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Abstract. High Angular Resolution Diffusion Imaging (HARDI) can character-
ize complex white matter micro-structure, avoiding the Gaussian diffusion as-
sumption inherent in Diffusion Tensor Imaging (DTI). However, HARDI meth-
ods normally require significantly more signal measurements and a longer scan
time than DTI, which limits its clinical utility. By considering sparsity of the
diffusion signal, Compressed Sensing (CS) allows robust signal reconstruction
from relatively fewer samples, reducing the scanning time. A good dictionary
that sparsifies the signal is crucial for CS reconstruction. In this paper, we pro-
pose a novel method called Tensorial Spherical Polar Fourier Imaging (TSPFI) to
recover continuous diffusion signal and diffusion propagator by representing the
diffusion signal using an orthonormal TSPF basis. TSPFI is a generalization of
the existing model-based method DTI and the model-free method SPFI. We also
propose dictionary learning TSPFI (DL-TSPFI) to learn an even sparser dictio-
nary represented as a linear combination of TSPF basis from continuous mixture
of Gaussian signals. The learning process is efficiently performed in a small sub-
space of SPF coefficients, and the learned dictionary is proved to be sparse for all
mixture of Gaussian signals by adaptively setting the tensor in TSPF basis. Then
the learned DL-TSPF dictionary is optimally and adaptively applied to different
voxels using DTI and a weighted LASSO for CS reconstruction. DL-TSPFI is a
generalization of DL-SPFI, by considering general adaptive tensor setting instead
of a scale value. The experiments demonstrated that the learned DL-TSPF dictio-
nary has a sparser representation and lower reconstruction Root-Mean-Squared-
Error (RMSE) than both the original SPF basis and the DL-SPF dictionary.

1 Introduction

Diffusion MRI (dMRI) is a unique non-invasive imaging technique to explore white
matter in human brain by measuring the diffusion of water molecules. The diffusion
process is fully characterized by the diffusion propagator P(R), called the Ensemble
Average Propagator (EAP), in the displacement R-space [1]. With the narrow pulse
assumption, the diffusion signal attenuation E(q) is the 3D Fourier transform of P(R),
i.e., P(R) =

∫
R3 E(q) exp(−2πqT R)dq. A hot topic in dMRI is to recover the continuous

signal E(q) and the EAP P(R) from a limited number of signal samples with noise.
Diffusion Tensor Imaging (DTI) [2] is the most popular method for diffusion data

reconstruction. With the Gaussian diffusion assumption, E(q) = exp(−4π2τqT Dq)
where τ is the diffusion time and D is the 3 × 3 diffusion tensor. Many other methods,
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categorized as High Angular Resolution Diffusion Imaging (HARDI), were proposed
to avoid the Gaussian assumption and characterize more general diffusion processes
due to complex microstructure. Diffusion spectrum imaging [3] does not impose any
assumption on diffusion signal, but it requires a long scan time, and only estimates dif-
fusion signal and propagator in discretized samples, not in a continuous domain. MAP-
MRI [4,5] and Spherical Polar Fourier Imaging (SPFI) [6,7] are two state-of-the-art
methods, which estimate continuous E(q) and P(R) from arbitrary sampling schemes
by representing E(q) using orthonormal basis functions with analytic Fourier transform.

The Compressed Sensing (CS) technique recovers a signal from measurements by
considering the sparsity of the signal under a dictionary. CS methods have been pro-
posed in dMRI to recover diffusion signal and propagator using both discretized [8]
and continuous bases [7]. The most important advantage of the continuous basis rep-
resentation is that it allows the analytical Fourier transform without numerical error.
In CS reconstruction, a dictionary that yields sparse representation of diffusion signals
plays an important role. MAP-MRI was first proposed using an isotropic tensor in its
basis [4], then using a general tensor [5]. SPFI first used SPF basis [9,6], then learned
an adaptive sparser dictionary based on SPF basis from continuous Gaussian signal
space [7]. All those evolutions make the dictionaries in MAP-MRI and SPFI sparser
and more suitable for CS reconstruction. However, existing MAP-MRI in [5] still uses
manually devised basis without performing dictionary learning, and existing SPFI in [6]
and DL-SPFI in [7] use isotropic Gaussian diffusion in its dictionary, which is limited
to represent diffusion signals with high anisotropy.

