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A TWO-DIMENSIONAL OBLIQUE EXTENSION OF BESSEL

PROCESSES

Dominique Lépingle1

Abstract. We consider the problem of strong existence and uniqueness of a Brownian
motion forced to stay in the nonnegative quadrant by an electrostatic repulsion from the sides
that works obliquely. We obtain a kind of two-dimensional Bessel process with oblique drift.
Because of the obliqueness the components are not independent each other. To construct the
solution, we consider the case of a normal drift and use as main tool a comparison lemma.
A few of the properties of one-dimensional Bessel processes are preserved in this setting.
The results are reminiscent of the study of a Brownian motion with oblique reflection in a
wedge. Actually, the same skew symmetry condition is involved when looking for a stationary
distribution in product form. The terms of the product are now gamma distributions in place
of exponential ones.

1. Introduction

In the late seventies the study of heavy traffic limits in open multi-station queueing net-
works has put the question of existence and properties of the Brownian motion obliquely
reflected on the sides of a wedge and more generally on the faces of a polyhedron. In the fol-
lowing decade there was an extensive literary output on that topic, among which we mention
the works of Harrison, Reiman, Williams and co-authtors ([7],[8],[19],[21],[9],[3], to cite a few
of them). But there is another way than normal or oblique reflection to prevent Brownian
motion from overstepping a linear barrier. We may add as drift term the gradient of a con-
cave function that explodes in the neighborhood of the faces of the polyhedron. To be more
specific, let n1, . . . ,nk be unit vectors in Rd and b1, . . . , bk be real numbers. The state space
S is defined by

S := {x ∈ Rd : nr.x ≥ br, r = 1, . . . , k} .

Let φ1, . . . , φk be k convex C1 functions on (0,∞) with φr(0+) = +∞ for any r = 1, . . . , k.
The potential function Φ on S is defined by

Φ(x) :=

k
∑

r=1

φr(nr.x− br) .

From the general existence and uniqueness theorem on multivalued stochastic differential
systems established in [1], completed with identification of the drift term as in Lemma 3.4 in
[2], we know there exists a unique strong solution living in S to the equation

(1)
dXt = dBt −∇Φ(Xt)dt
X0 ∈ S

where B is a Brownian motion in Rd. As was proved in Proposition 4.1 of [14], the hypotheses
φr(0+) = +∞ for any r = 1, . . . , k entail that there is no additional boundary process of
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1



2 A TWO-DIMENSIONAL OBLIQUE EXTENSION OF BESSEL PROCESSES

local time type in the r.h.s. of (1) since the repulsion forces are sufficiently strong. As

−∇Φ(x) = −
k

∑

r=1

φ′r(nr.x− br)nr ,

the repulsion from the faces Fr = {x ∈ S : nr.x = br} points in a normal direction into
the interior of S. We now introduce vectors q1, . . . ,qk with qr.nr = 0 for r = 1, . . . , k and
consider a new equation

(2)
dXt = dBt −

∑k
r=1 φ

′
r(nr.x− br)(nr + qr)dt

X0 ∈ S
.

This is a singular drift and because of the obliqueness induced by q1, . . . ,qk convex analysis
cannot be used as in [1] to get strong existence and uniqueness of the associated stochastic
differential system. A similar problem has been recently tackled by Gassous, Răşcanu and
Rotenstein in [6]. They assume the domain of the subdifferential operator to be closed, which
is not compatible with our hypotheses φr(0+) = +∞.

In this paper we shall concentrate on the nonnegative quadrant in R2 as state space and
a drift term that derives from electrostatic repulsive forces. In dimension one the associated
process is a Bessel process. Thus in this new case we may call the solution to (2) a two-
dimensional Bessel process with oblique drift, or more briefly an oblique two-dimensional
Bessel process (O2BP for short). When the drift acts normally (q1 = q2 = 0), we recognize
the usual two-dimensional Bessel process which is made of two independent Bessel processes.

We obtain strong existence and uniqueness for a large set of parameters and initial condi-
tions, but not for all possible values. Our results are reminiscent of the thorough study in
[19] of the oblique reflection in a wedge. A key tool in this work was an appropriate harmonic
function that made a weak approach possible and fruitful. Thus full results were obtained,
while our strong approach merely provides a partial answer to the crucial question of hitting
the corner. A few from all the nice properties of one-dimensional Bessel processes are pre-
served in our setting: same scaling property, abolute continuity between the laws of processes
with different parameters, a martingale property. Our methods of proof are elementary. We
make an essential use of the comparison of solutions of stochastic differential equations and
of the asymptotic path behavior of local martingales.

For theoretical as well as practical reasons, a great deal of interest was taken in the question
of existence and computation of the invariant measure of the Brownian motion with a constant
drift vector and oblique reflection ([8],[21],[9]). Under the assumption that the directions of
reflection satisfy a skew symmetry condition, it was proved that the invariant measure has
exponential product form density. Motivated by the so-called Atlas model of equity markets
presented in [5], some authors ([16],[10],[12]) have recently studied Brownian motions on the
line with rank dependent local characteristics. This model is strongly related to Brownian
motion reflected in polyhedral domains. The invariant probability density has an explicit
exponential product form when the volatility is constant [16] and a sum of products of
exponentials form when the volatility coefficients depend on the rank ([12],[11]). This last
kind of density was previously obtained in [4] for a Brownian motion in a wedge with oblique
reflection.

