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Abstract The Kamp River is a particularly interesting case study for testing flood frequency estimation 21 
methods, since it experienced a major flood in August 2002. Here, this catchment is studied in order to 22 
quantify the influence of such a remarkable flood event on the calibration of a rainfall-runoff model, in 23 
particular when it is used in a stochastic simulation method for flood estimation, by performing 24 
numerous rainfall-runoff model calibrations (based on split-sample and bootstrap tests). The results 25 
confirmed the usefulness of the multi-period and bootstrap testing schemes to identify the dependence 26 
of model performance and flood estimates on the information contained in the calibration period. The 27 
August 2002 event appears to play a dominating role for the Kamp River, since the presence or absence 28 
of the event within the calibration sub-periods strongly influences the rainfall-runoff model calibration 29 
and the extreme flood estimations that are based on the calibrated model.  30 
Key words: Non stationarity; IAHS workshop; model calibration and evaluation; SCHADEX, extreme 31 
floods, bootstrap.  32 
 33 

Dépendance des estimations de crues extrêmes (basées sur un modèle pluie–34 

débit) à la période de calage: étude de cas de la rivière Kamp (Autriche) 35 
 36 
Résumé La rivière Kamp est un cas d’étude particulièrement intéressant pour le test de méthodes de 37 
prédétermination des crues, puisqu’elle a vu une crue exceptionnelle se produire en août 2002. Dans cet 38 
article, nous étudions ce bassin versant pour quantifier l’influence de ce type de crue remarquable sur le 39 
calage d’un modèle pluie-débit, en particulier lorsqu’il est utilisé dans une méthode de simulation 40 
stochastique pour la prédétermination des crues. Pour cela, nous réalisons de nombreux calages du 41 
modèle pluie-débit (en nous basant sur des tests de bootstrap et sur des périodes indépendantes). Les 42 
résultats obtenus confirment l’utilité des procédures de calages multi-périodes et de « calages 43 
bootstrap » pour identifier la dépendance des performances des modèles hydrologiques et des 44 
estimations de crues extrêmes aux informations contenues dans les périodes de calage. L’événement de 45 
2002 apparait jouer un rôle dominant pour la rivière Kamp, puisque la présence de l’événement au sein 46 
des périodes de calage influence fortement le calage du modèle pluie-débit et l’estimation des crues 47 
extrêmes reposant sur le modèle calé. L’ensemble des jeux de paramètres obtenus avec des périodes de 48 
calages ne contenant pas l’épisode de 2002 produit des estimations de crues extrêmes 49 
systématiquement plus fortes que celles obtenues avec les autres jeux de paramètres.  50 
 51 
Mots clé : Non stationnarité ; Atelier AISH ; calage de modèle et évaluation ; SCHADEX ; crues 52 
extrêmes ; bootstrap.  53 
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1. INTRODUCTION 54 

 55 

1.1. The challenge of hydrological variability 56 

 57 
The calibration of rainfall-runoff models in the context of a changing climate is 58 

currently the subject of an intense discussion in the hydrological modelling 59 

community (e.g. by Peel & Blöschl, 2011; Muñoz et al., 2013; Montanari et al., 2013; 60 

Hrachowitz et al., 2013 and Thirel et al., 2014). Indeed, observed hydro-61 

meteorological series (precipitation or streamflow for example) used for model 62 

calibration are subject to significant variability over time (Milly et al., 2008). This 63 

variability could be induced by sudden physiographic changes in the catchment (e.g. 64 

forest fire, dam building), climatic condition changes (e.g. air temperature rising) 65 

and/or long-term fluctuations being barely detectable by statistical tests 66 

(Koutsoyiannis, 2006; Montanari, 2012).  67 

 68 

Hydrological variability challenges the usual calibration approach - traditionally 69 

assuming stationary or at least representative hydro-climatological conditions - which 70 

consists in using the entire record period for identifying one or several optimal 71 

parameter sets. Several studies, based on the split-sample test proposed by Klemeš 72 

(1986), investigated the sensitivity of rainfall-runoff simulations to the characteristics 73 

of the calibration period (e.g. Donnelly-Makowecki & Moore, 1999; Seibert, 2003; 74 

Vaze et al., 2010; Merz et al., 2011; Coron et al., 2012; Brigode et al., 2013a). 75 

Gharari et al. (2013) recently suggested estimating calibration performance over 76 

different sub-periods, in order to identify parameter sets with time-consistent 77 

performance, thereby reducing the over-calibration problem (Andréassian et al., 78 

2012). Time-varying sensitivity analysis such as the DYNamic Identifiability 79 

Analysis (DYNIA, Wagener et al. (2003)) have also been proposed to identify 80 

“informative regions with respect to model parameters” (Wagener & Kollat, 2007) 81 

and to link particular hydro-climatic conditions with time-varying dominant rainfall-82 

runoff model parameters (Herman et al., 2013). 83 

 84 

1.2. The information content of extreme events 85 
 86 

The observed hydro-meteorological variability affects mean values as well as extreme 87 

values. For instance, Ward et al. (2014) recently showed that El Niño Southern 88 