In this paper, we propose Tensorial SPFI which generalizes SPFI [6] by considering
a general adaptive tensor setting instead of using just a simple scalar value, and we also
propose TSPFI with optimal dictionary learning, called DL-TSPFI, to learn an even
sparser dictionary from only a small subspace of SPF coefficients of Gaussian diffusion
signals. The learned dictionary is proven to be capable to sparsely represent an arbitrary
mixture of Gaussian diffusion signals, by considering an adaptive tensor setting. The
learned dictionary is then adaptively applied to all voxels using a weighted LASSO
optimization with adaptive tensor setting from DTI for CS reconstruction. Experiments
demonstrated that TSPFI and DL-TSPFI provide sparser representation and yield low
RMSE in CS reconstruction than the state-of-the-art SPFI [6] and DL-SPFI [7].

2 Tensorial Spherical Polar Fourier Imaging (TSPFI)

The SPF basis is a continuous orthonormal basis that can sparsely represent Gaussian-
like 3D signal [9,6]. In SPFI, the diffusion signal is represented by the SPF basis
{Bnlm(q|ζ) = Gn(q|ζ)Ym

l (u)}, i.e.,

E(qu|ζ) =
N∑

n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u), Gn(q|ζ) =

[
2n!

ζ3/2Γ(n + 3/2)

]1/2

exp
(
−

q2

2ζ

)
L1/2

n (
q2

ζ
)

(1)
where q = qu, u ∈ S2, ζ is the scale parameter and Ym

l (u) is the real spherical harmonic
basis. It was proven that the EAP can be analytically represented by dual SPF basis [6]:

P(Rr|ζ) =
N∑

n=0

L∑
l=0

l∑
m=−l

anlmFnl(R|ζ)Ym
l (r) Bdual

nlm (R|ζ) = Fnl(R|ζ)Ym
l (r) (2)
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where R = Rr, r ∈ S2, and the definition of Fnl(R|ζ) can be found in [6]. It can be seen
that B000(q) is just an isotropic Gaussian function, which makes the SPF representa-
tion sparse for isotropic Gaussian signal E(q) = exp(−4π2τqT Dq). However it requires
more basis elements to represent a Gaussian signal with a highly anisotropic tensor.
The representation error is actually inevitable for any finite order N and L, although
increasing the orders can reduce the representation error. DL-SPFI was proposed in [7]
to learn a sparser dictionary from Gaussian diffusion signals with different mean dif-
fusivity and fractional anisotropy (FA), and adaptively set the scale value ζ based on
the mean diffusivity. [7] also demonstrated that the DL-SPF dictionary keeps the same
level of sparsity for Gaussian diffusion with different FA, while the sparsity in SPF
dictionary decreases for signals with higher FA.

Theorem 1 (TSPF Basis and Dual TSPF Basis). Let D be 3 × 3 positive definite ma-
trix with eigen-decomposition D = QΛ2QT , QT Q = I, then

{√
|Λ|Bnlm(ΛQT q | ζ)

}
is

an orthonormal basis set, called the Tensorial SPF (TSPF) basis. Its Fourier transform

is
{

1
√
|Λ|

Bdual
nlm (Λ−1QT R | ζ)

}
called the dual TSPF basis, which is also complete and or-

thonormal in the dual Fourier space.

We propose Tensorial SPFI (TSPFI) to further sparsely represent Gaussian-like sig-
nals. Theorem 1 demonstrates TSPF basis and dual TSPF basis which are the affinely
transformed SPF basis and dual SPF basis1. TSPFI represents diffusion signal E(q) us-
ing TSPF basis in Eq. (3), then the diffusion propagator is analytically represented as
dual TSPF basis in Eq. (4), where we set ζ0 = (8π2τ)−1 such that

√
|Λ|B000(ΛQT q | ζ0)

is proportional to Gaussian function exp(−4π2τqT Dq).