A neighboring way has been recently explored by O’Connell and Ortmann in [15]. Here the
process is a Brownian motion with a drift term that is continuous and depends obliquely, via
a regular potential function, on the position of the process relative to a polyhedral domain.
Under the same skew symmetry condition as in [9], the invariant density has an explicit
product form again. In Section 9, we consider a Brownian motion with a constant drift living
in the nonnegative quadrant and an oblique electrostatic repulsion from the sides. Under the
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skew symmetry condition, there is still an invariant measure in product form. Now the terms
of the product are two gamma distributions with explicit parameters.

An earlier version of the present paper was first posted in 2012 on arXiv (1208.6399) under
the name Brownian motion in the quadrant with oblique repulsion from the sides. After the
death of Marc Yor in January 2014, I decided in memory to him to add three new sections
stressing the relationship with the theory of Bessel processes where his contribution has been
so significant. In the same spirit I also changed the title of the paper.

2. Some properties of Bessel processes

A Bessel process of dimension d > 1, starting at r ≥ 0, is the unique solution of the
stochastic differential equation

(3) Rt = r +Wt +
d− 1

2

∫ t

0

1

Rs
ds.

where W is a real-valued Brownian motion starting at 0.
We know that:

• d ≥ 2 : the point 0 is a polar set ([17], Proposition V.2.7);
• d = 2 : lim supt→∞Rt = +∞, lim inft→∞Rt = 0 ([17], Theorem V.2.8);
• 1 < d < 2 : the point 0 is instantaneously reflecting ([17], Proposition XI.1.5).

More precisely ([13], p.337 and p.339),

• Dimension d > 2:
P(Rt > 0,∀t > 0) = 1,
P(Rt → ∞, t→ ∞) = 1,
R2−d is a local martingale.

• Dimension d = 2:

P(Rt > 0,∀t > 0) = 1,
P(supt>aRt = ∞, inft>aRt = 0) = 1 for any a > 0,
lnR is a local martingale.

• Dimension 1 < d < 2:

P (Rt > 0,∀t > a) = 0 for any a > 0.

Corollary 1. When d ≥ 2, for any a > 0,
∫ ∞

a

ds

R2
s

= ∞ a.s.

Proof. From Itô formula

lnRt = lnRa +
∫ t
a

dWs

Rs
+ d−2

2

∫ t
a

ds
R2

s
.

From ([17], Proposition IV.1.26) we deduce that on the set {
∫∞
a

ds
R2

s
< ∞}, the continuous

local martingale
∫ t
0

dWs

Rs
converges as t→ ∞. But we have seen that lnRt does not converges

a.s. and the conclusion follows. �

We shall also use an absolute continuity result ([17], Exercise XI.1.22 or [13], Proposition
6.1.5.1). On the canonical space Ω = C(R+,R+), we denote by R the canonical map Rt(ω) =

ω(t), by Rt = σ(Rs, s ≤ t) the canonical filtration and by Pd
r the law of the Bessel process of

dimension d ≥ 2 starting at r > 0. Then,

(4) Pd
r |Rt=

(

Rt

r

)
d−2

2

exp

(

−
(d− 2)2

8

∫ t

0

ds

R2
s

)

.P2
r |Rt .
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3. Oblique Bessel process in the quadrant

The general state space is the nonnegative quadrant S = R+ × R+. The corner 0 = (0, 0)
will play a crucial role and in some cases it will be necessary to restrict the state space to the
punctured nonnegative quadrant S0 = S \ {0}.

Definition 2. Let (Bt, Ct) be a Brownian motion in the plane starting from 0, adapted
to a filtration F = (Ft) with usual conditions. Let α, β, γ, δ be four real constants with
α > 0, δ > 0. We say that an F-adapted continuous process (X,Y ) with values in S is an
Oblique Two-dimensional Bessel Process (O2BP) if for any t ≥ 0

(5)
Xt = X0 +Bt + α

∫ t
0

ds
Xs

+ β
∫ t
0

ds
Ys

≥ 0

Yt = Y0 + Ct + γ
∫ t
0

ds
Xs

+ δ
∫ t
0

ds
Ys

≥ 0

where X0 and Y0 are non-negative F0-measurable random variables, and
∫ t
0 1{Xs=0}ds = 0

∫ t
0 1{Ys=0}ds = 0

∫ t
0 1{Xs>0}

ds
Xs

<∞
∫ t
0 1{Ys>0}

ds
Ys
<∞ .

The drift in (5) is of type (2) with d = k = 2 and

φ1(x) = −α ln(x) φ2(y) = −δ ln(y)
b1 = 0 b2 = 0
n1 = (1, 0) n2 = (0, 1)

q1 = (0, γα ) q2 = (βδ , 0)

The case with β = γ = 0 is a particular case of (1). In the sequel, we will note (U, V ) the
solution of the system

(6)
Ut = X0 +Bt + α

∫ t
0

ds
Us

≥ 0

Vt = Y0 + Ct + δ
∫ t
0

ds
Vs

≥ 0 .

The processes U and V are independent Bessel processes (if X0 and Y0 are independent vari-
ables). Actually, U is a Bessel process of dimension 2α+1, and the point 0 is intanstaneously
reflecting for U if α < 1

2 and polar if α ≥ 1
2 . Moreover, U2 + V 2 is the square of a Bessel

process of dimension 2α+ 2δ + 2 [18], and so the corner 0 is polar for (U, V ) in any case.
Comparison between X and U , Y and V will play a key role in the construction of the

solution (X,Y ) and the study of its behavior close to the sides of the quadrant. The following
simple lemma will be of constant use.

Lemma 3. For T > 0, α > 0, let x1 and x2 be nonnegative continuous solutions on [0, T ] of
the equations

x1(t) = v1(t) + α
∫ t
0

ds
x1(s)

x2(t) = v2(t) + α
∫ t
0

ds
x2(s)

where v1, v2 are continuous functions such that 0 ≤ v1(0) ≤ v2(0), and v2− v1 is nondecreas-
ing. Then x1(t) ≤ x2(t) on [0, T ].

