [V0, Vmax[} for velocity

the fact that some transitions can be fired or inhibited by the
monitor. We assume that the monitor is always faster than the
system, i.e., when the system fires a transition, the monitor
always has enough time to apply interventions before the
system fires another transition. This assumption mainly relies
on the margin values, which must be calculated according to
the system dynamics.

The discrete model is formally defined by a set of variables
and their partitioned domains, the dependencies on these
variables, the definition of the catastrophic states, and the
declaration of the possible interventions. The graph produced
in Fig. 2 presents the region state model of the running
example. Such a visual representation is only presented for
explanatory purposes. We use a textual representation of the
graph, which is more amenable to automated analysis.

C. Formal safety, permissiveness and validity properties

Applying an intervention consists in removing some tran-
sitions from the discrete model. This is of course necessary
to ensure safety. Nevertheless, some removed transitions may
prevent the system from normally operating, which is a
permissiveness problem.

To assess the strategies that will be added to the previous
model, we need a formal definition of the safety, permis-
siveness and validity properties. To that end, we use CTL
(Computation Tree Logic). Time along paths is modeled by
three operators: X for a property to hold in the next state, G
to hold on the entire path, F to hold eventually. The branching
aspect is modeled by A, all the branches, and E, there exists a
branch. A CTL operator is composed of a branching operator
and a time operator. It is applied to states, or more generally,
to statements about the system state.

Safety of the system is naturally modeled as a temporal
property. Let cata be the negation of the safety invariant. A
strategy N is safe if N satisfies AG ¬ cata.

Permissiveness is translated by three liveness properties. In
the CTL formulation, these properties are applied to each non-
catastrophic state. Let Vnc be the set of non-catastrophic states.
• Simple liveness: ∀snc ∈ Vnc,EF snc.

Any non-catastrophic state is reachable from the initial
state.

• Universal liveness: ∀snc ∈ Vnc,AG EF snc.
Any non-catastrophic state is reachable from any reach-
able state.

• Continuous (and universal) liveness:
∀snc ∈ Vnc,AG EF

(
snc ∧ EG snc

)
.

Any non-catastrophic state is reachable and the automa-
ton can stay (indefinitely) in this state. If an action is
applied to the state, the system cannot stay in the state.

We choose to specify permissiveness according to these three
ordered properties, because permissiveness can be graded.
Indeed, it is usually impossible to ensure safety without some
loss of permissiveness, particularly with respect to continuous
liveness.

For safety, we pessimistically consider that several variables
may change their values simultaneously and independently.

We call such simultaneous modifications diagonal transitions
by reference to the two variable case (see Fig. 2). From the
permissiveness point of view, relying on those possible but
unlikely transitions to ensure liveness is not desirable. A more
complete definition of liveness properties that ignore diagonal
transitions during permissiveness checking is provided in [3]
and used by the tools we developed.

Validity checks that interventions are not applied in states
that violate their preconditions. Such an invariant is defined
as:

AG
∧

i∈Interventions
i→ preconditioni

where Interventions is the set of interventions and
preconditioni is the precondition associated with interven-
tion i.

III. SYNTHESIS PRINCIPLE

In this paper, we consider that safety invariants (SI) have
been identified through hazard analysis. Then, the SI are
analyzed one by one. For each SI, the objective is to identify a
safe and permissive strategy. As presented before, a strategy is
a set of safety rules. Each safety rule specifies the application
of an intervention in a warning state. Let I be the set of
interventions, of size m, and IC = 2I the set of intervention
combinations. For a given SI, if we consider n warning states,
a strategy will be noted N = (i1, . . . , ij , . . . , in), where ij ∈
IC is the application of an intervention combination (possibly
a single intervention) to the warning state j. For example, in
a model with two possible interventions a and b, and three
warning states, the strategy denoted N1 = ({a}, {a, b}, ∅)
means: intervention a is applied in state 0, both a and b in
state 1 and no intervention in state 2.