E(qu | D) =
√
|Λ|

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn

(
q
√

uT Du | ζ0

)
Ym

l

(
ΛQT u
‖ΛQT u‖

)
(3)

P(Rr | D) =
1
√
|Λ|

∑
nlm

anlmFnl

(
R
√

rT D−1r | ζ0

)
Ym

l

(
Λ−1QT r
‖Λ−1QT r‖

)
(4)

The representation using TSPF basis is sparse for Gaussian-like diffusion signals when
we set tensor D appropriately, and the first basis is enough to represent Gaussian diffu-
sion signals. Note that MAP-MRI basis [5] also uses an anisotropic Gaussian function
as the zero order basis, while it can be proven that MAP-MRI basis can be linearly rep-
resented by the TSPF basis with a finite order, but the opposite is not true, which means
TSPF basis is more general than MAP-MRI basis.

Similarly with [7], considering E(0) = 1, we have
∑N

0 anlmGn(0) =
√

4πδ0
l , 0 ≤ l ≤

L, −l ≤ m ≤ l. Then we can separate the coefficient vector a into a = (aT
0 , a

′T )T , where
a0 = (a000, . . . , a0LL)T , a′ = (a100, . . . , aNLL)T , and represent a0 using a′, i.e.,

a0lm =
1

G0(0)

√4πδ0
l −

N∑
n=1

anlmGn(0)

 , 0 ≤ l ≤ L, −l ≤ m ≤ l (5)

Then based on Eq. (3), a′ can be estimated from measurements of E(q) via weighted
LASSO.

min
a′
‖M′a′ − e′‖22 + ‖Ha′‖1 (6)

1 All proofs in this paper are omitted due to space limitation, available upon request.
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M′ =


√
|Λ|

(
B100(ΛQT q1 |ζ0)−G1(0|ζ0)

G0(0|ζ0) B000(ΛQT q1 |ζ0)
)
···
√
|Λ|

(
BNLL(ΛQT q1 |ζ0)−GN (0|ζ0)

G0(0|ζ0) B0LL(ΛQT q1 |ζ0)
)

...
. . .

...
√
|Λ|

(
B100(ΛQT qS |ζ0)−G1(0|ζ0)

G0(0|ζ0) B000(ΛQT qS |ζ0)
)
···
√
|Λ|

(
BNLL(ΛQT qS |ζ0)−GN (0|ζ0)

G0(0|ζ0) B0LL(ΛQT qS |ζ0)
)
 , e′ =


E1−exp(−4π2τqT

1 Dq1)

...
ES−exp(−4π2τqT

S DqS )

 ,
where {Ei} are signal measurements in q-space, e′ is the measurement vector removing
its Gaussian part, M′ is the basis matrix used for reconstruction, H is the regularization
matrix. After estimating a′, a0 can be obtained using Eq. (5), then E(0) = 1 is automat-
ically satisfied. For Gaussian diffusion signal, if D is estimated correctly, then e′ = 0,
a′ = 0, and only a000 is non-zero. Thus Eq. (6) mainly focus on the non-Gaussian fitting.

3 TSPFI with Optimal Dictionary Learning (DL-TSPFI)

Based CS theory [10], a dictionary with sparser representation gives better reconstruc-
tion. Following DL-SPFI in [7], we consider a more general formulation:

min
c
‖M′Wc − e′‖22 + ‖Vc‖1. (7)

Note that Eq. (7) actually considers a general dictionary represented as a linear combi-
nation of TSPF basis, i.e., M′W, where W is the combination matrix and c is the new
coefficient vector under transformed dictionary. When W is identity, Eq. (7) becomes
TSPFI in Eq. (6). As we discussed that MAP-MRI basis can be linearly represented
by TSPF basis, W can be specifically designed such that M′W is the MAP-MRI basis
removing its Gaussian part, then Eq. (7) becomes MAP-MRI.

