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Abstract

In this work, we propose a method for blind compensation of a memoryless nonlinear distortion. We

assume as prior information that the desired signal admits a sparse representation in a transformed domain

that should be known in advance. Then, given that a nonlinear distortion tends to generate signals that are

less sparse than the desired one, our proposal is to build a compensating function model that gives rise

to a maximally sparse signal. The implementation of this proposal has, as central elements, a criterion

built upon an approximation of the ℓ0-norm, the use of polynomial functions as compensating structures,

and an optimization strategy based on sequential quadratic programming. We provide a theoretic analysis

for an ℓ0-norm criterion and results considering synthetic data. We also employ the method in an actual

application related to chemical analysis via ion-selective electrode arrays.
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Index Terms

Nonlinear distortion, sparsity, ion-selective electrodes, chemical sensor arrays, blind methods.

I. INTRODUCTION

Although, historically, the vast majority of signal processing methods were conceived within the

conceptual framework of linear system theory, there are many applications in which one has to deal

with nonlinear distortions that arise in the processes of signal transmission and acquisition.

A potential source of nonlinear distortion is the existence of amplifier stages operating in the satu-

ration region [2]. Such a scenario often takes place in satellite communications [3] and audio signal

processing [4], [5]. Nonlinear distortions may also be a consequence of the transducer employed in

the signal acquisition process. For example, in electro-optical transduction, the process of converting an

optical source to a digital image may present some nonlinear effects [6]. Another example of transducers

that suffer from nonlinear distortions can be found in electrochemical transduction. In particular, the

conversion of chemical activity into electrical potential is often modeled by the well-known Nernst’s

equation, which is a nonlinear law [7].

In situations like those presented above, unless some action is taken, the acquired signal might be

impaired by nonlinear distortions. A first strategy to deal with such a problem employs tools derived from

system identification theory [2], [8]. In this approach, one first searches for a good model of the system,

which is usually accomplished by means of a parametric model, and then develops an inversion procedure

that is based on the previously estimated model. In another classical strategy, nonlinear compensation is

done by directly adjusting a system devoted to counterbalance the nonlinear effects, i.e., without a system

identification step in this case. This can be accomplished by placing a compensating system either after

the nonlinear distortion location or before it — the latter strategy is usually known as predistortion [9],

[8].

Very often, both the system identification and the inversion approaches are based on a supervised

adaptation, which means that it is mandatory to have access to a set of training (calibration) points.

Such requirement may be seen as a strong limitation, especially in situations in which the acquisition of

training points is an expensive and/or time-consuming process.

In the case of blind (unsupervised) nonlinear compensation, training points are not available, i.e., one

has only access to the output signal. Therefore, it is mandatory to consider prior information, otherwise

the problem becomes ill-posed. For instance, in the seminal work of Landau and Miranker [10], which
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was recently extended to blind configurations [11], [12], the main assumption is that the desired signal is

bandlimited. In this case, given that the nonlinear distortion causes a spread in the spectrum of the acquired

signal, a possible framework to blindly compensate the nonlinear distortion is to set up a compensating

system that retrieves a bandlimited signal.

In the present work, we aim at extending of the idea introduced in [10], [11], [12]. Instead of considering

a bandlimited input signal, we simply assume that the input signal admits a sparse representation in a given

domain [13]. The proposed method relies on the observation that the signal obtained after the nonlinear

distortion is usually less sparse than the original one. Therefore, our idea to mitigate a nonlinear distortion

is to adjust a compensating function so that the estimate of the input signal be as sparse as possible. This

task is performed by a polynomial function, since it can provide a flexible enough approximation of the

inverse of the distortion function. With respect to the compensation criterion, our proposal is implemented

by formulating an optimization problem in which an approximation of the ℓ0-norm1 is used as a measure

of sparsity.

Another goal of this work is to test the proposed method in an actual application related to chemical

analysis through sensor arrays. In such an application, compensation of nonlinear distortions is a relevant

issue, especially in the case of potentiometric sensors such as the ion-selective electrode (ISE) [14], [7].

This article is an extended version of the conference paper [1] and is organized as follows. In Section II,

we describe the problem of blind compensation of nonlinear distortions and by introducing the notations.