For the general case, with n warning states, and m interven-
tions, the number of possible strategies is 2mn. Among these
strategies, the objective is to determine satisfying strategies,
i.e., strategies that are valid, safe and permissive.

Using existing verification tools, we consider two ap-
proaches for discovering satisfying strategies. The first one,
presented in Section IV, synthesizes strategies through an ex-
ploration algorithm, and then uses a model checker (NuSMV)
to verify safety and permissiveness of these strategies. The
second approach, presented in section V, uses a tool for game
theory (TIGA) to synthesize winning strategies.

As safety invariants are analyzed separately, strategies might
be conflicting. Checking their consistency is a downstream
step, which is not addressed in this paper.

IV. STRATEGY SYNTHESIS USING NUSMV

A basic synthesis algorithm could enumerate every possible
strategy to check whether it satisfies the requested properties.
But complete enumeration is not desirable due to the exponen-
tial number of strategies. We designed an optimized method
to explore and prune the tree of strategies (branch-and-bound
algorithm). Notably, we focus on minimal satisfying strategies,
i.e., strategies for which each intervention is necessary. A
satisfying strategy N = (i1, . . . , in) is minimal if there does

not exist a different satisfying strategy N ′ = (i′1, . . . , i
′
n) such

that i′1 ⊆ i1, . . . , i′n ⊆ in. During exploration, the branch-
and-bound algorithm calls NuSMV to check the pruning
conditions. The choice of NuSMV is discussed in Section VII.

A. Discrete model and properties in NuSMV

The formalization of our problem in NuSMV is natural and
consists of a straightforward rewriting of properties defined
in Section II-C: validity (valid), safety (safe) and permis-
siveness (perm) with a focus on universal liveness.

SMV enables the declaration of integer variables and of
constraints on their behavior. The dynamic aspect is expressed
using the next operator. From variable ranges, NuSMV
builds transparently the Cartesian product. When no constraint
is declared, all combinations of variable values (i.e., region
states) are possible and all transitions between each pair of
states are implicitly declared. Then constraints are added to
delete states and transitions that have no physical meaning
or are not physically feasible due to dependencies between
variables. In our discrete model, the continuity constraint for
variables is expressed as next(x):={x,x+1,x-1} (which
means that next value of x will be x, x + 1 or x − 1). For
example, the braking action is modeled by:

braking → ((v 6= 0→ next(v) = v − 1)

∧ (v = 0→ next(v) = 0))

B. Branch-and-bound algorithm for strategy synthesis

NuSMV is first used to automatically extract the warn-
ing states. We can thus limit the search to strategies with
interventions applied in warning states only, rather than in
all non-catastrophic states. Then, we use a branch-and-bound
algorithm to explore candidate strategies. Fig. 3 presents the
resulting search tree for our running example with three
warning states. In the figure, we adopt a simplified notation
where strategy ({a}, {a, b}, ∅) is noted (a, a.b, 0). An unde-
fined intervention is denoted −1. Exploration starts with the
undefined strategy (−1,−1,−1) and examines each warning
state to decide the interventions to apply in it. The children

(b,a,0)

(-1,-1,-1)

p_safe

sat sat

p_safe !p_safe

!p_safe

!safe

(a,-1,-1) !valid (b,-1,-1) (a.b ,-1,-1)

(b,b,-1) (b,a.b ,-1)(b,a,-1)

(b,a,a) (b,a,b) (b,a,a.b)

(b,0,-1) !perm

(0,-1,-1)

!sat

Fig. 3: Search tree for our example

of a partially defined strategy N = (i1, . . . , ip,−1, . . . ,−1)
are potentially the 2m nodes (i1, . . . , ip, ip+1,−1, . . . ,−1),
with ip+1 ∈ IC , and m the number of interventions. However,
execution does not traverse the complete tree. Pruning criteria
are used to identify subtrees that can be discarded from the
search without losing any minimal satisfying strategies. As
shown visually in Fig. 3, these criteria may allow us to ignore
the descendants of the current node under consideration as
well as some of its sibling nodes. For example, neither the
descendants of (a,−1,−1) nor its sibling node (a.b,−1,−1)
are explored.