Oscillations (ENSO) significantly influence the flood intensity of daily annual peak. 89 

Interannual variability could also be characterized by the observation of outliers 90 

within the record period, i.e. the “outlying observation that appears to deviate 91 

markedly from other members of the sample in which it occurs” (Grubbs, 1969). Such 92 

outstanding values have to be taken into account, since they provide valuable 93 

information about the extreme hydrological behavior of the studied catchments (Laio 94 

et al., 2010). In a statistical framework, methods such as resampling techniques (Katz 95 

et al., 2002) can be used to quantify the sensitivity of the extreme-quantile estimation 96 

to these observed rare events.  97 

 98 

Nevertheless, in the context of rainfall-runoff model calibration, quantifying the 99 

sensitivity of the model’s results to such rare events is more challenging. Berthet et al. 100 

(2010) showed that only a limited number of time steps truly influences the values of 101 

the quadratic calibration criteria usually used for rainfall-runoff model calibration 102 

(like Nash & Sutcliffe (1970) Efficiency or Root-Mean-Square Deviation scores). 103 



 

3 

 

Moreover, Perrin et al. (2007) and Seibert & Beven (2009) highlighted that a limited 104 

number of streamflow values can contain a significant amount of hydrological 105 

information, while Beven & Westerberg (2011) suggested that some periods within 106 

the observation records could even be disinformative for the models. Singh & 107 

Bárdossy (2012) and Singh et al. (2012) suggested identifying a limited number of 108 

events on which the calibration should be performed, using the statistical concept of 109 

data depth. 110 

 111 

The challenge of rainfall-runoff model calibration in a changing climate has been 112 

recently studied in a workshop during the 2013 International Association of 113 

Hydrological Sciences (IAHS) General Assembly in Göteborg, Sweden, where 114 

hydrological modellers were asked to calibrate their models over several selected 115 

catchments (Thirel et al., 2014, this issue). Participants were provided a calibration 116 

and evaluation protocol as well as a selection of 14 “changing catchments” showing 117 

different observed changes such as temperature increases, dam building and land-118 

cover modification. 119 

 120 

Among these 14 catchments, the Kamp River at Zwettl (622 km²) located in northern 121 

Austria is a particularly interesting case study, since (i) a significant increase of more 122 

than 1°C of the catchment’s air temperature has been estimated over the last 30 years 123 

(Thirel et al., 2014, this issue) and (ii) it experienced a major flood event in August 124 

2002, which has been extensively studied over the last few years (e.g. Komma et al., 125 

2007; Viglione et al., 2010; Viglione et al., 2013). The August 2002 event, which 126 

caused major flooding in different regions of central Europe (Blöschl et al., 2013), 127 

resulted in an estimated peak flow of 460 m
3
/s, which is three times higher than the 128 

second largest flood observed over the 1951-2005 period (Viglione et al., 2013). The 129 

influence of this event has already been studied by Viglione et al. (2013) in the 130 

context of flood frequency analysis, showing that this event strongly influences the 131 

extreme flood estimation if no additional information (e.g. historical data) is used. On 132 

this catchment, Brigode et al. (2014) also illustrated the strong influence of this event 133 

on extreme rainfall estimation and on extreme flood estimation performed with a 134 

stochastic flood simulation method.  135 

 136 

1.3. Scope of the paper 137 
 138 

This paper aims at (i) applying the calibration protocol proposed by the 2013 139 

“hydrology under change” IAHS workshop within the context of extreme flood 140 

estimation based on a rainfall-runoff model, (ii) comparing the results obtained using 141 

the workshop calibration protocol to the one proposed by Brigode et al. (2014) based 142 

on bootstrap resampling and (iii) quantifying the influence of the 2002 event on 143 

rainfall-runoff model calibration. As in Brigode et al. (2014), the SCHADEX method 144 

(Simulation Climato-Hydrologique pour l'Appréciation des Débits EXtrêmes - Hydro-145 

climatic simulation for the estimation of extreme flows) detailed by Paquet et al. 146 

(2013) has been applied over the Kamp catchment, considering sub-periods for the 147 

calibration of the MORDOR rainfall-runoff model.   148 
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2. CATCHMENT DESCRIPTION 149 
 150 

The Kamp catchment at Zwettl is one of the 14 “changing catchments” selected for 151 

the IAHS workshop and described in detail by Thirel et al. (2014, this issue). Daily 152 

precipitation, temperature and streamflow series have been supplied and are available 153 

for the 1976-2008 period. Additionally, elevation data have been extracted from the 154 

SRTM 90m data set (Jarvis et al., 2008). 155 

 156 

Figure 1 illustrates the hydroclimatic context of the Kamp catchment at Zwettl, a 157 

