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Abstract

Discrete tomography focuses on image representation by its discrete projections, and the related in-
version algorithms (or image reconstruction). Our study is based on redundant representations (con-
sidering more than just few projections). We propose a new approach to compute further redundancy
(i.e. new projections) from a set of existing projections. While this technique relies on the geometric
properties of ghosts, which are elements of the 2D image that sum to zero following some projection
directions, we show an equivalent method using 1D convolutions, thus avoiding the explicit image re-
construction. This technique has interesting applications in distributed storage systems, where the use
of redundancy data is key for system reliability.

Keywords: discrete tomography, redundancy,
ghost, convolution, storage.

1. Introduction

The inverse problem in 2D computed tomography
(CT) is to reconstruct an image from a set of projec-
tions recorded at different angles. A sufficient amount
of projections is required in order to inverse the op-
eration, guaranteeing the existence and uniqueness
of the solution [Kat78]. The forward operation com-
putes a set of projections of a given 2D image by
the Radon transform [Dea07]. The Mojette transform
[GN05, Gué09] is a discrete and exact Radon trans-
form. It consists in computing a set of projections from
a lattice of pixels along different discrete directions.
The values of projection elements are the addition of
the pixel values along these directions. While other
discrete versions of the Radon transform (e.g. the Fi-
nite Radon Transform [MF93]) can compute limited
amount of projections, the Mojette transform can be
used to compute redundant projections (i.e. beyond
the sufficient amount required for the reconstruction
process).

Redundant representations are useful in different
applications such as reliable transmission [NGPB96]
or storage systems [GPN01]. Redundancy is the key
to provide reliability in systems that face breakdowns
such as packet losses, disk failures or server unavail-
ability. The loss of some projections is counteracted
by the redundant information contained in the extra
projections computed during the forward transform.

Once projections are computed, we consider that the
image is only available by reconstruction. Indeed, in
distributed storage systems, the image is only used to
compute projections which are afterwards distributed
over several storage nodes. When projections are per-
manently lost, it is necessary to rebuild it to restore
the system fault-tolerance. This issue, well-known in
the storage community as the repair problem, deals
with the node repairing after a permanent failure. Fur-
thermore, it could be necessary to improve the system
redundancy during its lifetime, by computing further
extra projections (i.e. after the forward transform pro-
cess).

A simple way to compute new projections consists
in reconstructing the image from a sufficient amount
of projections followed by projecting the pixel values
along the desired directions. While simple to design,
this technique has several cons. First, the image should
not be accessible by anyone but the owner (i.e. not
fully reconstructed by a tier). Furthermore, the com-
putation workload should be distributed and not ded-
icated to the reconstructing tier to avoid computation
congestion. Finally, the number of projections trans-
mitted to the reconstructing tier should be minimized.
Indeed, the amount of data in large storage clusters
continuously increases and the network load for such
a task might induce network congestions.

In this paper, we propose a new technique to gener-
ate redundant projections from an existing set of pro-
jections. After recalling the Mojette transform basics
in Section 2, we show that the linear Mojette recon-
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Figure 1: Mojette transform of a 3 × 3 image for
directions (p, q) in the set {(−1, 1), (0, 1), (1, 1), (2, 1)}.
Each projection bin is the sum of the pixels centered
on a discrete line of equation b = −kq + lp. Addition
is done modulo 6.

struction can be decomposed into partial reconstruc-
tions in Section 3. Particularly, this section shows how
each projection contributes independently to the re-
projection process and how the explicit reconstruction
of the image is avoided. Then, we discuss the storage
applications related to this technique in Section 4 be-
fore the conclusion.

2. Mojette Transform

The Mojette transform [GN05, Gué09] is a discrete
and exact version of the Radon transform. This sec-
tion presents the Mojette transform, the uniqueness
conditions of the reconstruction solution, and the in-
verse algorithm.

2.1. Forward Mojette Transform

The forward Mojette transform computes a linear set
of 1D projections at different angles, from a discrete
image f : (k, l) 7→ N, composed of P × Q pixels. A
projection direction is defined by a couple of co-prime
integers (p, q). Projections are vectors of variable sizes
whose elements are called bins. A bin in the Mojette
transform of f is characterised by its position b in
the projection which corresponds to a discrete line of
equation b = −kq + lp. Its value is the sum of the
centered pixels along the line:

(M(p,q)f)(b) =
P−1∑
k=0

Q−1∑
l=0

f(k, l)[b = −kq + lp], (1)

where, [·] is the Iverson bracket ([P ] = 1 whenever
P is true, 0 otherwise). The number of bins B of a
projection depends on the projection direction (p, q)
and the lattice size:

B(p, q, P,Q) = |p| (Q− 1) + |q| (P − 1) + 1. (2)

Figure 1 gives an example of the forward Mojette

transform for a 3 × 3 integer image. The process
transforms the 2D image into a linear set of four
projections along the directions of the following set:
{(−1, 1), (0, 1), (1, 1), (2, 1)} based on modulo-6 addi-
tions. The next section concerns the inverse problem
and the reconstruction algorithm.