Table I gives an overview of the pruning criteria. They are
assessed using calls to NuSMV. Given the partial strategy
N under consideration, our tool automatically produces the
model and properties to check. In particular, the original
model is automatically changed to insert the trigger conditions
of interventions corresponding to N , with −1 interpreted as
no intervention. For each criterion, the discarded strategies
either don’t satisfy one of the required properties of validity,
permissiveness and safety, or are not minimal.

The first two criteria discard strategies that are not valid
(!valid) or not permissive (!perm).

Assume partial strategy N is !valid. For instance, in
Fig. 3, strategy N = (a,−1,−1) is !valid because the
intervention that locks the arm folded is applied in a warning
state where the arm is unfolded. Child strategies may define
interventions in other warning states, but this will not fix the
problem in the first one. Either the first warning state becomes
unreachable, and so the child strategy is not permissive, or
the state is reachable and the intervention’s precondition is
violated. So, the children of an invalid strategy are either
invalid or not permissive. Consider now a partial strategy
that is not permissive. All its children are !perm as well,
because adding interventions can only remove transitions. So,
if a partial strategy is either !valid or !perm, none of its
children – and recursively none of its descendants – can be
a satisfying strategy. We can cut the subtree without losing
solutions.

Now, consider the siblings of N . Of particular interest
are the siblings that apply a superset of N ’s interventions
in the currently decided warning state. Formally, if N =
(i1, . . . , ip,−1, . . . ,−1), let us consider the siblings N ′ =
(i1, . . . , i

′
p,−1, . . . ,−1) with ip ⊂ i′p. In Table I, such siblings

are called combined siblings. They differ from N only in the
pth warning state, where additional interventions are combined
with N ’s ones. For example, (a.b,−1,−1) is a combined
sibling of (a,−1,−1) . It is trivial that if N is !valid, so is
N ′, and similarly for !perm. So, the first two criteria allow
us to cut not only the descendants of N , but also the subtrees
of all combined siblings of N .

The third criterion discards strategies that are not minimal.
Assume N is a satisfying strategy (i.e., safe, valid and per-
missive), which we note sat. Its descendants and combined
siblings might be sat as well, but they involve additional
interventions and so are not minimal. The corresponding
subtrees can be pruned. N is appended to the list of solutions

TABLE I: Pruning criteria

Node property Pruned relative nodes
1 !valid Descendants and combined siblings
2 !perm Descendants and combined siblings
3 sat Descendants and combined siblings
4 !p_safe Descendants
5 p_safe Combined siblings

returned by the search.
The fourth and fifth criteria are evaluated using a submodel

where the warning states with an undefined (−1) intervention
are removed. This submodel focuses on reaching the catas-
trophic state via the warning states for which a decision has
been taken, and specifically via the state sp targeted by the
most recent decision. If the strategy is safe in the submodel,
we say that it is partially safe (p_safe).

Assume N is !p_safe. There is a path to the catastrophic
state in the submodel. The descendants of N cannot remove
this path. Their added interventions can only delete transitions
exiting warning states that are outside the current submodel.
So, all descendants of N are unsafe and can be pruned (fourth
pruning criterion).

The last criterion concerns the opposite case where N
is p_safe. It prunes non-minimal sibling strategies that
apply a set of interventions i′p where ip ⊂ i′p is sufficient.
This criterion is the most difficult to explain. Its detailed
justification depends on the reachability of sp in the submodel,
which can be controlled by the order in which the warning
states are processed. In the algorithm we implemented, an
adequate order is determined on-the-fly, allowing for efficient
pruning.

To conclude, we have five criteria that discard strategies
that are either invalid, not permissive, unsafe or not minimal.
Moreover, we have a demonstration (not presented in this pa-
per) that their joint use discards all the non-minimal strategies,
i.e., the search returns exactly the set of minimal satisfying
strategies.

