
HAL Id: hal-01164923
https://hal.science/hal-01164923

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons CC0 - Public Domain Dedication 4.0 International License

Automatic High-Level Hardware Checkpoint Selection
for Reconfigurable Systems

Alban Bourge, Olivier Muller, Frédéric Rousseau

To cite this version:
Alban Bourge, Olivier Muller, Frédéric Rousseau. Automatic High-Level Hardware Checkpoint Se-
lection for Reconfigurable Systems. Field-Programmable Custom Computing Machines (FCCM’15),
May 2015, Vancouver, Canada. �hal-01164923�

https://hal.science/hal-01164923
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://hal.archives-ouvertes.fr

Automatic High-Level Hardware Checkpoint
Selection for Reconfigurable Systems

Alban Bourge, Olivier Muller and Frédéric Rousseau
Univ. Grenoble Alpes

TIMA Laboratory
Grenoble, France F-38031

{alban.bourge,olivier.muller,frederic.rousseau}@imag.fr

Abstract—Modern FPGAs provide great computational power
and flexibility but there is still room for improving their per-
formances. For example multi-user approaches are particularly
underdeveloped as they require specific mechanisms still to be
automated. Sharing an FPGA resource between applications or
users requires a context switch ability. The latter enables pausing
and resuming applications at system demand. This paper presents
a method that automatically selects a good execution point, called
hardware checkpoint, to perform a context switch on an FPGA.
The method relies on a static analysis of the finite state machine
of a circuit to select the checkpoint states. The obtained selection
ensures that the context switch mechanism respects a given
latency and tries to minimize the mechanism costs. The method
takes advantage of its integration in an open-source HLS tool
and preliminary results highlight its efficiency.

Index Terms—FPGA, HLS, CAD, hardware context switch

I. INTRODUCTION

In order to gain flexibility, FPGAs could greatly benefit from
allowing multi-user utilization, or time-multiplexing [1][2],
which enables to share one or multiple reconfigurable devices
between several users or tasks. Efficient and generic time-
multiplexing techniques are lacking in current FPGA design
flows. Existing techniques rely on FPGA-specific or user-
based solutions (cooperative multitasking paradigm). To make
the share seamless for users and designers, a technology-
independent preemptive paradigm should be adopted.

For reconfigurable systems, it implies to make an image
of the state of the running circuit (the context), to save
this description and to enable a restoration of the circuit
in a previously saved state. For CPU-based machine, this
functionality is known as context switch.

An ideal hardware context-switch mechanism ensures an
answer to system preemption demands in a given latency and
is FPGA-technology independent. The hardware overhead has
also a negligible impact on the circuit performance and the
memory footprint on the whole system should be minimized.
Eventually the implementation and usage of the mechanism
must be effortless for designers and users.

This is a complex and multi-faceted problem of which we
will initiate an answer. The contributions of this paper are the
following. We propose the specification of a hardware context
switch mechanism introduced at a high level of abstraction.
This specification intends to tackle all the previous points.
Then, an open-source tool implementing the solution is re-

vealed. To the best of our knowledge, the specified method
has no precedent.

After giving few definitions and presenting the context of
the problem in Section II, Section III will introduce the method
and its benefits. The results of the proposed implementation
are given in Section IV.

II. CONTEXT AND DEFINITIONS

A. Definitions

1) System: A hardware resource allowing context switch
is constituted of a controlling system (e.g. a CPU supplied
with an operating system) communicating with the FPGA. The
FPGA is a slave for the OS, the latter activating context switch
operations on the hardware resource.

2) Hardware context: Throughout the paper, it is assumed
that the hardware task can be represented following an
FSM/datapath model. Each state of the task represents actions
on the datapath and has a set of live variables, i.e. memory
elements accessed (read or written) during the state actions
or in following states. It is assumed that the context of a
task consists in the set of live variables of the current state
and the initial configuration of the FPGA. The controlling
system knows which configuration bitstream corresponds to
the running task, hence it is assumed that saving this part
of the context is already done. Conversely, the evolution of
the memory elements is not predictable and a mechanism in
order to read the memory elements back when a context switch
occurs must be found. Memory elements in an FPGA are of
three types: flip-flops, BRAM and LUTRAM.

3) Hardware checkpoint: We define a hardware checkpoint
as follows: a state of a task where context switch operations are
allowed. The context restoration restarts the task where it was
stopped by using the previously saved hardware checkpoint.

4) Hardware context-switch: Figure 1 presents an example
of a context switching process. Two preemption demands can
be observed: the first switches task 1 with task 2 and the
second switches back to task 1. Task 1 preemption is a two-
step process represented by the time needed by the task to
reach a checkpoint (cp step with total time tc) and the context
saving of the task (save step with a duration of ts). ts varies
according to the size of the context needing to be extracted.
This saving step is followed by a configuration of the chip
in order to launch task 2, which is preempted in its turn.