Proof. Assume there exists t ∈ (0, T ] such that x2(t) < x1(t). Set

τ := max{s ≤ t : x1(s) ≤ x2(s)} .

Then,

x2(t)− x1(t) = x2(τ)− x1(τ) + (v2(t)− v1(t))− (v2(τ)− v1(τ)) + α
∫ t
τ (

1
x2(s)

− 1
x1(s)

)ds

≥ 0 ,

a contradiction. �
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We will also need the following consequence of the results in [1] on multivalued stochastic
differential systems, completed with the method used in [2] and developed in [14] to check
the lack of additional boundary process.

Proposition 4. Let α > 0, δ ≥ 0, σ = (σij ; i, j = 1, 2) a 2× 2-matrix, (B1, B2) a Brownian

motion in the plane, b1 and b2 two Lipschitz functions on R2, Z1
0 and Z2

0 two F0-measurable
nonnegative random variables. There exists a unique strong solution (Z1, Z2) to the system

(7)
Z1
t = Z1

0 + σ11B
1
t + σ12B

2
t + α

∫ t
0

ds
Z1
s
+

∫ t
0 b1(Z

1
s , Z

2
s )ds

Z2
t = Z2

0 + σ21B
1
t + σ22B

2
t + δ

∫ t
0

ds
Z2
s
+

∫ t
0 b2(Z

1
s , Z

2
s )ds

with the conditions Z1
t ≥ 0 if δ = 0 and Z1

t ≥ 0, Z2
t ≥ 0 if δ > 0.

It is worth noticing that the solutions to (5) enjoy the Brownian scaling property. It
means that if (X,Y ) is a solution to (5) starting from (X0, Y0) with driving Brownian motion
(Bt, Ct), then for any c > 0 the process (X ′

t := c−1Xc2t, Y
′
t := c−1Yc2t; t ≥ 0) is a solution to

(5) starting from (c−1X0, c
−1Y0) with driving Brownian motion (c−1Bc2t, c

−1Cc2t).

4. Avoiding the corner

We shall see in Section 6 that existence and uniqueness of the solution to (5) are easily
obtained as soon as the solution process keeps away from the corner. Thus the question of
attaining the corner in finite time is of great interest.

Theorem 5. Let (X,Y ) be a solution to (5). We set

τ0 := inf{t > 0 : (Xt, Yt) = 0}

with the usual convention inf ∅ = ∞. Then P(τ0 <∞) = 0 if one of the following conditions
is satisfied:

(1) C1 : β ≥ 0 and γ ≥ 0
(2) C2a : α ≥ 1

2 and β ≥ 0

(3) C2b : δ ≥
1
2 and γ ≥ 0

(4) C3 : There exist λ > 0 and µ > 0 such that
• λα+ µγ ≥ 0
• λβ + µδ ≥ 0
• (

√

λ(λα+ µγ) +
√

µ(λβ + µδ))2 ≥ 1
2(λ

2 + µ2).

Proof.
Condition C1. From Lemma 1 we get Xt ≥ Ut, Yt ≥ Vt, where (U, V ) is the solution to (6),
and we know that 0 is polar for (U, V ).
Condition C2a (resp. C2b). From Lemma 1 we get Xt ≥ Ut (resp. Yt ≥ Vt) and in this case 0
is polar for U (resp. V), so Ut > 0 (resp. Vt > 0) for t > 0.
Condition C3. For ǫ > 0 let

σǫ = 1{(X0,Y0)=0} inf{t > 0 : Xt + Yt ≥ ǫ}
τ0,ǫ = inf{t > σǫ : (Xt, Yt) = 0} .

As ǫ ↓ 0, σǫ ↓ 0 and τ0,ǫ ↓ τ0. We set St = λXt + µYt for t ≥ 0, λ > 0 and µ > 0. From Itô
formula we get for t ∈ [σǫ, τ0,ǫ)

lnSt
= lnSσǫ +

∫ t
σǫ

λdBs+µdCs

Ss
+ (λα+ µγ)

∫ t
σǫ

ds
XsSs

+ (λβ + µδ)
∫ t
σǫ

ds
YsSs

− 1
2(λ

2 + µ2)
∫ t
σǫ

ds
S2
s

= lnSσǫ +Mt +
∫ t
σǫ

P (Xs,Ys)
XsYsS2

s
ds
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where M is a continuous local martingale and P (x, y) is the second degree homogeneous
polynomial

P (x, y) = λ(λβ + µδ)x2 + µ(λα+ µγ)y2 + (λ(λα + µγ) + µ(λβ + µδ)−
1

2
(λ2 + µ2))xy .

Condition C3 is exactly the condition for P being nonnegative on S. Therefore

0 ≤

∫ t

σǫ

P (Xs, Ys)

XsYsS2
s

ds <∞

and so

0 ≤

∫ τ0,ǫ

σǫ

P (Xs, Ys)

XsYsS2
s

ds ≤ ∞ .

As t→ τ0,ǫ, the continuous local martingale M either converges to a finite limit or oscillates
between +∞ and −∞. It cannot converge to −∞ and thus Sτ0,ǫ > 0 on {τ0,ǫ <∞}, proving
that P(τ0,ǫ <∞) = 0 and finally P(τ0 <∞) = 0. �

Example. When α = δ and |β| = |γ|, condition C3 is satisfied (with λ = µ) if

(8)
• β2 ≤ α− 1

4 when β = −γ
• −β ≤ α− 1

4 when β = γ < 0 .