C. Running example

Fig. 3 presents the resulting tree for the example introduced
in Fig. 2, where braking is labeled by b (reduce the velocity),
inhibition of the arm movement by a, and their combination
a.b. To simplify, we consider a static adequate ordering of
the warning states: W1, W2, W3. The tree traversal is
then executed as follows. The root empty strategy is first
examined and assessed as !safe. Then, its first child, with
strategy (a,−1,−1) (corresponding to arm inhibition in W1),
is considered. Given that the arm is unfolded in W1, inhibition
is !valid. Then, we cut the corresponding subtree and keep
in memory that any combined sibling (a.x,−1,−1) should
not be considered.

The node labeled by (b,−1,−1) is then assessed. The
corresponding submodel for p_safe assessment contains the
safe states, the catastrophic state C and the warning state
W1, in which braking intervention is applied. Thanks to this
intervention, C is unreachable in the submodel and the strategy
is p_safe. We cut the combined siblings. Then we examine

the first child node (b, a,−1), that is also p_safe. We thus
cut its combined siblings and consider its children.

The first child (b, a, a) is a sat strategy. We thus add it to
the list of solutions and do not consider the sibling (b, a, a.b)
that is not minimal. (b, a, b) is also sat and kept as a solution.
(b, a, 0) is !sat. The next node in prefix order is labeled
by (b, b,−1), corresponding to braking in W1 and W2. This
strategy forbids any path to W3 and is thus !perm. We cut
the subtree and the combined siblings.

The next partial strategy is (b, 0,−1). The submodel for
p_safe property contains all nodes except W3 and has
no intervention in W2, which permits a direct transition to
catastrophic state C. The strategy is thus !p_safe. It ends
the exploration of the subtree rooted by (b,−1,−1).

Then, as (a,−1,−1) was !valid and (b,−1,−1) was
p_safe, (a.b,−1,−1) is not considered. The submodel of
the last node (0,−1,−1) corresponds to a submodel with the
states S1, S2, W1 and C without any intervention in W1,
permitting a direct transition to C. It is thus not p_safe and
its subtree is cut. The tree traversal is terminated, leading to
two minimal computed strategies: (1) (b, a, a), which specifies
that the brake should be engaged when velocity is in the
margin and arm unfolded (W1), and that the arm should
be blocked in the folded position when arm is folded and
velocity is in the margin (W2) or over the limit (W3); and
(2) (b, a, b), which specifies similar rules except that in W3 it
brakes instead of inhibiting the arm.

Over the 85 nodes of the tree, that correspond to 26 = 64
possible strategies, only 9 strategies have been explored to
compute these 2 minimal satisfying strategies.

V. STRATEGY SYNTHESIS USING UPPAAL-TIGA

The second approach we studied uses game theory. Intu-
itively, it considers a 2-player game where the safety monitor
plays against a malicious adversary that stands for a faulty
controller or a disobliging environment. The adversary fires
transitions in the system model. Its aim is to reach a catas-
trophic state. To counteract the adversary’s moves, the monitor
may trigger safety interventions. It has a winning strategy if
it always succeeds in maintaining both safety and universal
liveness, whatever the moves of the adversary.

We thus need to encode the safety strategy synthesis prob-
lem as a game solving problem. A difficulty is that the solving
algorithms typically consider either safety properties AGP or
reachability ones AFP . In our case, we would like to consider
both safety and universal liveness, yielding reachability prop-
erties of the form AG EF P . We are not aware of any off-the-
shelf game tool allowing us to synthesize winning strategies
for such properties. We thus had to bypass the difficulty by
adopting a stronger property (universal liveness in a bounded
number of steps) and by introducing modeling artifacts to
properly encode the synthesis problem.

A. TIGA Modeling

The game theory tool used in this paper is the UPPAAL
extension for game theory, TIGA, as developed in Section VII.