622 km² catchment located in northern Austria. Catchment elevation ranges from 158 

around 500 to 1,000 m a.s.l, with the highest elevation areas located in the southern 159 

and western parts of the catchment. The daily streamflow and precipitation series 160 

plotted in the upper part of Figure 1 clearly show that the August 2002 flood is not 161 

comparable to other observed floods, both in terms of observed precipitation amount 162 

and flood magnitude. Due to this extreme event, the 2001-2002 hydrological year has 163 

the largest precipitation and runoff annual mean within the 1976-2008 period. On 164 

average, the mean annual precipitation and runoff are around 800 mm and 300 mm, 165 

respectively, on the Kamp catchment. Precipitation and runoff have clear seasonal 166 

behaviours in this region, with the highest precipitation amount observed during 167 

summer (typically from June to August) and the highest streamflow amount observed 168 

during the March to April month, due to snowmelt. Large floods are usually observed 169 

on this catchment during the July to August period, mainly produced by intense 170 

rainfall events. Note that snow processes are important on this catchment, since floods 171 

are also observed during rain-on-snow or snowmelt events in this region (Viglione et 172 

al., 2010). 173 

 174 
Fig. 1 Hydroclimatic context of the Kamp River at Zwettl catchment: (a) observed daily streamflow 175 
and precipitation time series, (b) streamflow, precipitation and temperature mean annual series, (c) 176 
streamflow, precipitation and temperature monthly regimes, and (d) SRTM elevation data (Jarvis et al. 177 
2008).  178 
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3. METHOD 179 

 180 

3.1. The SCHADEX flood simulation method 181 
 182 

The SCHADEX method (Paquet et al., 2013) is a stochastic flood simulation method 183 

developed and applied by Électricité de France (EDF) for the design of dam 184 

spillways. It has been applied to more than 80 catchments over France and elsewhere, 185 

for example in Austria, Canada and Norway (Lawrence et al., 2014; Brigode et al., 186 

2014). 187 

 188 

SCHADEX is a semi-continuous stochastic flood simulation method that generates, 189 

for a given catchment, a large number of floods, which result from the combination of 190 

two hazards: (i) the rainfall hazard and (ii) the catchment saturation hazard: 191 

i. Rainfall events are randomly drawn using a rainfall probabilistic model, the 192 

Multi-Exponential Weather Pattern distribution (Garavaglia et al., 2010). This 193 

rainfall probabilistic model is based on a seasonal and weather pattern sub-194 

sampling of observed rainfall series. The five weather pattern classification 195 

proposed for Austria by Brigode et al. (2013b) is used for the Kamp 196 

catchment.  197 

ii. Catchment saturation conditions are not explicitly described as a random 198 

variable but are instead generated by a continuous rainfall-runoff simulation 199 

over a long record period and thus implicitly represented by the internal 200 

variables of the rainfall-runoff model.  201 

 202 

The MORDOR rainfall-runoff model (Garçon, 1999; Andréassian et al., 2006) is used 203 

to perform the continuous rainfall-runoff simulation used for the description of the 204 

catchment saturation conditions and also to transform a given rainfall event falling 205 

over a given catchment into a flood event. 206 

 207 

For each studied catchment, the SCHADEX simulation process generates around two 208 

millions of simulated floods, resulting from the combinations of different rainfall 209 

events with different catchment saturation conditions. A distribution of simulated 210 

flood events is built to provide estimates of extreme flood quantiles, such as the 211 

1,000-year return period flood (noted Q1000). 212 

 213 

In this study, only the MORDOR parameter set will change according to the 214 

calibration periods. The entire record period will be considered for the estimation of 215 

the rainfall probabilistic model parameters and for the computation of a modelled 216 

distribution of catchment saturation conditions. 217 

 218 

3.2. The MORDOR rainfall-runoff model 219 
 220 

MORDOR is a conceptual rainfall-runoff model developed and intensively used by 221 

EDF for operational hydrology in different contexts such as flood forecasting (e.g. 222 

Zalachori et al., 2012), low-flow forecasting (e.g. Mathevet et al., 2010; Nicolle et al., 223 

2014) and flood frequency estimation (e.g. Paquet et al., 2013). The different 224 

components of the hydrological cycle are represented through four reservoirs within 225 

MORDOR: (i) a rainfall excess/soil moisture accounting store (noted U) contributing 226 

to actual evaporation and to direct runoff, (ii) an evaporating store (noted Z) filled by 227 

part of the indirect runoff component and contributing to actual evaporation, (iii) an 228 
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intermediate store (noted L) determining the partitioning between direct runoff, 229 

indirect runoff and percolation to a deep storage reservoir and (iv) a deep storage 230 

reservoir (noted N) determining baseflow. Last, a unit hydrograph is used for routing 231 

the total simulated runoff. 232 

 233 

Required inputs of the MORDOR model are air temperature and precipitation series. 234 

With the snow component, MORDOR has 22 free parameters, while it has 11 235 

parameters without the snow component. In this study, the snow component 236 

parameters were fixed after a first MORDOR calibration over the entire record period, 237 

with an objective function combining classical Nash & Sutcliffe (1970) efficiency 238 