Finally, when the system wants to restore task 1, it has to
add a restoration stage (rest) in order to re-write the previous
context before resuming the execution of the first task.

Fig. 1: Hardware context switch timeline

B. Context extraction methods

Two main families exist in hardware context extraction
techniques. The first consists in extracting the state of the
FPGA components by the same mean used for configuration.
Also called a readback method as the configuration, hence
the flip-flop values, are read and transferred through the
configuration mechanism back to the controlling system. [3]
reports less than 8% of useful data as only memory elements
values are needed. To cope with this limitation [4] filters the
bitstream off-line and [3] reads back only used frames.

The second type directly add to the circuit structures en-
abling context extraction. The most common is a serial link
of one or several bit wide between each flip-flop called a scan-
chain. The extraction time and memory footprint are improved
compared to readback method (with a similar width of bus and
operating frequency) because only memory elements values
are extracted. On the other hand, the extra design efforts
needed to add such structures can be costly. Finally, the area
overhead of such structure has to be taken into account. [5]
describes three methods and put forward a tool automating de-
sign steps. [6] introduced switching points limiting switching
states number but did not proposed a selection method. An
example for both families is described and tested in [7].

III. CONTRIBUTIONS

A scan-chain based solution is selected to address the
problem of context extraction. This paragraph explains the
whole mechanism and the two contributions made in order
to reduce the limitations associated with scan-chain usage.

A. Hardware context switch mechanism

Preempting a hardware task requires the extraction of its
context, which can represent a consequent amount of data. Be-
ing able to extract these data implies to introduce a hardware
overhead to the circuit. Yet, the volume of data effectively re-
quiring extraction will vary over the time. Thus, the hardware
overhead can be limited by allowing extraction only at instants
where the context volume is small. Indeed, we consider
that a lighter context volume necessitates a lighter extraction
mechanism. These instants are called hardware checkpoints.
The method relies on a high-level analysis allowing to select
hardware checkpoints for their properties.

(a) Typical flow (b) Proposed flow

Fig. 2: Comparison between two design flows

Two main steps are applied to a high-level description of
the selected hardware task. First, the hardware checkpoint
selection is run. During this time, different partial scan-chains
are identified. A partial scan-chain corresponds to the context
associated with a state in opposition to a full scan-chain
which is a chain between each flip-flops of a circuit. Secondly,
the partial extraction mechanism is described in a high-level
representation and added to the application. The Figure 2
illustrates a comparison between the typical design flow and
the proposed design flow. In the first case, in Figure 2a, the
scan-chain is inserted after logic synthesis. In our case, it is
automatically embedded in the HDL layer (Figure 2b).

B. Checkpointing hardware tasks

The checkpoint selection step has a direct impact on the
mechanism area and on the memory footprint. Both can be
optimization objectives. One has globally a good impact on
the other (e.g. limiting the size of the partial scan-chains is
also leading to a better memory footprint). The time set by
the controlling system known as cs latency represents the
latency constraint for context switching. For instance if a
preemption demand raises in a random state, a checkpoint
has to be reached (corresponding to time tc) before context
extraction (corresponding to time ts) and the addition of these
durations has to be inferior to the constraint. In that case,
it is said that the checkpoint covers the states which led to
it. With this definition, it is possible to pinpoint a certain
set of checkpoints covering the entire circuit. Two algorithms
are proposed. First, an analysis of the FSM identifies the
coverage of each states. Secondly, a greedy heuristic is used
to get a fast resolution of the NP-complete selection problem
(”set covering problem” [8]) consisting in finding a set of
checkpoint covering all the states and satisfying optimization
objectives.

1) Circuit analysis: Analysing the FSM of the circuit, it is
possible to retrieve the coverage of each states but complex
situations has to be handled (loops, switchs ...). The Figure 3
illustrates how a switch is covered considering that each state
lasts one clock cycle, cs latency = 12 cycles and state 7
has 8 bits needing extraction (i.e. ts = 8 cycles with a 1-bit
scan-chain). The constraint being tc + ts < cs latency, the
time left for reaching state 7 is at most tc = cs latency − ts

Fig. 3: Example of coverage computing for state 7

which gives tc = 4 clock cycles. The recursion hence starts
from state 7 with 4 cycles left. Step is testing state 6 with
the time left (4 cycles). The result of the test is positive (i.e.
7 covers 6) because the latency left is not null. Step is
testing the previous states of 6, firstly 5. The latency left being
positive, 5 is covered. Step is not completed because 2 can
not be covered if all the switch branches starting from it are
not covered. Hence, the recursion starts back at state 6 with
step . The second branch of the switch being covered in its
turn, step is completed and state 2 is covered. State 1 is not
covered because no latency is left for step . The result of
the coverage computing gives that states {2, 3, 4, 5, 6, 7} are
covered.