Situation

Changes

Changes_for_perm

Interv

ModeInit

Safety Mode

Perm Mode
Select si , sf

Select
Strategy

VictoryIf Perm
and sf

Behavior

Fig. 4: Schematic view of the encoding as a game
In UPPAAL, a transition system is represented by a net-
work of concurrent automata. An interleaving semantics is
adopted, that is, concurrent transitions cannot be simultane-
ously fired unless they are explicitly synchronized. The model-
ing paradigm is thus different from the one of NuSMV, where
states are implicitly defined via sets of variable values and an
arbitrary number of variables may simultaneously change their
value in one step (what we called a diagonal transition). The
difference impacts the way we model the system behavior. In
order to account for diagonal transitions, we do not consider
separate automata for the various variables, but rather a single
automaton with macro-transitions that assign values to (subsets
of) variables.

Fig. 4 gives a schematic view of how we encode the
synthesis problem as a game solving problem. Its core part
is the system Behavior model where:
• Situation is a macro-state capturing all possible val-

ues for the system variables (e.g., values for velocity and
folded arm in the running example).

• Changes is a macro-transition capturing all possible
changes of variable values (e.g., the velocity is increased
by one, or both the velocity and arm position change).

• Interv is a macro-transition capturing the application
of any subset of interventions (e.g., the application of a
braking action or an inhibition of arm unfolding).

Changes is controlled by the malicious adversary (which
is indicated by a dotted line in Fig. 4) while Interv is
controlled by the monitor (indicated by a solid line). The
model is untimed, except for a clock that forces the players
to move: a state invariant bounds the time that can be spent
in Situation without firing any transition. The turns of
the players are controlled by an auxiliary Boolean parameter.
After the adversary has fired a change in the system variables,
it always hands the dice on to the monitor, which decides
whether or not to apply interventions, according to its strategy.
Note that the monitor cannot decide just to block the adversary
without firing any intervention, because this would violate the
state invariant in Situation.

All extra states and transitions that appear in Fig. 4 outside
of the Behavior part, are modeling artifacts to encode the
synthesis problem. Since universal liveness is not express-
ible in TIGA, we considered a stronger property: any non-
catastrophic state is reachable from any other non-catastrophic
state in less than k steps.

This property corresponds to a game where the adversary
chooses an arbitrary pair of non catastrophic states si and
sf and the monitor is challenged to find a path of length

less than k between them. This game is quite different from
the classical safety game, in which the adversary would try
to reach the catastrophic state. In the permissiveness game,
the monitor controls the system transitions to demonstrate
the existence of a path. Both the safety and permissiveness
games must be encoded in the same formal model, because
both properties are required from any monitor’s strategy. The
consideration for the two games is explicit in the left part of
Fig. 4: the monitor first chooses the strategy, and then the
adversary chooses the game. The order of the choices is very
important. If we did not have an initial step that explicitly
establishes the strategy once and for all games, the monitor
could make its strategy dependent on the game. In the case of
a safety game, it would apply as many interventions as it can
to avoid the catastrophic state, while in the permissiveness
game it would apply none. Rather, in the model of Fig. 4,
the monitor must decide its strategy without knowing which
game will be chosen by the adversary. The monitor’s strategy
should be winning irrespective of the chosen game, and in case
the permissiveness game is chosen, irrespective of the pair si,
sf . Auxiliary control variables are added to store the chosen
strategy and games, where in particular perm is assigned true
for a permissiveness game and false for a safety game.

Since the strategy is decided from the very beginning, we
must ensure that the monitor’s moves comply with it. The
Interv macro-transition is modeled in such a way that
the triggering of interventions is governed by the value of
the stored strategy. In the permissiveness game, the mon-
itor does not only apply interventions but also fires the
other system transitions. To allow this, we had to duplicate
the Changes macro-transition into a new macro-transition,
Changes_for_perm that is controllable by the monitor
(note the solid line). Changes and Changes_for_perm
are guarded by the perm parameter, indicating the type
of the current game. A safety game enables Changes
and disables Changes_for_perm, and reciprocally in a
permissiveness game. Note that contrarily to Changes,
Changes_for_perm does not allow for multiple variable
assignments (e.g., either the velocity changes in one step, or
the arm position, but not both). In our liveness properties,
reachability should not depend on diagonal transitions.