2.2. Inverse Mojette Transform

The following part describes the existence of a recon-
struction solution, its uniqueness, and the inversion
algorithm to retrieve the image given a projection set.

2.2.1. Ghosts and Reconstruction Criteria

Katz has shown that for a P × Q lattice, the recon-
struction is possible given a projection set SI if one of
the following criteria is verified [Kat78]:

P ≤
I−1∑
i=0

|pi| or Q ≤
I−1∑
i=0

|qi|, (3)

where I is the number of projections. For instance, the
image in Fig. 1 is reconstructible since

∑2
i=0 |pi| = 3

for the given set, which is not less than the im-
age height. We can also notice that each subset of
three projections {(pj0 , qj0 ), . . . , (pj2 , qj2 )} is such that∑2

i=0 |pji | = 3. Thus, Fig. 1 depicts a redundant rep-
resentation of the image, where any projection among
four can be omitted for reconstruction.

The criterion for an arbitrary shape is given by the
geometric properties of ghosts. Ghosts are elements
of the image made of positive and negative values
that sum to zero along a set of projection directions.
While ghosts influence the image itself, they are invis-
ible in different projection directions. Each projection
defined by (p, q) is related to a simple ghost as shown
in Fig. 2 (a):

G{(p,q)} : p 7→


1 if p = (0, 0)
−1 if p = (p, q)
0 otherwise

.

Any image convolved with G{(p,q)} has null projec-
tion values in the direction (p, q). As a consequence,
a composed ghost G{(pi,qi)}, for the set of projections
{(pi, qi)}, is obtained by convolving the simple ghosts
Gpi,qi . Figure 2 gives some examples of simple and
composed ghosts. Part (a) shows the simple ghost for
the projection direction (0, 1). Parts (b-d) show re-
spectively the composed ghosts:

G{(0,1),(1,1)} = G{(0,1)} ∗G{(1,1)},

G{(−1,1),(0,1),(1,1)} = G{(−1,1)} ∗G{(0,1),(1,1)},

G{(2,1),(−1,1),(0,1),(1,1)} = G{(2,1)} ∗G{(−1,1),(0,1),(1,1)}.

Normand and Guédon proved that any rectangular
domain that does not contain the composed ghost for
a given projection set, has necessarily a unique inverse
solution [NG98]. This proposal generalises Katz’ cri-
terion for images of arbitrary shape.

c© GéoDis 2015.
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Figure 2: (a) Simple ghost G(0,1) with null projection values in direction (0, 1). The following constructs the
composed ghost G{(−1,1),(0,1),(1,1),(2,1)} by the iterative 2D convolutions with G{(p,q)} for directions (p, q) in the set
{(−1, 1), (1, 1), (2, 1)}.

2.2.2. Inverse Mojette Algorithm

The reconstruction algorithm aims at finding a recon-
structible bin and at writing its value in the image by
back-projection. Bins are reconstructible when they
result from a unique pixel of the image. Once a bin is
reconstructed, its contribution is subtracted from all
the projections involved in the reconstruction. While a
bin is reconstructed, the related pixel is removed from
the problem, paving the way to reconstruct further
bins. Figure 3 shows the first step of the reconstruction
of a 3×3 image from a projection set whose directions
(p, q) are in the set {(1, 1), (0, 1), (−1, 1)}. The image
is reconstructible since the composed ghost is not con-
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Figure 3: First step of the Mojette inverse of a 3× 3
image by three projections whose directions (p, q) are
in the set {(0, 1), (−1, 1), (1, 1)}. The first bin of the
projection (1, 1) is a reconstructible bin as it fully de-
fined the first pixel. Its value is back-projected in the
image and is subtracted from all the projections.

tained in the image domain (this ghost is depicted in
Fig. 2 (c)). The first bin of the projection (1, 1) is re-
constructible as it sums only the pixel on the top left
corner. After the back-projection, the value of the re-
lated bins in the three projections are subtracted by
the value of the constructible bin.

Observing that the reconstruction propagation from
the image corners to its center, Normand et al. showed
that given an image domain and a projection set, a
dependency graph between the image pixels can be
found [NKÉ06]. Within this graph, considering that
a single projection is dedicated to the reconstruction
of one line of the image, a reconstruction path can be
pre-determined. Figure 4 illustrates such a path inside
the dependency graph of a 6×4 image with the follow-
ing projection set S = {(2, 1), (1, 1), (1, 0), (−1, 1)}.
We consider here that the reconstruction propagation
progresses from left to right.