2) Greedy heuristic: Given the complexity of the minimiza-
tion problem (NP-complete) a greedy heuristic is chosen to
search the set of checkpoints. In [9], a greedy algorithm is
proposed to solve the set covering problem with a linear min-
imization objective. This algorithm has a O(n2) complexity.
It also ensures that the obtained solution is close from the
minimal solution in a a priori defined factor.

At the end of the heuristic is obtained a set of checkpoints
reducing the area overhead of the partial extraction mechanism
and ensuring the task can reach a checkpoint within time
cs latency. Though non optimal by nature, the next section
shows that the heuristic gives good results.

C. High Level method

After the checkpoint selection, future addition of the struc-
tures enabling context switching operations will still be done
at high-level. In the case of a basic design flow, the scan-
chain addition occurs typically at the HDL or netlist level (cf.
Figure 2a). Hence, efforts should be made in order to introduce
the functionality inside an application. The proposed method
removes all extra design efforts necessary to implement the
partial extraction mechanism thanks to its integration into
a HLS tool. It also allows the core algorithm to access all
necessary data, such as live variables and cs latency. More-
over, the proposed method is entirely platform independent, as
the context-switch mechanism is integrated in the application

description. Finally, it allows an abstraction of the memory
elements whatever the underlying implementations (flip-flop,
BRAM or LUTRAM). As proposed in [10], it is possible to
join each memory elements in a scan-chain, admitting the
addition of specific mechanism for RAMs.

IV. IMPLEMENTATION AND RESULTS

This section presents the results obtained with our method
on a set of typical applications. The method is fully integrated
in a tool which currently support flip-flop extraction.

A. CP3

CP3, standing for CheckPoint PinPoint, implements the
method described previously. It is written in C, free, open
source and integrated as plugin in the HLS tool AUGH [11].
AUGH is designed for automatic generation of hardware
accelerators for FPGA under resource constraints. The latter is
also a free open source software and can be found at [12]. This
tool produces a VHDL description from an input application
written in C, independently from the targeted board or family
of FPGA (Xilinx, Altera ...).

AUGH loads C applications to perform a design space
exploration and applies transformations to the description.
Then, CP3 is loaded and the hardware checkpoint search can
start. The current result of CP3 is a set of checkpoints and an
estimated cost of the associated partial extraction mechanism.

B. Results

We ran the tool CP3 on a set of typical applications to
highlight our method efficiency. Six are part of the CHStone
suite (adpcm, aes, blowfish, gsm, mpeg2 and sha) and we
added an mjpeg decoder and an idct algorithm.

In the following experiments, the cs latency value given
is high enough (approx. 5000 clock cycles) to reach a
stable algorithm output. Indeed, setting it higher is not
modifying the obtained set of checkpoints. The target is a
XC7V585T@100MHz of the Virtex 7 family. The type of
chip is demanded by AUGH to determine the maximum area
available for the design space exploration and to perform the
mapping. In fact, any FPGA could have been used (Xilinx,
Altera etc.) thanks to the level of abstraction of the method.
As said previously, CP3 will provide a set of checkpoints and
an estimation of the resulting overhead. The results are shown
in Table I. A first observation can be made: the number of
checkpoints is low compared to the number of states in the
applications (geomean of 4.2%). The advantages are analyzed
in following subsections.

1) Area overhead reduction: A significant reduction of
the partial extraction mechanism size for each application
compared to the full scan-chain method is achieved. The
results are though very widely spread, starting from 17%
(mpeg2) and reaching 96% (idct). Globally, the results show
a 52% mean gain of the size of partial extraction mechanism
compared to a full scan-chain.

No logic syntheses were run on the complete mechanism as
the implementation is left for future work. However, a worst-
case estimation is possible if we consider we can put two

TABLE I: Results of the proposed method on a common application set

extraction mechanism size partial extraction mechanism footprint
checkpoints

/states
checkpoint

ratio
full

scan-chain
(bit)

partial
extraction

mech. (bit)

gain max partial
scan-chain (bit)

mean partial
scan-chain (bit)

gain
(mean
/full)

adpcm 8/141 5.7 % 6304 4384 30% 4288 1844 71%
aes 7/1059 0.66 % 1616 200 88% 168 162 90%
blowfish 6/117 5.1 % 728 424 42% 224 108 85%
gsm 18/373 4.8 % 912 448 51% 160 54 94%
idct 3/238 1.3 % 1000 40 96% 40 34 97%
mjpeg 111/958 11.6 % 5826 2114 64% 770 444 92%
mpeg2 98/418 23.4 % 968 800 17% 448 376 61%
sha 9/298 3.0 % 3072 288 91% 160 96 97%
Geometric mean 4.2% 52% 85%

multiplexor in a LUT-6. AUGH also evaluates the area of the
circuit, so we will use this value for comparison as can be
seen in Table II. Our estimation gives for the aes application
an addition of 488 multiplexors for creating the scan-chain
between memory elements, which means 244 more LUT-6.
This is extremely low compared to the approximately 100,000
LUT of our application. On the contrary, the adpcm and mpeg2
appear costly. For most applications, this worst-case overhead
is affordable.