(NSE) with a criterion minimizing the difference between observed and simulated 239 

mean annual streamflow. This objective function aims at having snow component 240 

parameters inducing good day-to-day performance of the rainfall-runoff model and 241 

also good model performance in terms of simulated streamflow volume over the 242 

entire record period. The volume difference and NSE score obtained with this 243 

MORDOR parameter set over the 1977-2008 period are -0.1% and 0.85 respectively.  244 

Table 1 summarizes the name, role and unit of the 11 free parameters calibrated in 245 

this study and each parameter’s prior ranges. These parameters are estimated using an 246 

automatic optimization scheme developed by EDF and based on a genetic algorithm, 247 

a strategy commonly used in hydrological modelling since the 1990s (e.g. Wang, 248 

1991; Franchini, 1996; Wang, 1997). It has been shown to perform as well as other 249 

algorithms such as the SCE-UA (Duan et al., 1992) over numerous catchments by 250 

Mathevet (2005). 251 

 252 
Table 1 Description of the 11 free parameters of the MORDOR model to be calibrated over the Kamp 253 
River at Zwettl catchment. 254 
Name Description (and unit) Range 

fe1 Parameter linked to potential evapotranspiration [-] 0.0005 ≤ X ≤ 0.1 

fe3 Parameter linked to potential evapotranspiration [-] -7 ≤ X ≤ 0 

kl1 Percolation coefficient 1 of the L reservoir [-] 0.1 ≤ X ≤ 0.9 

kl2 Percolation coefficient 2 of the L reservoir [-] 0.1 ≤ X ≤ 0.9 

dn Percolation coefficient of the N reservoir [-] 1 ≤ X ≤ 999 

exn Exponent of the recession limb of the N reservoir [-] 1 ≤ X ≤ 8 

ftr1 Parameter linked to the routing function [-] 0.5 ≤ X ≤ 10 

ftr2 Parameter linked to the routing function [-] 0.5 ≤ X ≤ 6 

UMAX Maximum capacity of the U reservoir [mm] 30 ≤ X ≤ 200 

LMAX Maximum capacity of the L reservoir [mm] 30 ≤ X ≤ 200 

ZMAX Maximum capacity of the Z reservoir [mm] 30 ≤ X ≤ 200 

 255 

3.3. MORDOR rainfall-runoff model calibration strategies 256 
 257 

The objective function used for the calibration of the MORDOR rainfall-runoff model 258 

(noted OBJEDF and given in Equation 1) is a combination of two NSE scores: (i) the 259 

NSE score computed with observed and simulated streamflow time series and (ii) the 260 

NSE score computed with observed and simulated cumulative distribution functions 261 

of streamflow series (noted NSECDF). This combination allows a good trade-off 262 

between the day-to-day performance of the rainfall-runoff model and the model 263 

performance regarding the highest observed streamflow values (Paquet et al., 2013). 264 

It has been recommended within the context of continuous flood simulation (Lamb, 265 

1999). This objective function is commonly used for the calibration of the MORDOR 266 

rainfall-runoff model within the SCHADEX method applications (e.g. Paquet et al., 267 

2013; Lawrence et al., 2014; Brigode et al., 2014). For each MORDOR calibration, 268 
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only the optimal parameter set in terms of the OBJEDF objective is considered further. 269 

Note that a perfect streamflow simulation has an OBJEDF value of 0. 270 

 271 

𝑂𝐵𝐽𝐸𝐷𝐹 = (1 − 𝑁𝑆𝐸)2 + 2 ∗ (1 − 𝑁𝑆𝐸𝐶𝐷𝐹) (1) 

 272 

Three different calibration options were considered, as illustrated in Figure 2: 273 

i. The MORDOR model was calibrated over the entire record period, leading to 274 

a parameter set considered as the reference set (noted CP for complete period 275 

in the following).  276 

ii. MORDOR was calibrated over the five 6-year sub-periods selected in the 277 

workshop test protocol (Thirel et al., 2014, this issue). These five parameter 278 

sets are noted P1 to P5 parameter sets in the following. The August 2002 flood 279 

event is included in the P5 sub-period. 280 

iii. One hundred independent calibrations (noted BST1, BST2, …, BST100) were 281 

made over 25-year sub-periods, identified through a block-bootstrap method 282 

described by Brigode et al. (2014). For each of the 100 calibrations, 25 283 

hydrological years are identified among the total hydrological years available 284 

on the studied catchment (here 31 hydrological years, starting from 1976 and 285 

ending in 2008). Note that the number of 25-year combinations from a given 286 

set of 31 elements is 736,281 and thus that the 100 combinations tested here 287 

are only a sub-set of all the possible combinations. Unlike the P1 to P5 sub-288 

periods, the bootstrapped sub-periods are not independent and are quite 289 

similar: they have a majority of the 31 hydrological years observed in common 290 

and only differ by the absence/presence of a few years. The rainfall-runoff 291 

model is continuously run over the entire record period, but only the selected 292 

hydrological years are considered for the computation of the objective 293 

function. Note that bootstrap techniques have already been used for the 294 

estimation of hydrological parameter uncertainty (Ebtehaj et al., 2010; Selle & 295 