Instead of using specific W in TSPFI and MAP-MRI, we would like performing
dictionary learning to learn a good W as well as a good dictionary M′W from a set of
given signals {e′i}. such that the representation {ci} are all sparse, i.e.

min
C,W,D

∑
i

‖ci‖1 s.t. ‖M′Wc j − e′j‖2 ≤ ε, ∀ j. (8)

Considering real data always suffers from noise and a limited number of samples, simi-
larly with [7], we perform dictionary learning in synthetic mixture of Gaussian signals.
Considering simulated signals can be generated in continuous q-space and TSPF basis
is an orthonormal basis showed in Theorem 1, Eq. (8) is equivalent to Eq. (9), where
the dictionary learning can be performed in the space of TSPF coefficients with a small
dimension, not the space of simulated measurements of E(q) with infinite dimension.

min
C,W,D

∑
i

‖ci‖1 s.t. ‖Wc j − a′j‖2 ≤ ε, ∀ j, (9)

The learned result (W∗,D∗) is actually determined by the chosen space of diffu-
sion signals. We have several theoretical results to design a small space for training
data to learn a general dictionary. 1) Theorem 2 proved that the single tensor model
{E(q) = exp(−4π2τqT Dq) | D ∈ Sym3

+}, where Sym3
+ is the space of 3 × 3 positive

definite matrices, is sufficient to learn a dictionary to sparsely represent signals from
mixture of tensor models. The theorem works for both DL-SPFI in [7] and DL-TSPFI.
2) Theorem 3 shows that the dictionary (W∗,D∗) can be learned from a small space
S 0 ⊂ Sym3

+, then the learned dictionary can be affinely transformed to another ten-
sor space. Note that for every single Gaussian signal, the sparsest c is 0 once we set
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the tensor D correctly. However this does not help us to handle arbitrary mixture of
Gaussian signals with noise where a single tensor D cannot fully represent all Gaus-
sian components. Thus we have to learn a common dictionary for a subspace of Sym3

+,
such that even when the tensor D is not correctly set, the learned dictionary still yields a
sparse representation. 3) Theorem 4 demonstrated that we can fix a tensor D0 and learn a
sparse dictionary W∗ from Gaussian signals with D in a geodesic ball d(D0,D) < ∆ [11].
Then the learned dictionary can be adaptively applied to Gaussian signals with D in an-
other geodesic ball d(D1,D) < ∆ by adaptively setting tensor in TSPF basis as D1. The
geodesic ball actually mimics the difference between the tensor used in TSPF basis and
the ground truth tensor in each Gaussian component in the mixture of Gaussian model.

Theorem 2 (Sparsity of Mixture of Tensors [7]). A dictionary learned from signals
generated by single tensor model can sparsely represent signals generated by arbitrary
mixture of tensor model.

Theorem 3 (Optimal Dictionary). For signals generated from the single tensor model
with tensors {exp(−4π2τqT Dq) | D ∈ S 0}, if the dictionary {W∗,D∗} is the optimal
solution for (9), then for another space {exp(−4π2τqT ADAT q) | D ∈ S 0} with non-
singular A, {W∗, AD∗AT } is still the optimal solution.