-1,1

0,1

1,1

2,1

Figure 4: Dependency graph for a 6 × 4 image
given the four projection directions (p, q) in the
set {(2, 1), (1, 1), (0, 1), (−1, 1)}. The reconstruction is
from left to right. Vertices represent image pixels while
directed edges correspond to dependencies between pix-
els.
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3. Mojette Re-projection

In this section, we present a new approach based on
the linearity of the Mojette transform to decompose
its inverse operation into partial reconstructions. Par-
ticularly, we show how each projection contributes in-
dependently to the re-projection process. The second
part highlights an equivalent method based on 1D con-
volutions, that avoids the explicit reconstruction of the
image.

3.1. Partial Reconstructions

The linear property of the Mojette inverse enables the
decomposition of the reconstruction process into par-
tial reconstructions that can be individually computed
from each projection and re-projected along any arbi-
trary direction.

Let S be a set of Q projection directions in the
form (pi, qi = 1). Then

∑
qi = Q and, according to

Eq. (3), any P ×Q domain is uniquely reconstructible
by the set of projections with directions in S. Let R
be a subset of S, a partial reconstruction is the pro-
cess that reconstructs an image fR

S from the set of
projections R (i.e. disregarding Eq. (3) if R ( S),
completed by null-valued projections in the missing
directions S \ R. If subsets Ri form a partition of S
then, by linearity, f =

∑
i
fRi

S . Figure 5 shows an ex-
ample of partial reconstructions (a-c) with projections
in the set S = {(−1, 1), (0, 1), (1, 1)}. Figure 5 (a) to
(c) respectively depict the partial reconstructions from
the subsets {(0, 1)}, {(1, 1)} and {(−1, 1)}. The sum
of the three partially reconstructed images f{(0,1)}

S ,
f
{(1,1)}
S and f

{(−1,1)}
S yields the reconstructed image

f as shown in Fig. 5 (d) since {(0, 1)}, {(1, 1)} and
{(−1, 1)} form a partition of S.

Similarly to the inverse Mojette transform, the for-
ward transform is linear. Hence the sum of the pro-
jections along direction (p, q) computed from partial
reconstructions yields the projection M(p,q)f of the
original image along this direction (p, q):

M(p,q)f =
∑
R∈P

M(p,q)f
R
S , (4)

where S is a sufficient set of projection directions for
image reconstruction, and fR

S is the partial reconstruc-
tion from the subset R in the partition P of S.

An example of the re-projection process is given in
Fig. 5. The image used in this example is the same
3× 3 integer image as the one depicted in Fig. 1. The
Mojette transform gives a set of the following projec-
tion set: S = {(2, 1), (1, 1), (0, 1), (−1, 1)} where addi-
tion is realised modulo 6. In what follows, we con-
sider the computation of the projection (2, 1) from
the three other projections. Figure 5 gives successively
the partial reconstructions from {(0, 1)}, {(1, 1)}, and
{(−1, 1)} with their relative re-projection along the
projection direction (2, 1).

While the partial reconstructions have infinite

length, the result can be truncated since the part out-
side the original image is zero-valued. In the next sec-
tion, we investigate a technique to avoid the 2D re-
constructions of images.

3.2. Reconstruction by 1D Convolutions

The partial reconstruction f
{(pi,qi)}
S from the single

projection M(pi,qi)f is such that, by definition, the
other projections of S are zero-valued. It is equivalent
to say that the image f{(pi,qi)}

S is a ghost for those di-
rections. We consider the composed ghost GS\{(pi,qi)}.
Then, the image resulting from a partial reconstruc-
tion is composed of this ghost kernel. More particu-
larly, this image can be expressed as a the convolution
of some sequence h and GS\{(pi,qi)}:

f
{(pi,qi)}
S = h ∗GS\{(pi,qi)}

Then for any direction (pk, qk = 1),

M(pk,qk)f
{(pi,qi)}
S = h ∗ (M(pk,qk)GS\{(pi,qi)}) . (5)

By definition of f{(pi,qi)}
S ,

M(pi,qi)f
{(pi,qi)}
S = M(pi,qi)f

therefore

h = (M(pi,qi)f) ∗−1 (M(pi,qi)GS\{(pi,qi)}) . (6)

Using Eq. (5) and h from Eq. (6), we are able to
compute the projection of the partial reconstruc-
tion f

{(pi,qi)}
S along any direction (pk, qk) with 1D

operations (provided that M(pk,qk)GS\{(pi,qi)} and
M(pi,qi)GS\{(pi,qi)} are precomputed).