5. Avoiding the sides

We may also be interested in hitting a single side. Then we set

(9)
τ0X := inf{t > 0 : Xt = 0}
τ0Y := inf{t > 0 : Yt = 0} .

We already know that P(τ0X < ∞) = 0 if α ≥ 1
2 and β ≥ 0. Conversely we can prove that

P(τ0X <∞) = 1 if α < 1
2 and β ≤ 0. If we know that the corner is not hit and α ≥ 1

2 , we can
get rid of the nonnegativity assumption on β.

Proposition 6. Assume P(τ0 <∞) = 0. If α ≥ 1
2 , then P(τ0X <∞) = 0.

Proof. For η > 0 let

θηX = 1{X0=0} inf{t > 0 : Xt ≥ η}

τ0,ηX = inf{t > θηX : Xt = 0} .

As η ↓ 0, θηX ↓ 0 and τ0,ηX ↓ τ0X . For t ∈ [θηX , τ
0,η
X ),

(10) lnXt = lnXθη
X
+

∫ t
θη
X

dBs

Xs
+ (α− 1

2)
∫ t
θη
X

ds
X2

s
+ β

∫ t
θη
X

ds
XsYs

.

Since P(τ0 <∞) = 0, we have Yτ0,η
X

> 0 on {τ0,ηX <∞}. On this set,

∫ τ0,η
X

θη
X

ds

Xs
<∞ ,

∫ τ0,η
X

θη
X

ds

Ys
<∞

and Xs > 0 on [θηX , τ
0,η
X ), which proves that

β

∫ τ0,η
X

θη
X

ds

XsYs
> −∞ .

As t → τ0,ηX , the local martingale in the r.h.s. of (10) cannot converge to −∞. This entails

that P(τ0,ηX <∞) = 0 and therefore P(τ0X <∞) = 0. �
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We may use again the method in Theorem 5 and Proposition 6 to learn more about hitting
the sides of the quadrant.

Proposition 7. Assume α ≥ 1
2 and δ ≥ 1

2 . Then P(τ0X < ∞) = P(τ0Y < ∞) = 0 if one of
the following conditions is satisfied:

(1) β > 0
(2) γ > 0
(3) βγ ≤ (α− 1

2)(δ −
1
2).

Proof. Statements (1) and (2) are direct consequences of Theorem 5 and Proposition 6.
For ǫ > 0 let

ρǫ = 1{X0Y0=0} inf{t > 0 : XtYt ≥ ǫ}
ρ0,ǫ = inf{t > ρǫ : XtYt = 0} .

For λ > 0 and µ > 0 we set

Rt = λ lnXt + µ lnYt.

From Itô formula we get for t ∈ [ρǫ, ρ0,ǫ)

Rt = Rρǫ +
∫ t
ρǫ(

λ
Xs
dBs +

µ
Ys
dCs) +

∫ t
ρǫ [

λ(α− 1

2
)

X2
s

+
µ(δ− 1

2
)

Y 2
s

+ (λβ+µγ)
XsYs

]ds

= Rρǫ +Nt +
∫ t
ρǫ

Q(Xs,Ys)
X2

sY
2
s
ds

where N is a continuous local martingale and Q(x, y) is the second degree homogeneous
polynomial

Q(x, y) = µ(δ −
1

2
)x2 + λ(α−

1

2
)y2 + (λβ + µγ)xy.

If the condition (3) is satisfied, then we may find λ > 0 and µ > 0 such that Q is nonnegative
on S and the proof terminates as in Theorem 5 under condition C3. �

6. Existence and uniqueness

We now proceed to the question of existence and uniqueness of a global solution to (5).
We consider separately the three cases: β ≥ 0 and γ ≥ 0, then β > 0 and γ < 0, then β ≤ 0
and γ < 0.

6.1. Case β ≥ 0 and γ ≥ 0. This is exactly condition C1.

Theorem 8. Assume β ≥ 0 and γ ≥ 0.

(1) There is a unique solution to (5) in S0.
(2) There is a solution to (5) in S starting from 0.
(3) If αδ ≥ βγ, there is a unique solution to (5) in S.

Proof. 1. Let a > 0, ǫ > 0 and define for (x, z) ∈ R+ × R

ψǫ(x, z) :=
1

max(γx+ z, αǫ)
.

This is a Lipschitz function. From Proposition 4 we know that the system

(11)
Xǫ

t = X0 +Bt + α
∫ t
0

ds
Xǫ

s
+ αβ

∫ t
0 ψǫ(X

ǫ
s, Z

ǫ
s)ds ≥ 0

Zǫ
t = −γX0 + α(Y0 + 1{Y0=0}a)− γBt + αCt + α(αδ − βγ)

∫ t
0 ψǫ(X

ǫ
s, Z

ǫ
s)ds

has a unique solution. Let

τ ǫY := inf{t > 0 : γXǫ
t + Zǫ

t < αǫ} .
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If 0 < η < ǫ < a we deduce from the uniqueness that (Xǫ, Zǫ) and (Xη , Zη) are identical on
[0, τ ǫY ]. Patching together we can set

Xt := limǫ→0X
ǫ
t

Yt := limǫ→0
1
α (γX

ǫ
t + Zǫ

t )

on {Y0 > 0} × [0, τ0Y ), where

τ0Y := lim
ǫ→0

τ ǫY .