Finally, we specify the global winning condition that cap-
tures both safety and permissiveness. The monitor wins iff:

AG (¬ cata ∧ perm→ steps < k)

where steps is an instrumentation variable that counts the
number of transitions fired in Situation. During a permis-
siveness game, reaching the target state sf activates a transition
to an auxiliary state Victory in which steps no longer
evolves (see the right part of Fig. 4). Since the Situation
invariant forces the players to keep moving, steps inexorably
increases unless sf is reached and Situation is left for
Victory. Hence, formula perm→ steps < k expresses the
intended property: in case the adversary choses a permissive-
ness game, the monitor must find a bounded path between any
arbitrary si and sf .

B. Running example

Let us consider the example of Fig. 2 with three strategies
(b,b,0), (b,0,0) and (b,a,a) with the notation of Fig. 3:

(b,b,0): The strategy is to brake in W1 and W2, and no
intervention in W3. In the Safety Mode, the game starts in
state s1. From there it is not able to reach a catastrophic state:
the strategy is safe. In the Permissiveness Mode, with nodes
si = s1 and sf = W3, the safety strategy prohibits velocity
greater than V0, thus sf is not reachable. The strategy is not
permissive. Hence, the winning condition is not satisfied.

(b,0,0): The selected strategy is to brake in W1 and no
intervention in W2 and W3. In the Safety Mode, the game
reaches vertex Situation in initial state s1. Then, the
opponent can trigger transitions to W2, W3 and C without
any safety intervention. The strategy is thus unsafe.

(b,a,a): The selected strategy is to brake in W1 and inhibit
the arm in W2 and W3. In the Permissiveness Mode, the
monitor can reach sf from si for every pair of non-catastrophic
states si and sf , and in the Safety Mode, the opponent cannot
reach state C. This safety strategy is thus safe and permissive.
The winning condition is satisfied.

VI. TIGA AND NUSMV: COMPARISON

The implementation of both tools involved very different
issues. With NuSMV, a specific synthesis program has been
developed in C/C++, calling the model checker as a function.
NuSMV is only a part of the synthesis tool, but is well suited
to model the system and properties. The main issue was the
identification of the pruning criteria for our algorithm.

On the contrary, TIGA’s existing algorithm can carry out
synthesis completely and the major issue is the modeling.
Formalizing the synthesis problem as a game problem is done
at the expense of modeling artifacts. In particular, the game
model has a number of states significantly higher than that
of the original system model. In our running example, 2
variables generate 6 region states. The same example in TIGA
corresponds to 273 game states due the added artifacts.

The TIGA tool outputs one satisfying strategy (the first it
finds), whereas the NuSMV tool outputs all minimal ones.

An experimental comparison of the tools has been carried
out using artificial models. It allows us to consider search
spaces ranging for a few thousands strategies to more than
1018. The models are generated as follows. All variables have
the same number of values. For example, in Table II, system
2var3val has two variables and each variable has 3 values.
The initial state has all variables at value 0, and the only
catastrophic state has variables at their maximum values. There
are two possible models for interventions. In the first one,
(suffix _a), for any variable, the monitor can increase the value
of the variable, decrease it, or inhibit any changes of value.
In the second case (suffix _l), the monitor can only decrease
and inhibit the variable values, and in addition, the variables
cannot be inhibited when they take their maximum value. For
each tool, we identify time and memory costs of the synthesis.
Experiments have been done on one core of an Intel Core I7-
4770 processor running at 3.4GHz. The results are in Table II.