Hannah, 2010). 296 

iv. To highlight the influence of the August 2002 flood on the rainfall-runoff 297 

model calibration, the same bootstrap scheme has been repeated but the 298 

August 2002 data  were systematically excluded from the computation of the 299 

objective function. Thus, even if the 2002 hydrological year is selected, the 300 

August 2002 month will not be considered for the calibration of the rainfall-301 

runoff model. These parameter sets will be noted BSM1, BSM2, …, BSM100. 302 

 303 

After each calibration, the MORDOR model was run on the whole period to enable 304 

efficiency calculations on all test sub-periods. 305 

  306 
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 307 
Fig. 2 Illustration of the different calibration strategies used for the calibration of the MORDOR 308 
rainfall–runoff model: calibration over the entire record period (CP), calibrations over the five 6-year 309 
sub-periods (P1–P5), calibration over 100 25-year sub-periods generated through a block-bootstrap 310 
technique (BST1 to BST100) and calibration over 100 25-year sub-periods excluding the August 2002 311 
observations, generated through a block-bootstrap technique (BSM1 to BSM100). The vertical dotted 312 
line indicates the 2002 flood event.  313 
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4. RESULTS 314 
 315 

4.1. Performance of the MORDOR rainfall-runoff model 316 
 317 

Figure 3 presents a summary of the MORDOR performance obtained over the 318 

complete record period and over the five 6-year sub-periods, P1 to P5, both in terms 319 

of OBJEDF (the calibration criterion, top panel), NSE (middle panel) and NSECDF 320 

(bottom panel), and considering the different calibration options described above. 321 

MORDOR performance is generally good over the complete period, with the NSE 322 

score greater than 0.7. However, there is also a substantial variability of NSE scores 323 

over the different 6-year sub-periods, with several NSE scores below 0.6.  324 

 325 

In terms of OBJEDF, calibration performance is the poorest for the P3 (1989-1995) 326 

sub-period. The performance range obtained with bootstrap calibrations is rather 327 

narrow and median performance is generally similar to the CP parameter set 328 

performance. This is related to the similarity of the 25-year sub-periods as well as the 329 

similarity between the CP period and BS sub-periods, only differing by the presence 330 

and/or absence of several hydrological years. BSM calibrations (grey boxplots) 331 

generally perform better than the BST for the P1 to P4 sub-periods while they perform 332 

less well for the complete period (CP) and the P5 sub-period (which includes 2002), 333 

regarding the three different scores. Interestingly, a similar ranking of model 334 

performance is obtained for the complete period and the P5 evaluation periods, which 335 

are the two periods containing the August 2002 event. For these periods, the CP 336 

parameter set is the best parameter set, followed by the P5 parameter set. The P1 to P4 337 

parameter sets perform poorly for P5 compared to the other ones, especially for the 338 

NSECDF score. Finally, the BST calibrations (black boxplots) generally performed 339 

better than the BSM calibrations (excluding the August 2002 month). 340 

 341 
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 342 
Fig. 3 MORDOR performance over six different evaluation periods: the complete period (1976–2008) 343 
and five 6-year subperiods (P1–P5), in terms of OBJEDF (calibration criterion, top panel), NSE (middle 344 
panel) and NSECDF (bottom panel), according to different calibration strategies. Boxplots show the 345 
0.10, 0.25, 0.50, 0.75 and 0.90 percentiles of the performance distributions obtained with the BST and 346 
BSM (excluding the August 2002 month) bootstrap calibration strategies.  347 
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Figure 4 shows Lorenz curves computed for each evaluation period and each 348 

MORDOR parameter set. The Lorenz curve is classically used in economics; it was 349 

introduced to represent the inequality of the wealth distribution, showing which 350 

proportion of the population owns which proportion of the total wealth 351 

(Lorenz, 1905). Here, the plotted Lorenz curves show the proportion of the total 352 

evaluation series (time steps) as a function of the total model error (here the sum of 353 

the squares of the model error), i.e. the cumulative distribution of ranked relative 354 

model errors. For example, considering the CP parameter set and evaluating its error 355 

over the CP period (orange line on the top left panel), the Lorenz curve reveals that 356 

around 80% of the total MORDOR model error is made on less than 15% of the total 357 

calibration period time steps. For the P4 parameter set (purple line), 80% of the total 358 

MORDOR model error is made on less than 2.5% of the total calibration period time 359 

steps. The complete analysis of the Lorenz curves shows first that P1 to P4 sub-360 

periods have similar error distributions considering the different calibration strategies. 361 

On average, 80% of the total error is made on 5 to 12% of the calibration period time-362 

steps. For the complete period and the P5 sub-period (both including August 2002 363 

flood), different Lorenz curves are obtained. For P1 to P4 parameter sets and 364 

bootstrap calibrations not containing the August 2002 flood, a large proportion of the 365 

total error is made on a smaller part of the total evaluation time steps, compared to the 366 