On this set, (X,Y ) is the unique solution to (5). As we noted in the proof of Theorem 3 with
condition C1, we have Xt ≥ Ut and Yt ≥ Vt. Therefore, on {Y0 > 0} ∩ {τ0Y <∞},

∫ τ0
Y

0
ds
Xs

≤
∫ τ0

Y

0
ds
Us
<∞ and

∫ τ0
Y

0
ds
Ys

≤
∫ τ0

Y

0
ds
Vs
<∞

and we can define

(12)
Xτ0

Y
:= limt→τ0

Y
Xt = X0 +Bτ0

Y
+ α

∫ τ0
Y

0
ds
Xs

+ β
∫ τ0

Y

0
ds
Ys

Yτ0
Y

:= limt→τ0
Y
Yt = Y0 + Cτ0

Y
+ γ

∫ τ0
Y

0
ds
Xs

+ δ
∫ τ0

Y

0
ds
Ys
.

We have Yτ0
Y
= 0 and as 0 is polar for (U, V ), then Xτ0

Y
> 0. In exactly the same way we can

construct a solution on {Y0 > 0} in the interval [T1, T2], where T1 = τ0Y , T2 = inf{t > T1 :
Xt = 0}. Iterating, we get a solution on {Y0 > 0} × [0, limn→∞ Tn) where

T2p := inf{t > T2p−1 : Xt = 0}
T2p+1 := inf{t > T2p : Yt = 0} .

On {Y0 > 0} ∩ {limn→∞ Tn < ∞} we set Xlimn→∞ Tn
:= limp→∞XT2p

= 0 and Ylimn→∞ Tn
:=

limp→∞ YT2p+1
= 0. The polarity of 0 entails this is not possible in finite time and thus

limn→∞ Tn = ∞. So we have obtained a unique global solution on {Y0 > 0}. In the same
way we obtain a unique global solution on {X0 > 0} and as P((X0, Y0) = 0) = 0 the proof is
complete.

2. Assume now X0 = Y0 = 0. Let (yn)n≥1 be a sequence of real numbers (strictly)
decreasing to 0. From the above paragraph it follows there exists for any n ≥ 1 a unique
solution (Xn, Y n) with values in S0 to the system

Xn
t = Bt + α

∫ t
0

ds
Xn

s
+ β

∫ t
0

ds
Y n
s

Y n
t = yn + Ct + γ

∫ t
0

ds
Xn

s
+ δ

∫ t
0

ds
Y n
s
.

Let

τ := inf{t > 0 : Xn+1
t < Xn

t } .

Using Lemma 3 we obtain Y n+1
t ≤ Y n

t on [0, τ ]. We note that (Xn
τ , Y

n
τ ) ∈ S0 on {τ < ∞}.

On {Y n+1
τ = Y n

τ }∩{τ <∞}, since Xn+1
τ = Xn

τ and the solution starting at time τ is unique,
it follows that Xn+1

t = Xn
t and Y n+1

t = Y n
t on [τ,∞). On {Y n+1

τ < Y n
τ } ∩ {τ < ∞}, the

continuity of solutions at time τ entails there exists ρ > 0 such that Y n+1
t ≤ Y n

t on [τ, τ + ρ].
A second application of Lemma 1 proves that Xn+1

t ≥ Xn
t on [τ, τ + ρ], a contradiction to

the definition of τ . Therefore P(τ = ∞) = 1. It follows that Xn+1
t ≥ Xn

t and Y n+1
t ≤ Y n

t for
any t ∈ [0,∞), and we may define

Xt := lim
n→∞

↑ Xn
t Yt := lim

n→∞
↓ Y n

t .

As Y n
t ≥ Vt where (U, V ) is the solution to (6) with X0 = Y0 = 0, we have

Xt = Bt + α limn→∞

∫ t
0

ds
Xn

s
+ β limn→∞

∫ t
0

ds
Y n
s

= Bt + α
∫ t
0

ds
Xs

+ β
∫ t
0

ds
Ys

< ∞
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and also
Yt = limn→∞ yn +Ct + γ limn→∞

∫ t
0

ds
Xn

s
+ δ limn→∞

∫ t
0

ds
Y n
s

= Ct + γ
∫ t
0

ds
Xs

+ δ
∫ t
0

ds
Ys

< ∞ .

3. Assume finally αδ − βγ ≥ 0. As the conclusion holds true if β = γ = 0, we may also
assume β > 0. Let (X,Y ) be the solution to (5) with X0 = Y0 = 0 obtained in the previous
paragraph and let (X ′, Y ′) be another solution. Considering (Xn, Y n) again and replacing
(Xn+1, Y n+1) with (X ′, Y ′), the previous proof works and we finally obtain X ′

t ≥ Xt and
Y ′
t ≤ Yt. Then,

(13) 0 ≤ δ(X ′
t −Xt)− β(Y ′

t − Yt) =

∫ t

0
(αδ − βγ)(

1

X ′
s

−
1

Xs
)ds ≤ 0.

Thus X ′
t = Xt and Y

′
t = Yt, proving uniqueness. Replacing (δ, β) with (γ, α) in equation (13)

we obtain the same conclusion if γ > 0. �

6.2. Case β > 0 and γ < 0.

Theorem 9. Assume β > 0, γ < 0 and one of the conditions C2a or C3 is satisfied. Then,
there exists a unique solution to (5) in S0.

Proof. The proof is similar to the proof of 1 in Theorem 8. The only change is that now
Yt ≤ Vt. Therefore, on {Y0 > 0} ∩ {τ0Y <∞},

δ

∫ τ0Y

0

ds

Ys
≤ Vτ0

Y
− Y0 − Cτ0

Y
− γ

∫ τ0Y

0

ds

Us
<∞

and we can define Xτ0
Y

and Yτ0
Y

as previously done. The application of Theorem 5 to the

process on the time interval [0, τ0Y ] shows that Xτ0
Y
> 0. �

There is obviously an analnous statement if β < 0, γ > 0.