TABLE II: Experimental compared results
TIGA Tool NuSMV Tool

Time Memory Time Memory
2var2val l 0.36s 68.8M 0.08s 11.8M
2var2val a 2.01s 288M 0.16s 11.9M
2var3val l Out of memory 1.3s 12.2M
2var3val a Out of memory 3.5s 12.3M
3var2val l Out of memory 15s 12.3M
3var2val a Out of memory 35s 12.5M
3var3val l Out of memory 1h7m 14M
3var2val a Out of memory 2h6m 14.3M

TABLE III: Experimental pruning performance (NuSMV tool)
Number of Examined nodes Number of
strategies Number % solutions

2var2val l 4096 6 0.15% 0
2var2val a 262144 8 0.003% 0
2var3val l 4096 74 1.8% 36
2var3val a 262144 109 0.04% 36
3var2val l 4.39 ∗ 1012 764 <0.001% 108
3var2val a 9.22 ∗ 1018 1 191 <0.001% 108
3var3val l 4.39 ∗ 1012 94 723 <0.001% 48 000
3var3val a 9.22 ∗ 1018 159 145 <0.001% 48 000

An obvious result is the huge and fastly growing memory
requirement of the TIGA tool. It runs out of memory for half
of the models with two variables and for all models with three
variables. This poor performance can be explained by the fact
that TIGA is not designed to serve our specific needs. We
had to introduce modeling artifacts and could not tune TIGA’s
internal algorithm to process them efficiently.

In contrast, the memory consumption of the NuSMV tool
is much lower and increases slowly. The increase of the exe-
cution time is also kept reasonable, if one considers that there
are 15 orders of magnitude in size between the smallest and
largest search spaces, and that we do not stop the algorithm
after a first solution is found. The pruning criteria allow us to
limit the number of steps to explore the tree of strategies.

Table III gives more insights into the pruning. The first
columns gives the size of the search space, i.e. the number of
complete strategies. It would be the number of steps of brute-
force search. The second column compares our algorithm to
brute-force search. For example, in the first row, our algorithm
visits 6 partial or complete strategies (tree nodes), while brute-
force search would visit 4096 strategies (6/4096 = 0.15%).
The gain is very high for all models. Finally, the third column
gives the number of solutions found by the search. These
solutions are a subset of the examined strategies and it is
interesting to see how many extra nodes are visited to find
them. In the largest model (3var3val_a), the total number
of visited nodes is only 3.3 times the number of solutions.
The pruning criteria are very efficient.

It may be surprising that a model with only three variables
requires a 2-hours synthesis. One might wonder whether the
approach is useful in realistic cases. Firstly, the number of
variables is not unrealistic. A safety invariant models only
one safety-relevant aspect of a system. In the real system
studied by [2], each invariant had no more than two variables.
Secondly, the artificial models we used are generic, i.e., they
have many interventions and no variable dependencies. It

follows that there are numerous solutions to find, much more
than in real cases. In a case study we are currently performing,
a safety invariant has 4 variables (1 boolean variable and 3
variables with three values) and 3 interventions are available.
Due to a dependency, the synthesis problem has only 4
minimal solutions. They are found in 3s by our NuSMV tool.

VII. RELATED WORK

Runtime verification (RV) typically generates code instru-
mentation from temporal logic properties to verify execution
traces at runtime [6]. As in our work, RV uses formal verifi-
cation for monitoring purposes. We check offline the tree of
all possible executions (of the model) by using the branching
logic CTL whereas RV checks concrete executed traces with
respect to linear temporal properties. The reaction to trigger
when detecting an error is called the steering problem in
the runtime verification community. It is a potential feature
of monitors, but it remains much less developed than the
detection part. Error detection typically returns information
to the monitored program or raises an exception. Other pos-
sible reactions are considered as ad-hoc to particular systems
because they are not formally captured.

In this paper, we use NuSMV [4], which enables variable-
oriented modeling of systems with properties given in CTL.
Other model checkers, like SPIN [7] and UPPAAL [8], do not
allow a simple implementation of permissiveness (liveness)
properties: SPIN only admits LTL properties and UPPAAL
does not permit associations of operators AG and EF.