P5 and CP parameter sets. 367 

 368 

The shape of each Lorenz curve can be summarized and quantified with the 369 

computation of the Gini index (Gini, 1912), which is the area between the line of 370 

perfect equality (x=y) and the computed Lorenz curve. The Gini coefficient ranges 371 

between 0 and 1: the higher the coefficient, the more uneven the distribution is. Such 372 

coefficients have been computed for each Lorenz curve and are indicated on each 373 

panel in Figure 4. The highest coefficient values are obtained for the CP and P5 374 

periods, considering the P1 to P4 parameter sets and bootstrap calibrations not 375 

containing the August 2002 flood. This shows that for these sub-periods and 376 

parameter sets, a larger proportion of the total MORDOR model error is made on a 377 

smaller part of the evaluation series.  378 
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 379 
Fig. 4 Lorenz curves showing the proportion of the total evaluation series as a function of the total MORDOR model error, computed over six different evaluation periods: 380 
the complete period (CP) and five 6-year sub-periods (P1–P5) and for different calibration strategies. Top row: (calibration on CP and P1–P5; and bottom row: calibration on 381 
BST (black ines) and BSM (grey lines). 382 
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In order to confirm the substantial influence of the August 2002 flood presence within 383 

the MORDOR calibration and evaluation period, a time series of MORDOR model’s 384 

error is plotted in Figure 5, for the P5 sub-period (2001-2007) and for the CP, P1 to 385 

P5 parameter sets. In this figure, the time steps representing 80% of the model 386 

cumulated total error are plotted with a circle, whose size is proportional to the model 387 

error made. Note that for the CP and the P5 parameter sets (orange and red circles, 388 

respectively), error is made in calibration while for the other parameter sets, it is an 389 

error in validation. Again, errors made with the CP and the P5 parameter sets are 390 

more evenly distributed than errors made by the P1 to P4 parameter sets, and the 391 

proportion of the 2002 event in the total error appears smaller in the CP and P5 sets. 392 

For the P1 to P4 parameter sets, the main errors are mainly concentrated on the 393 

August 2002 flood event. The P1 parameter error distribution appears to be slightly 394 

different from the P2 to P4 sets, with large errors made on the August 2002 flood 395 

event for the P1 parameter set, while the P2 to P4 parameter sets induce huge errors 396 

made on the August 2002 flood event and also a large error made on the September 397 

2008 flood event. 398 

 399 

 400 
Fig. 5 (top) Time series of observed precipitation and streamflow Kamp catchment series for the P5 401 
sub-period (2001–2007). (bottom) Time series of MORDOR model error on sub-period P5 for the CP 402 
and P1–P5 parameter sets: time steps where MORDOR error >1 mm/d is plotted with a circle of size 403 
proportional to the error. 404 
 405 

Figure 6 zooms in on the MORDOR streamflow simulations of August 2002, using 406 

the different parameter sets obtained with the different calibration options. 407 

Remarkably, this event is well simulated by the CP and P5 parameter sets. 408 

Conversely, it is poorly represented when using the P1 to P4 parameter sets (top 409 

panel), with a particularly strong overestimation of the first flood peak (8
th

 of August) 410 

for the P2 to P4 parameter sets. In general, the P2 to P4 parameter sets induce an 411 

excessively responsive rainfall-runoff relationship by the MORDOR model. When 412 

considering bootstrap calibrations, two different MORDOR model behaviours seem to 413 

be obtained, depending on the presence of the August 2002 month within the 414 

calibration sub-periods. Rather logically, the August 2002 event is well simulated 415 

when it belongs to the calibration sub-period considered (centre panel), while it is 416 

poorly simulated with the parameter sets obtained with calibration sub-periods 417 

systematically excluding this event (bottom panel). Note that the few BST calibrations 418 
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(centre panel) highly overestimating the first flood peak have all been obtained with 419 

calibration sub-periods not containing the 2002 year. 420 

 421 

An investigation of MORDOR internal state dynamics (not shown here) revealed that 422 

the responsive rainfall-runoff relationships simulated by several parameter sets are 423 

induced, for this catchment, by the value of one particular MORDOR parameter, 424 

LMAX. This parameter is the maximum capacity of the L reservoir, which determines 425 

the partitioning between a direct runoff, an indirect runoff and a deep percolation. 426 

Thus, in the MORDOR model, when a large amount of water reaches this reservoir 427 

(which is the case for the August 2002 event) a low LMAX value implies that a large 428 

proportion of this water is considered as direct runoff, while a higher LMAX value 429 

yields a larger proportion of indirect runoff. Interestingly, all MORDOR calibrations 430 

that exclude the August 2002 period are characterized by small LMAX values, while all 431 

MORDOR calibration that include this event are characterized by high LMAX values. 432 