6.3. Case β ≤ 0 and γ < 0. In this case we can give a full answer to the question of existence
and uniqueness. Our condition of existence is exactly the condition found in [20] for the
reflected Brownian in a wedge being a semimartingale, i.e. there is a convex combination of
the directions of reflection that points into the wedge from the corner.

Theorem 10. Assume β ≤ 0 and γ < 0.

(1) If αδ > βγ, there exists a unique solution to (5) in S.
(2) If αδ ≤ βγ, there does not exist any solution.

Proof. 1. Assume first αδ > βγ.
a) Existence. Let (hn, n ≥ 1) be a (strictly) increasing sequence of bounded positive nonin-
creasing Lipschitz functions converging to 1/x on (0,∞) and to +∞ on (−∞, 0]. For instance
we can take

hn(x) = (1− 1
n)

1
x on [ 1n ,∞)

= n− 1 on (−∞, 1n ] .

We consider for each n ≥ 1 the system

(14)
Xn

t = X0 +Bt + α
∫ t
0

ds
Xn

s
+ β

∫ t
0 hn(Y

n
s )ds

Y n
t = Y0 + Ct + γ

∫ t
0 hn(X

n
s )ds + δ

∫ t
0

ds
Y n
s
.

From Proposition 4 it follows there exists a unique solution to this system. We set

τ := inf{s > 0 : Xn+1
s > Xn

s } .

We have hn+1(X
n+1
t ) ≥ hn(X

n
t ) on [0, τ ]. A first application of Lemma 3 shows that Y n+1

t ≤
Y n
t on [0, τ ]. Since hn+1(Y

n+1
τ ) > hn(Y

n
τ ) on {τ < ∞}, we deduce from the continuity of
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solutions that there exists ρ > 0 such that hn+1(Y
n+1
t ) ≥ hn(Y

n
t ) on [τ, τ + ρ]. A second

application of Lemma 3 shows that Xn+1
t ≤ Xn

t on [τ, τ +ρ], a contradiction to the definition
of τ . Thus P(τ = ∞) = 1 proving that on the whole [0,∞) we have Xn+1

t ≤ Xn
t and

Y n+1
t ≤ Y n

t . Then we can set for any t ∈ [0,∞)

Xt := lim
n→∞

Xn
t and Yt := lim

n→∞
Y n
t .

If αδ > βγ, there is a convex combination of the directions of repulsion that points into the
positive quadrant, i.e. there exist λ > 0 and µ > 0 such that λα+ µγ > 0 and µδ + λβ > 0.
For n ≥ 1 and t ≥ 0,

(15)
λUt + µVt ≥ λXn

t + µY n
t

≥ λX0 + µY0 + λBt + µCt + (λα+ µγ)
∫ t
0

ds
Xn

s
+ (µδ + λβ)

∫ t
0

ds
Y n
s
.

Letting n→ ∞ in (15) we obtain
∫ t

0

ds

Xs
<∞ and

∫ t

0

ds

Ys
<∞ .

Then we may let n go to ∞ in (14) proving that (X,Y ) is a solution to (5).
b) Uniqueness. Let (X ′, Y ′) be another solution to (5). Replacing (Xn+1, Y n+1) with (X ′, Y ′)
we follow the above proof to obtain for t ∈ [0,∞) and n ≥ 1

X ′
t ≤ Xn

t and Y ′
t ≤ Y n

t

Letting n→ ∞ we conclude

X ′
t ≤ Xt and Y ′

t ≤ Yt .

With the same λ > 0 and µ > 0 as above,

0 ≤ λ(Xt −X ′
t) + µ(Yt − Y ′

t ) =

∫ t

0
[(λα+ µγ)(

1

Xs
−

1

X ′
s

) + (µδ + λβ)(
1

Ys
−

1

Y ′
s

)]ds ≤ 0

and therefore X ′
t = Xt, Y

′
t = Yt.

2. If αδ ≤ βγ there exist λ > 0 and µ > 0 such that λα+ µγ ≤ 0 and µδ + λβ ≤ 0. Thus, if
(X,Y ) is a solution to (5),

0 ≤ λXt + µYt ≤ λX0 + µY0 + λBt + µCt .

This is not possible since the paths of the Brownian motion (λ2+µ2)−1/2(λBt+µCt) are not
bounded below. So there is no global solution. �

In the following pictures, we display the x-repulsion direction vector rx = (α, γ) and the
y-repulsion direction vector ry = (β, δ) in three illustrative instances.
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7. Absolute continuity properties

In some cases we easily obtain an absolute continuity property between the laws of O2BPs

with various parameters. When there exists a unique solution to (5), we denote by Pα,β,γ,δ
x,y the

law on C(R+, S) = C(R+,R+)×C(R+,R+) of the solution starting at (x, y) ∈ S. We denote
by (U, V ) the canonical map (Ut(u, v), Vt(u, v)) = (u(t), v(t)) and by Ut = σ((Us, Vs), s ≤ t)

the canonical filtration. Recall that we denote by Pd
r the law of one-dimensional Bessel process

of dimension d starting at r ≥ 0.

Proposition 11. Assume δ ≥ 1
2 and y > 0. Then

(16) Pα,β,0,δ
x,y |Ut= exp

{

β

∫ t

0

dUs

Vs
− αβ

∫ t

0

ds

UsVs
−
β2

2

∫ t

0

ds

V 2
s

}

.P2α+1
x ⊗ P2δ+1

y |Ut .

Proof. Under P2α+1
x ⊗ P2δ+1

y the process

Bt := Ut − x− α

∫ t

0

ds

Us

is a one-dimensional Brownian motion. The assumptions on δ and on y imply that Vt > 0
for any t ≥ 0 and thus

∫ t

0

ds

v2(s)
<∞ P2δ+1

y − a.s.