TABLE II: LUT-6 estimation for AUGH and CP3 overhead

AUGH CP3
adpcm 19443 6352 (+33%)
aes 110324 244 (+ 0%)
blowfish 18535 244 (+ 1%)
gsm 31984 400 (+ 1%)
idct 9513 36 (+ 0%)
mjpeg 291583 10307(+ 4%)
mpeg2 8662 6320 (+73%)
sha 34327 288 (+ 1%)
Geometric mean (+2.4%)

2) Data footprint reduction: Compared to the frame-related
readback method seen in [3], the gain in term of memory
footprint represents orders of magnitude. Indeed, if we take an
aes application, they obtain a readout of 21,952 bytes where
we have a maximum of 624 bits (78 bytes). The comparison of
both implementations is not trivial but it is to our disadvantage:
our application uses approximately four times more memory
elements.

Finally, the brightest example of memory footprint reduction
is the mpeg2 decoder. When finding a set of checkpoints, CP3
is not reducing much the partial extraction mechanism size
compared to the full scan-chain. On the contrary, when looking
at partial scan-chains, it is still able to achieve a memory
footprint reduction of 61%. More generally, the results are
excellent with partial scan-chains since the geometric mean
footprint reduction is around 85% compared to a full scan-
chain approach.

3) Impact on developer: On the same set of applications
a geometric mean execution time of 0.26 s is obtained. It
represents an average of 5% of total AUGH execution time.
Besides not involving the developer in the checkpointing

selection, this method has no impact at all on the development
time.

V. CONCLUSION

This paper presents a first step toward an automatic method
to enable context switch on hardware tasks executed on
reconfigurable systems. This universal method is based on
the usage of hardware checkpoints to reduce its utilization
impact. The automatic selection method has been integrated
successfully in a demonstration tool named CP3 and inserted
in a HLS design flow. Compared to traditional approaches,
the obtained results confirm a limitation of the area overhead
and a very small memory footprint, while having a negligible
impact on development time.

The short term perspectives are to introduce effectively the
scan-chain and add hardware in order to retrieve application
state outside the FPGA, still at high level of abstraction.

REFERENCES

[1] S. Trimberger et al., “A time-multiplexed fpga,” in FCCM, 1997. IEEE,
1997, pp. 22–28.

[2] S. M. Scalera and J. R. Vazquez, “The design and implementation of a
context switching FPGA,” in FCCM, 1998. IEEE, 1998, pp. 78–85.

[3] H. Kalte and M. Porrmann, “Context saving and restoring for multitask-
ing in reconfigurable systems,” in FPL, 2005. IEEE, 2005.

[4] H. Simmler et al., “Multitasking on fpga coprocessors,” in Field-
Programmable Logic and Applications: The Roadmap to Reconfigurable
Computing. Springer, 2000, pp. 121–130.

[5] D. Koch et al., “Efficient hardware checkpointing: concepts, overhead
analysis, and implementation,” in Proceedings of the 2007 ACM/SIGDA.
ACM, 2007.

[6] J.-Y. Mignolet et al., “Infrastructure for design and management of
relocatable tasks in a heterogeneous reconfigurable system-on-chip,” in
DATE, 2003. IEEE, 2003, pp. 986–991.

[7] K. Jozwik et al., “Comparison of preemption schemes for partially
reconfigurable FPGAs,” Embedded Systems Letters, IEEE, vol. 4, no. 2,
pp. 45–48, 2012.

[8] T. H. Cormen et al., Introduction to Algorithms. MIT Press and
McGraw-Hill, 2001, vol. 2.

[9] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[10] T. Wheeler et al., “Using design-level scan to improve FPGA design
observability and controllability for functional verification,” in FPL,
2001. Springer, 2001, pp. 483–492.

[11] A. Prost-Boucle et al., “Fast and standalone design space exploration
for high-level synthesis under resource constraints,” Journal of Systems
Architecture, vol. 60, pp. 79–93, 2014.

[12] A. Prost-Boucle, “Augh project,” 2013. [Online]. Available:
http://tima.imag.fr/sls/research-projects/augh/