It clearly shows the weight of the August 2002 event’s on the MORDOR calibration 433 

and the event uniqueness according to the MORDOR model: the incoming rainfall for 434 

this event is so large - relative to the observed streamflow - that the MORDOR model 435 

needs to have a high LMAX value for considering a large proportion of this incoming 436 

water as indirect runoff and then not have a significant difference between observed 437 

and simulated streamflow values. In validation on this event, the parameter sets 438 

characterized by low LMAX values (P1 to P4, BSM and 22 BST calibrations) produce 439 

overly responsive rainfall-runoff relationships, with a substantial overestimation of 440 

the first flood peak (8 August) and an underestimation of the flood recession (e.g. 10 441 

and 11 August). 442 

 443 
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 444 
Fig. 6 August 2002 observed rainfall and streamflow series (solid and dotted lines) and MORDOR 445 
streamflow simulations considering different calibration strategies: (top) calibration over the five 6-446 
year subperiods (P1–P5); (centre) calibration over 100 25-year sub-periods (BST); and (bottom) 447 
calibration over 100 25-year sub-periods excluding the month August 2002 (BSM).  448 
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4.2. SCHADEX flood estimations 449 
 450 

Figure 7 presents the SCHADEX flood estimations calculated with the different 451 

MORDOR parameter sets, compared to the annual maximum series of daily 452 

streamflow of the Kamp catchment. When considering the CP parameter set for the 453 

MORDOR rainfall-runoff model, the Q1000 value estimated by the SCHADEX method 454 

is 318 m
3
/s. The flood estimations computed with the P1 to P5 MORDOR parameter 455 

sets are presented on the first panel. The estimations computed using the P5 parameter 456 

set are very similar to the reference estimation, unlike estimations made using the P1 457 

parameter set (with lower Q10 to Q1000 values) and estimations made using the P2 to 458 

P4 parameter sets (with substantially higher Q1000 values). A comparable range of 459 

flood estimations is obtained when considering the bootstrap calibrations. Two types 460 

of flood distributions are revealed, depending on the presence of the August 2002 461 

within the calibration sub-periods: the flood estimations obtained with a calibration 462 

sub-period excluding the August 2002 event are higher than the other estimations, 463 

with median Q1000 values close to 430 m
3
/s (median value of the 100 estimations 464 

presented in the bottom panel, in grey) and 300 m
3
/s (median value of the 100 465 

estimations presented in the centre panel, in black), respectively.  466 

 467 

This counterintuitive result is finally highlighted in Figure 8, where the left panel 468 

groups all the Q1000 SCHADEX estimations obtained with the MORDOR parameter 469 

sets containing the August 2002 month within the calibration period, while the right 470 

panel groups all the Q1000 SCHADEX estimations obtained with the MORDOR 471 

parameter sets excluding the August 2002 month. This figure clearly shows that 472 

having the largest observed flood on the Kamp catchment within the MORDOR 473 

rainfall-runoff model calibration period produces lower SCHADEX flood estimations. 474 

In Figure 8, each Q1000 estimation has been plotted against its corresponding 475 

MORDOR LMAX parameter value, identified as responsible for the excessively 476 

responsive August 2002 simulations (cf. Figure 6). Interestingly, the highest Q1000 477 

estimations are obtained with the lowest LMAX values. The presence of the August 478 

2002 event within the MORDOR calibration period thus induces a high LMAX 479 

parameter value and consequently a low Q1000 estimation. In this case, the L reservoir 480 

is able to transform large amounts of incoming rainfall into indirect runoff. 481 
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 482 
Fig. 7 Annual maximum (AM) of daily streamflow observations (+) compared to the SCHADEX 483 
reference flood estimation (large solid lines) and flood estimations performed considering different 484 
MORDOR calibration strategies: (top) calibration over the five 6-year sub-periods (P1–P5); (centre) 485 
calibration over 100 25-year sub-periods (BST); and (bottom) calibration over 100 25-year subperiods 486 
discarding the month August 2002. Violin plots represent the distribution of bootstrap flood 487 
estimations for the 100- and 1000-year return periods.  488 
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 489 
Fig. 8 SCHADEX Q1000 flood estimations plotted against the corresponding values of MORDOR 490 
parameter, LMAX, both obtained with the MORDOR calibration including August 2002 (left) and 491 
excluding August 2002 (right).  492 
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5. DISCUSSION AND CONCLUSION 493 
 494 

The Kamp at Zwettl is an interesting case study for all hydrologists specializing in the 495 

art of flood frequency estimation, since it experienced a remarkable flood in August 496 

2002, reaching a value three times higher than the second largest observed flood in 497 

terms of peak value over the 55 years of available observations (Viglione et al., 498 

2013). This case study provides a rare opportunity to investigate the impact of such a 499 

remarkable event on flood frequency estimation. Here, numerous extreme flood 500 

estimations were made on this catchment with the SCHADEX stochastic method, 501 

which is based on a conceptual rainfall-runoff model. Following the calibration 502 

protocol of the 2013 “Hydrology under change” IAHS workshop proposed by Thirel 503 

et al. (2014, this issue), the rainfall-runoff model was calibrated over five 6-year sub-504 

periods. Additionally, bootstrap calibrations were performed, following the 505 

methodology proposed by Brigode et al. (2014). In total, 206 calibrations of the 506 