Therefore, for P2δ+1
y -almost every v,

∫ t
0

dBs

v(s) is a P2α+1
x -centered Gaussian variable with vari-

ance
∫ t
0

ds
v2(s)

and

∫
(
∫

exp

{

β

∫ t

0

dBs

v(s)
−
β2

2

∫ t

0

ds

v(s)2

}

dP2α+1
x (u)

)

dP2δ+1
y (v) = 1.

We see that

Zt := exp

{

β

∫ t

0

dBs

Vs
−
β2

2

∫ t

0

ds

V 2
s

}

is a P2α+1
x ⊗ P2δ+1

y -positive martingale with expectation 1. Setting for any T > 0

QT := ZT .P
2α+1
x ⊗ P2δ+1

y |UT

we check that under QT

Ut − x− α

∫ t

0

ds

Us
− β

∫ t

0

ds

Vs
, 0 ≤ t ≤ T

is a real Brownian motion independent of the Brownian motion {Vt− y− δ
∫ t
0

ds
Vs
, 0 ≤ t ≤ T}.

Thus,

QT = Pα,β,0,δ
x,y |UT

. �

A second set of conditions is obtained with the help of Novikov criterion.

Proposition 12. Assume the following set of conditions is satisfied:

(17)
|β| ≤ δ − 1/2 |γ| ≤ α− 1/2

x > 0 y > 0.

The process

Zt := exp

{

β

∫ t

0

dUs

Vs
− γ

∫ t

0

dVs
Us

− (αβ + γδ)

∫ t

0

ds

UsVs
−
β2

2

∫ t

0

ds

V 2
s

−
γ2

2

∫ t

0

ds

U2
s

}

,
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is a P2α+1
x ⊗ P2δ+1

y -positive martingale with expectation 1 and

(18) Pα,β,γ,δ
x,y |Ut= Zt .P

2α+1
x ⊗ P2δ+1

y |Ut .

Proof. Under P2α+1
x ⊗ P2δ+1

y the processes

Bt := Ut − x− α

∫ t

0

ds

Us

and

Ct := Vt − y − δ

∫ t

0

ds

Vs
are independent Brownian motions. Then Zt may be written

Zt = exp

{

β

∫ t

0

dBs

Vs
+ γ

∫ t

0

dCs

Us
−
β2

2

∫ t

0

ds

V 2
s

−
γ2

2

∫ t

0

ds

U2
s

}

,

which shows that Zt is a positive local martingale. Using (4) we compute
∫ ∫

exp {γ2

2

∫ t
0

ds
U2
s
} dP2α+1

x ⊗ dP2δ+1
y =

∫

exp {γ2

2

∫ t
0

ds
R2

s
} dP2α+1

x

=
∫

(Rt

x )α−1/2 exp {− (α−1/2)2−γ2

2

∫ t
0

ds
R2

s
} dP2

x

< ∞

since a Bessel process of dimension two has finite moments of any order. Finally,
∫ ∫

exp {β2

2

∫ t
0

ds
V 2
s
} exp {γ2

2

∫ t
0

ds
U2
s
} dP2α+1

x ⊗ dP2δ+1
y

= (
∫

exp {β2

2

∫ t
0

ds
R2

s
} dP2δ+1

x )(
∫

exp {γ2

2

∫ t
0

ds
R2

s
} dP2α+1

x )

< ∞

and Novikov’s criterion ([17], Proposition VIII.1.15) proves that Zt has expectation 1 with

respect to P2α+1
x ⊗P2δ+1

y . We easily see that {Bt−β
∫ t
0

ds
Vs
, 0 ≤ t ≤ T} and {Ct−γ

∫ t
0

ds
Us
, 0 ≤

t ≤ T} are independent Brownian motions under the probability with density ZT and this

proves that the new probability is Pα,β,γ,δ
x,y |UT

. �

8. Associated local martingales

Scale functions play a major role in the study of linear continuous Markov Processes ([17]
Section VII.3). There is no equivalent functions on the plane. However, in some particular
cases we can find simple functions of O2BPs that are local martingales.

Proposition 13. Assume the following set of conditions:

(19)

α > 1/2
δ > 1/2
(2α− 1)β + (2δ − 1)γ = 0
(X0, Y0) 6= (0, 0).

Then

Mt := X1−2α
t Y 1−2δ

t

is for any a > 0 a positive local martingale on [a,∞) which tends to 0 as t→ ∞.

Proof. Using Proposition 7 we first remark that Xt > 0 and Yt > 0 for any t > 0. From
Itô formula we get

Mt =Ma +

∫ t

0
[(1− 2α)X−2α

s Y 1−2δ
s dBs + (1− 2δ)X1−2α

s Y −2δ
s dCs].
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ThusM is a positive local martingale which tends to a limit H ≥ 0 as t→ ∞ ([17], Corollary
II.2.11 and Exercise IV.1.46 ). Moreover, the quadratic variation < M > satisfies

< M >t = < M >a +
∫ t
a X

−4α
s Y −4δ

s [(1− 2α)2Y 2
s + (1− 2δ)2X2

s ]ds

= < M >a +
∫ t
a M

2
s [

(1−2α)2

X2
s

+ (1−2δ)2

Y 2
s

]ds.

We may assume β ≥ 0 and γ ≤ 0. Then Y ≤ V where V is the process in (6). From Corollary
1 we deduce that

∫ ∞

a

ds

Y 2
s

≥

∫ ∞

a

ds

V 2
s

= ∞.

On the set {H > 0} we should have < M >∞= ∞ and then lim suptMt = − lim inftMt = ∞,
a contradiction with Mt → H. Thus H = 0 a.s. �

There is another case of interest.