Furthermore, since GS\{(pi,qi)} is composed by con-
volutions:
M(pk,qk)f

{(pi,qi)}
S = (M(pi,qi)f)

∗-1

(pj ,qj )∈S\{(pi,qi)}
(M(pi,qi)G{(pj ,qj )})

∗
(pj ,qj )∈S\{(pk,qk)}

(M(pi,qi)G{(pj ,qj )})

(7)

In Eq. (7), each M(pi,qi)G(pj ,qj ) corresponds to the
projection along direction (pi, qi) of the simple ghost
for direction (pj , qj) and is equal to the sequence:

t 7→


1 if t = 0
−1 if t = j − i
0 otherwise

.

Then, the re-projection of the partial reconstruction
can be computed from a single projection and the re-
lated ghost kernel by Eq. (7) where the projection of
the ghost is expressed as 1D deconvolutions and 1D
convolutions with basic kernels.

4. Applications to Distributed Storage
Systems

In distributed storage systems, redundancy is key to
provide reliability and face inevitable software and

c© GéoDis 2015.
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Figure 5: Re-projection of three partial reconstruc-
tions. The figures depict the partial reconstructions
respectively from the projections (0, 1), (1, 1) and
(−1, 1). The re-projection is done following the direc-
tion (2, 1). The last figure corresponds to the sum of
the three partial reconstructions which equals the orig-
inal image.

hardware failures. Plain replication is the standard
technique that distributes several copies of an image
on remote storage nodes to handle data unavailabil-
ity. While simple, this technique induces high storage
overhead defined by the factor of replication.

Erasure coding has become a crucial alternative
that provides similar fault-tolerance and reduces sig-
nificantly this storage overhead. An (n, k) erasure code
divides an image into k blocks that are used to com-
pute r = n−k redundant blocks. A Maximal Distance
Separable (MDS) code (e.g. Reed Solomon [PD03]) de-
picts a code that is able to retrieve the image from any
set of k blocks among the n. These n blocks are then
distributed to different storage nodes. While the sys-
tem is able to face r failures, its storage overhead is
1− n

k
.

4.1. Mojette Erasure Coding

The Mojette transform can be used as an erasure
code [NGPB96]. Since the number of projections is
not limited, redundancy is generated when it is beyond
the sufficient number of projections required to satisfy
reconstruction criteria (as depicted in Section 2.2.1).
In this case, the reconstruction is possible even when
some projections are erased.

We consider the following constraint over projec-
tions: qi = 1. According to Katz’ criterion, and con-
sidering a rectangular grid, it is possible to reconstruct
the grid using any subset of Q projections. Thus, the
(n, k) Mojette erasure code is defined such as k is the
image height, and n corresponds to the number of
projections. Then, the image is reconstructible even if
n − k projections are lost. While the Mojette erasure
code is able to retrieve the image from any subset of
k projections among n, the size of projections is vari-
able and the code is (1 + ε) MDS, i.e. asymptotically
optimal in terms of code size.

4.2. Node Repair and Redundancy Rate

Node repairing and fault-tolerance adaptation are two
applications of the re-projection process in distributed
storage systems. The repair problem deals with the re-
construction of the whole information contained in a
storage node after suffering from permanent failure. A
naive repairing process consists in fetching k projec-
tions for each file concerned by the projections con-
tained in the failed node. Then, the auxiliary node
fully reconstructs the related files, and generates the
desired redundant information. Many problems arise
from this method. The first concerns the computation
centralization at the auxiliary node. The re-projection
technique in this paper enables a distributed compu-
tation since each node involved in the reconstruction
process transmits its contribution as partial recon-
struction projection along the desired direction. The
auxiliary node needs only to sum the received projec-
tions.

Node repairing is a growing concern as the volume

c© GéoDis 2015.
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of data increases in storage systems. Thus, fetching k
projections for each file contained in a disk can induce
tera-bytes of data to transfer. Major cloud services as
Facebook [RSG∗13] significantly suffer from it. Wang
et al. [WDB10] showed that it is possible to send a
amount of information lower than k to rebuild a node.
In our case, network coding appears as a solution to
reduce the network load since any intermediate node
between the contributors and the reconstructing node
is able to merge the contributions from different nodes.

When the re-projection direction corresponds to a
new direction, this technique corresponds to generat-
ing new redundant projections. Thus, it appears as an
efficient way to increase the fault-tolerance of a system
by adapting the redundancy rate after the transform.

5. Conclusion

In this paper, we rely on the linearity of the Mojette
transform to decompose the reconstruction process
into partial reconstructions. We show that the projec-
tion of these reconstructions following new directions
can be aggregated in order to generate redundant pro-
jections. This novel approach induces distributed load
during re-projection. Furthermore, we show that this
process is equivalent to a 1D convolution and decon-
volution, avoiding to fully reconstruct images. This
technique has significant advantages in reliable storage
systems as a way to both repair erased projections and
increase data reliability. Then, our future work will fo-
cus on the capability to decrease the network load.
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