Game theory is used for controller synthesis on a game
automaton [9]. In game automata, transitions result from the
decisions of both players. The controller synthesis consists in
restricting the automata nodes and first player decisions to
respect some properties and avoid deadlocks. The approach
has been applied to robotic functions as complex as motion
planning [10]. Supervisor synthesis [11] is a framework that is
very close to a 2-player game. Permissiveness requirements are
automatically taken into account, with the drawback that they
cannot be modified. Actions are not supported. An example
of application for robotics safety can be found in [12].

A large number of tools for game theory exist, for different
game models. Gambit [13] targets game trees. PESSOA [14]
considers systems defined by first order differential equations.
In some tools, the game model is consistent with our model,
but either no synthesis tool is provided (e.g., MOCHA [15])
or the supervisor definition does not permit to model ac-
tions (Supremica [16]). We finally used the model-checker
UPPAAL, with its game theory extension TIGA [5], that
is able to compute winning strategies. As explained earlier,
UPPAAL cannot implement permissiveness, but TIGA is to
our knowledge the only publicly available tool that permits
strategy synthesis.

VIII. CONCLUSION

We have provided two methods for strategy synthesis, able
to synthesize safe and permissive strategies for an active
safety monitor. Both tools have very different features and

performance results. We have succeeded in modeling variable-
oriented safety invariants and permissiveness in TIGA, which
is state-oriented and supports a small part of CTL. Neverthe-
less, TIGA performance is not sufficient. In contrast, our tool
based on NuSMV provides relatively efficient performance at
the price of having to develop a branch-and-bound algorithm
to explore efficiently the set of possible strategies.

A parallelized version of the NuSMV-based tool is currently
under development to further improve performance. We also
have started an industrial case study, which will allow us to
demonstrate the application of the tool in the framework of
the complete safety methodology defined in [3]. Finally, the
synthesized strategies apply interventions only according to
the current system state and fixed thresholds. Extensions are
under study to accommodate more flexible strategies.

Acknowlegment.: This work is partially supported by the
SAPHARI Project, funded under the 7th Framework Pro-
gramme of the European Community.

REFERENCES

[1] ISO/IEC 61508-7, “Functional safety of electrical / electronic / pro-
grammable electronic safety-related systems - part 7: Overview of
techniques and measures,” p. 153, 2010.

[2] A. Mekki-Mokhtar, J.-P. Blanquart, J. Guiochet, D. Powell, and M. Roy,
“Safety trigger conditions for critical autonomous systems,” in PRDC.
IEEE, 2012, pp. 61–69.

[3] M. Machin, F. Dufossé, J.-P. Blanquart, J. Guiochet, D. Powell, and
H. Waeselynck, “Specifying safety monitors for autonomous systems,”
in SAFECOMP. LNCS, 2014.

[4] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in Computer Aided Verification.
Springer, 2002, pp. 359–364.

[5] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “UPPAAL-Tiga: Time for playing games!” in Computer Aided
Verification. Springer, 2007, pp. 121–125.

[6] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, 2009.

[7] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[8] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL
- a tool suite for automatic verification of real-time systems,” in Hybrid
Systems III. LNCS, 1996, pp. 232–243.

[9] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis, “Controller synthesis for
timed automata,” in Proc. SSC. Elsevier, 1998.

[10] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, Dec 2009.

[11] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[12] L. Fotoohi and A. Graser, “Building a safe care-providing robot,” in
ICORR. IEEE, June 2011, pp. 1–6.

[13] R. D. McKelvey, A. M. McLennan, and T. L. Turocy, “Gambit: Software
tools for game theory,” 2006.

[14] P. Roy, P. Tabuada, and R. Majumdar, “Pessoa 2.0: a controller synthesis
tool for cyber-physical systems,” in HSCC. ACM, 2011, pp. 315–316.

[15] R. Alur, T. A. Henzinger, F. Y. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran, “Mocha: Modularity in model checking,” in Computer Aided
Verification. Springer, 1998, pp. 521–525.

[16] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica-an
integrated environment for verification, synthesis and simulation of
discrete event systems,” in WODES. IEEE, 2006, pp. 384–385.