MORDOR rainfall-runoff model were performed in this study, each of them used for 507 

producing different SCHADEX flood estimations. 508 

 509 

The results confirmed the usefulness of the multi-period and bootstrap testing 510 

schemes to identify the dependence of model performance and flood estimates on the 511 

information contained in the calibration period and the presence of large flood events. 512 

As already pointed out by Viglione et al. (2013), the August 2002 event appears to 513 

play a key role in the flood frequency estimation on the Kamp River. Here, the 514 

presence of the event within the calibration sub-periods strongly influences the 515 

rainfall-runoff model calibration, the validation performance and the extreme flood 516 

estimations. All the parameter sets obtained with calibration periods that do not 517 

contain the August 2002 month perform poorly on the evaluation periods containing 518 

this event. Those parameter sets are characterized by an excessively responsive 519 

rainfall-runoff transformation, while the other ones simulate smoother hydrographs. 520 

An investigation of the MORDOR model’s internal states reveals that one parameter 521 

(LMAX) is responsible for this particular simulation dynamic, and that the LMAX value 522 

obtained after calibration depends on the presence or absence of the August 2002 523 

flood within the calibration period. Those “responsive” parameter sets obtained when 524 

the August 2002 event is excluded from the calibration period produce higher extreme 525 

flood estimations compared to the other parameter sets, confirming the findings of 526 

Brigode et al. (2014). Thus, Q1000 estimates were much higher when model calibration 527 

did not include the large 2002 flood event. Interestingly, this sensitivity to the 528 

presence of the August 2002 flood is contrary (and thus counterintuitive) to the 529 

sensitivity obtained when applying a classical flood frequency analysis method (i.e. 530 

statistical estimation of flood quantiles using only streamflow series), highlighted by 531 

Viglione et al. (2013, Figure 3a and Figure 3b). 532 

 533 

The bootstrap calibration methodology is shown to be a useful tool for an objective 534 

quantification of the model’s dependence on the calibration period, considering the 535 

rainfall-runoff simulations and the extreme flood estimations. Computing a rigorous 536 

statistical confidence interval would require more statistical processing, but it 537 

nevertheless provides a “first guess” of the uncertainty associated with the calibration 538 

period and a range of extreme flood estimations. 539 

 540 

Graphical and numerical tools have also been proposed in this study in order to 541 

highlight the influence of particular flood events on the calibration of rainfall-runoff 542 
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models. Lorenz curves and the Gini coefficient provide a simple but efficient way to 543 

characterize the distribution of model errors and could be very useful to detect 544 

calibration periods where a few time steps cause a large proportion of the model’s 545 

errors. In this regard, it could be interesting to compare, for different rainfall-runoff 546 

models and different catchments, whether the events selected by this kind of analysis 547 

as “strongly influencing the model calibration” are the same as the ones selected by 548 

other approaches such as DYNIA (Wagener et al., 2003) or ICE (Singh & Bárdossy, 549 

2012). 550 

 551 

Given the dominating impact of the August 2002 data, one could wonder whether in 552 

practice a hydrologist engineer working on extreme flood estimation on the Kamp 553 

catchment should consider discarding the August 2002 data. On one hand, if he is 554 

applying a classical flood frequency analysis method, considering both the observed 555 

flood series and additional information such as historical floods or regional 556 

information is necessary to significantly reduce the weight of the August 2002 event 557 

and thus the flood estimation uncertainty. On the other hand, if he is applying a flood 558 

simulation method based on a rainfall-runoff model (e.g. SCHADEX), it would be in 559 

principle more appropriate to consider this type of flood events for the rainfall-runoff 560 

model calibration, because it enables the model to be trained on exceptional floods 561 

and thus to have the opportunity to identify the high flood-prevailing processes, which 562 

could differ from current floods (e.g. Rogger et al., 2012). However, the rainfall-563 

runoff model robustness issue addressed in this case study (illustrated in Figures 5 and 564 

6 for example) could be used as “process-based arguments” for an expert rainfall-565 

runoff modeller who believes more in his model than in the observed data to discard 566 

particular flood event data. 567 

 568 

In both cases, the question of the uncertainty of the rainfall and streamflow 569 

measurement of such events needs to be investigated further. For example, Lang et al. 570 

(2010) suggested that numerous French gauging streamflow stations are not reliable 571 

for floods with a return period higher than 2 years. For the Kamp catchment, Figure 9 572 

shows pictures of the gauging station (at Zwettl (Bahnbrücke), station ID 207944) and 573 

flood tracks left by the August 2002 flood event, illustrating the potentially 574 

considerable uncertainty of streamflow measurement for this event. The Kamp River 575 

was clearly out of its banks and thus out of the usual streamflow rating curve. An 576 

interesting perspective would be to quantify the measurement uncertainty of this event 577 

and then recalibrate the MORDOR model before performing new SCHADEX flood 578 

estimations. 579 

 580 
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 589 

Fig. 9 Zwettl (Bahnbrücke, ID: 207944) streamgauge station and Kamp River. The bottom panel shows 590 
the August 2002 flood marks. Photos: P. Brigode, April 2011.  591 
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