Proposition 14. Assume α = δ = 1/2 and one of the following set of conditions is satisfied:

• β > 0 and γ > 0
• βγ < 0 and (X0, Y0) 6= (0, 0)
• β < 0, γ < 0 and C3.

Then

Mt := γ lnXt − β lnYt

is for any a > 0 a continuous local martingale on [a,∞) and

lim sup
t→∞

Mt = − lim inf
t→∞

Mt = ∞

.

Proof. We deduce from Theorem 5 and Proposition 6 that Xt > 0 and Yt > 0 for any
t > 0. Now Itô formula gives

Mt =Ma +

∫ t

a

(

γ
dBs

Xs
− β

dCs

Ys

)

and

< M >t=< M >a +

∫ t

a

(

γ2

X2
s

+
β2

Y 2
s

)

ds.

If β < 0, then Xt ≤ Ut where U is the Bessel process of dimension two in (6). From Corollary
1 we get

< M >∞ ≥

∫ ∞

a
γ2
ds

X2
s

≥ γ2
∫ ∞

a

ds

U2
s

= ∞

and the conclusion follows. If β > 0 we know that

lim sup
t→∞

(lnXt) ≥ lim sup
t→∞

(lnUt) = ∞

where

lnXt = lnXa +

∫ t

a

dBs

Xs
+ β

∫ t

a

ds

XsYs
.

But lnXt would converge a.s. as t→ ∞ if
∫ ∞

a

ds

X2
s

<∞ and

∫ ∞

a

ds

Y2
s

<∞.

Therefore < M >∞= ∞ again. �
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9. Product form stationary distribution

We introduce an additional constant drift (−µ,−ν) in order to make the solution a recur-
rent process in the nonnegative quadrant. We consider the system

(20)
Xt = X0 +Bt + α

∫ t
0

ds
Xs

+ β
∫ t
0

ds
Ys

− µt

Yt = Y0 +Ct + γ
∫ t
0

ds
Xs

+ δ
∫ t
0

ds
Ys

− νt

with the conditions Xt ≥ 0, Yt ≥ 0. If now

(21)
Ut = X0 +Bt + α

∫ t
0

ds
Us

− µt

Vt = Y0 + Ct + δ
∫ t
0

ds
Vs

− νt

with Ut ≥ 0, Vt ≥ 0, we can check that 0 is still polar for (U, V ) (as well, 0 is polar for U
if α ≥ 1

2 and for V if δ ≥ 1
2 ). Therefore the results in Sections 4, 5 and 6 are still valid for

the solution to (20). We are now looking for conditions on the set of parameters in order to
obtain a stationary distribution for the Markov process (X,Y ) in the remarkable form of a
product of two gamma distributions. Our proof is just an adaptation of the proof in [15].

Theorem 15. Assume there exists a unique solution to (20) in S0 or in S. This process has
an invariant distribution in the form Γ(a, c)⊗ Γ(b, d) if and only if

• αβ + γδ = 0 (skew symmetry)
• a = 2α+ 1, b = 2δ + 1

• c = 2δµα+νγ
αδ−βγ , d = 2αµβ+νδ

αδ−βγ

• µα+ νγ > 0, µβ + νδ > 0 .

Proof. Let

ρ(x, y) = xa−1e−cxyb−1e−dy for x ≥ 0, y ≥ 0 .

The infinitesimal generator of the diffusion (20) is given by

L =
1

2
(
∂2

∂x2
+

∂2

∂y2
) + (

α

x
+
β

y
− µ)

∂

∂x
+ (

γ

x
+
δ

y
− ν)

∂

∂y
.

By a density argument, to prove that ρ is an invariant density, it is enough to check that
∫ ∞

0

∫ ∞

0
Lf(x, y)ρ(x, y) dxdy = 0

for any f(x, y) = g(x)h(y) with g, h ∈ C2
c ((0,∞)) (compactly supported twice continuously

differentiable functions on (0,∞)). Integrating by parts, we get
∫ ∞

0

∫ ∞

0
L(gh)(x, y)ρ(x, y) dxdy =

∫ ∞

0

∫ ∞

0
g(x)h(y)J(x, y) dxdy

where

J(x, y) = ρ(x, y) [A+Bx−1 + Cx−2 +Dy−1 + Ey−2 + Fx−1y−1]

with
A = 1

2c
2 + 1

2d
2 − µc− νd

B = −(a− 1)c+ µ(a− 1) + αc+ γd
C = 1

2(a− 1)(a− 2)− α(a− 2)
D = −(b− 1)d+ ν(b− 1) + βc+ δd
E = 1

2(b− 1)(b − 2)− δ(b− 2)
F = β(a− 1) + γ(b− 1) .

Letting A = B = C = D = E = F = 0 we obtain the specified values for a, b, c, d and the
skew symmetry condition αβ + γδ = 0, which means that rx and ry are orthogonal. The last
condition in the statement of the theorem is written out so that the invariant density ρ is
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integrable on S. It is satisfied if (µ, ν) points into the interior of the quadrant designed by
rx and ry. �

Remark. With the same proof, we may check that under the skew symmetry condition,
when µ = ν = 0, the function ρ(x, y) = x2αy2δ is a non-integrable invariant density that does
not depend on the obliqueness parameter β.

A simple change of variables (beta-gamma algebra) provides the following result, where
β(a, b) denotes the usual Beta distribution with parameters a and b.

Corollary 16. With the conditions and notations of Theorem 15, the two-dimensional process

(22)
Wt := cXt

cXt+dYt

Zt := cXt + dYt

has β(a, b) ⊗ γ(a+ b, 1) for invariant distribution in (0, 1) × (0,∞).
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