Theorem 4 (Traning Space and Adaptive Tensor). Let D0 be a fixed tensor. If train-
ing signals are from {exp(−4π2τqT Dq) | d(D0,D) < ∆}, where d(D0,D) is the Rieman-
nian distance between D0 and D [11], and if we set D∗ = D0 and estimate W∗ in dic-
tionary learning, then (W∗,D1) can sparsely represent signals from {exp(−4π2τqT Dq) |
d(D1,D) < ∆}

Because of Theorem 4, it is possible to choose any D0 and generate signals from
the geodesic ball of D0. In practice, in order to better mimic the representation error of
tensors, we simply set D0 = 0.7 × 10−3I as a typical isotropic tensor in human brain,
and then generated Gaussian signals with mean diffusivity (MD) in range [0.5, 0.9] ×
10−3mm2/s, FA in range [0, 0.9], uniformly orientated in 321 directions from sphere
tessellation. Note that we used a relatively small range of MD, while a relatively large
range of FA. It is because when using a tensor model to fit a mixture of Gaussian signal,
the MD value of the tensor model normally has relatively less error than its FA value
compared to the ground truth MD and FA in each Gaussian component. For example,
considering a mixture of three Gaussian functions with FA = 0.9 and MD = 0.7 × 10−3

respectively along x, y and z axises, after DTI fitting, the estimated MD is still close to
0.7 × 10−3, but the estimated FA is close to 0. Note that when choosing isotropic D0,
the TSPF coefficients {ai} become SPF coefficients with the corresponding scale, and
the dictionary learning process is the same as the one used in DL-SPFI [7]. The SPF
coefficients of the Gaussian signals were calculated via numerical inner product with
N = 4, L = 8. Then we performed an efficient online learning method implemented in
the SPAMS toolbox [12] to learn W with 250 atoms using the initialization of identity
matrix. We added the atoms {Bn00(q)}Nn=1 back to sparsely represent isotropic signals.
Thus we have total 254 columns in the learned W. Then we estimated the energy {h j} of
dictionary atoms via the coefficients {ci}, and set V in Eq. (7) as a diagonal matrix with
elements V j =

S
h j
λ, where λ is a tuning regularization parameter, S is the dimension of
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measurements. This is to penalize the dictionary atom with low energy of coefficients.
With the learned W and V, Eq. (7) first performs DTI to estimate a tensor D for TSPF
basis matrix M′, then performs weighted LASSO for CS reconstruction of c, then a′ =
Wc, and a can be obtained accordingly based on Eq. (5).

4 Experiments

Signal Sparsity in Miture of Gaussian model. We would like to demonstrate the im-
portance of adaptive tensor setting and validate the theorems. We generated Gaussian
diffusion signals with different FA in range [0, 0.9], along different directions, and with
two MD values respectively 0.6× 10−3 and 1.1× 10−3. These signals from single tensor
model with the same FA and MD but different orientations were also randomly mixed
to obtain mixture of Gaussian signals. Then with N = 4, L = 8, we performed adaptive
scale setting to obtain adaptive SPF basis and DL-SPF basis, and performed adaptive
tensor setting to obtain adaptive TSPF basis and DL-TSPF basis. Then for each signal,
we calculated the coefficients a′ respectively for SPF basis and TSPF basis using nu-
merical inner product, then calculated the coefficients c respectively for DL-SPF and
DL-TSPF basis using Eq. (9). For the obtained coefficients under each basis, we cal-
culated the number of non-zero values as the sparsity of the representation. The value
in a′ or c is considered to be non-zero if its absolute value is larger than 0.01‖a′‖ or
0.01‖c‖. The sparsity of signals with two MD values were showed in the top two subfig-
ures of Fig. 1. The top left subfigure showed that although DL-TSPF basis was learned
from signal Gaussian diffusion signals, it can sparsely represent signals from mixture of
Gaussian functions, which validated Theorem 2 The top right subfigure showed that al-
though the MD value 1.1× 10−3 is outside of the MD range used in dictionary learning,
the sparse representation still holds by adaptively setting diffusion tensor in DL-TSPF
basis, which validates Theorem 3 and 4. Both subfigures demonstrated the DL-TSPF
basis obtains sparser representation than DL-SPF basis [7], and TSPF basis is sparser
than SPF basis.
RMSE in Cylinder Model. We evaluated the different basis using the Söderman cylin-
der model [13] which is different from the Gaussian signals used in dictionary learning.
Using the DSI sampling scheme in [8] with bmax = 8000s/mm2, 514 measurements, we
generated ground truth DWI signals from the cylinder model with the default param-
eters in [13]. Then we estimated the coefficients under different basis from an under-
sampled dataset with 170 samples and reconstructed the DWI signals in all 514 samples.
Root-Mean-Square Error (RMSE), which is defined based on the difference of the es-
timated signal and ground truth signal in these 514 samples, was used to quantify the
reconstruction accuracy. We also added Rician noise with signal-to-noise ratio (SNR)
of 20 and performed Monte-Carlo simulation. We set λ = λl = λn = 10−8 for the noise-
free dataset and 10−5 for the noisy dataset for all methods. The second row of Fig. 1
indicates that DL-TSPFI yields the lowest RMSE than DL-SPFI and L1-SPFI in both
noiseless and noisy conditions.
RMSE in Real data. We also tested CS reconstruction using DL-TSPFI on a real DSI
data set released by Bilgic 2, which was also used to validate DL-SPFI [7]. This dataset

2 https://www.martinos.org/ berkin/software.html

https://www.martinos.org/~berkin/software.html
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Fig. 1. Synthetic Experiments. First row: the average number of non-zero coefficients for SPF,
DL-SPF, TSPF and DL-TSPF basis. Second row: RMSE of different methods using the Söderman
cylinder model with and without noise.
DL-TSPFI, coefficients DL-SPFI coefficients DL-TSPFI, DWI514 DL-SPFI, DWI514

Mean RMSE: 3.27% 4.53% 2.54% 2.82%
Fig. 2. Real Data Experiment. RMSE calculated from estimated SPF coefficients and recov-
ered 514 DWI samples.

uses the same DSI sampling scheme as the above cylinder data experiment. With DL-
SPFI and DL-TSPFI, we perform CS reconstruction with λ = 10−6 respectively using
full 514 measurements and a subset of 170 samples, then we calculated two RMSEs,
one is based on the difference of coefficients using full measurements and the subset of
measurements, and the other one is based on the difference of recovered DWI signals
in these 514 points using full samples and subsamples. Fig. 2 showed that DL-TSPFI
obtains less RMSE than DL-SPFI, especially for RMSE defined using coefficients in
white matter area.
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5 Conclusion

In this paper, we propose a novel Tensorial SPFI (TSPFI) which allows a continuous
representation for both the diffusion signal and the diffusion propagator. TSPFI is a
combination of existing DTI and SPFI. We also propose a dictionary learning strategy,
called DL-TSPFI, to learn a sparser dictionary from mixture of Gaussian signals. The
learned dictionary can be optimally and adaptively applied to different voxels by adap-
tive tensor setting. The proposed TSPFI and DL-TSPFI yield a sparser representation
with lower CS reconstruction error than existing SPFI and DL-SPFI. The source codes
of TSPFI and DL-TSPFI will be available in the DMRITool package 3.
Acknowledgement: This work is supported in part by NICHD and NIBIB Intramural Re-
search Programs, a UNC BRIC-Radiology start-up fund, and NIH grants (EB006733, EB009634,
AG041721, MH100217, and 1UL1TR001111).
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Basser, P.J.: Mean apparent propagator (map) mri: a novel diffusion imaging method for
mapping tissue microstructure. NeuroImage 78 (2013) 16–32

6. Cheng, J., Ghosh, A., Jiang, T., Deriche, R.: Model-free and Analytical EAP Reconstruction
via Spherical Polar Fourier Diffusion MRI. In: MICCAI (2010).

7. Cheng, J., Jiang, T., Deriche, R., Shen, D., Yap, P.T.: Regularized Spherical Polar Fourier
Diffusion MRI with Optimal Dictionary Learning. In: MICCAI (2013).

8. Bilgic, B., Setsompop, K., Cohen-Adad, J., Yendiki, A., Wald, L.L., Adalsteinsson, E.: Ac-
celerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries.
Magnetic Resonance in Medicine (2012)
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