Also in Section II, we discuss the problem of nonlinear compensation that arises in the context of

ISE arrays. In Section III, we introduce the proposed framework and describe a practical algorithm to

implement our approach. In Section IV, a theoretical analysis of our proposal is conducted. In Section V,

we provide results considering synthetic data and also actual data acquired by an ISE array. In Section VI,

we present our final conclusions.

II. BLIND COMPENSATION OF A NONLINEAR DISTORTION: PROBLEM STATEMENT AND NOTATION

The problem of blind compensation of a nonlinear distortion can be summarized in Figure 1. The

goal is to estimate an one-dimensional signal s(t) from the observation of the one-dimensional signal

x(t) = f(s(t)), where f(·) is a function that models a nonlinear memoryless distortion. To accomplish

this task, one must adjust a compensating function g(·) so that y(t) = g(x(t)) be as close as possible to

1Strictly speaking, the ℓ0-norm is not a mathematical norm [13]. However, we keep this nomenclature since the term “ℓ0-norm”
is commonly used.
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s(t). The problem is said to be blind (or unsupervised) because one has neither training samples from

s(t) nor knowledge on f(·). The only information that is available is the observed signal x(t).

Fig. 1. The problem of blind compensation of a nonlinear distortion.

We assume that both f(·) and g(·) are monotonic functions with non-vanishing derivative. Otherwise,

the problem becomes very difficult to solve, requiring strong prior information. Moreover, since we are

dealing with a nonlinear blind problem, the best one can expect is to retrieve a scaled and shifted version

of s(t), that is, we accept estimations given by κs(t) + ν,where κ ∈ R∗ and ν ∈ R.

Concerning the mathematical notation adopted in this paper, since our proposal is tailored to discrete-

time one-dimensional signals, the input and observed signals will be represented by the vectors s ∈ RN

and x ∈ RN , respectively, where N is the sample size. Similarly, the estimated input signal will be

represented by the vector y ∈ RN . In our notation, the mappings between the input and observed signals

and between the observed and input estimated signals will be denoted by x = f(s) and y = g(x),

respectively. Therefore the i-th elements of x and y are given by xi = f(si) and yi = g(xi), respectively.

Finally, the global mapping g ◦ f between s and y is denoted by q(·).

In this work, we shall deal with signal transforms. These transforms will be represented through a

matrix notation, i.e., the coefficients of a signal p in a given transformed domain can be calculated as

follows

pc = Φp, (1)

where Φ is the matrix associated with a given linear transform. In this work, while there are no constraints

for Φ with respect to the theoretical results, we consider that Φ is related to the discrete cosine transform

(DCT) in the examples and numerical experiments. Our choice is motivated by two reasons. The first

one is that chemical signals, which is the primary focus of this work, are usually smooth and, thus,

have only a few coefficients when represented in frequency-related transforms, such as DCT. As will be

discussed latter, this feature is a fundamental one since our proposal requires that the input signal be as

sparse as possible. The second reason is that the coefficients of the DCT are real, unlike, for instance,

the coefficients provided by the discrete Fourier transform (DFT). Such a feature is important since it

renders easier the implementation of our approach.
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A. Application to ion-selective electrodes

The problem of blind compensation of a nonlinear distortion is very important in chemical analysis.

In particular, this issue is crucial when dealing with analyses performed by ion-selective electrode (ISE)

arrays [15], [16]. To better understand this point, let us consider an analysis in which an array of Nm ISEs

are used to estimate the activities of Ns ions. According to the Nicolsky-Eisenman (NE) equation [7],

when the valences of the ions under analysis are the same, the response of the k-th ISE is given by

xk(t) = ek + dk log10(sk(t)), (2)

where

sk(t) = zk(t) +

Ns∑
j=1,j ̸=k

akjzj(t) (3)

In Equation (3), zk(t) and zj(t) correspond to the activities of the target and interfering ions, respectively.

The parameters akj are known as selectivity coefficients and model the interference of j-th ion into the

k-th one. The parameters ei and di are unknown constants. The NE model can be seen as special case

of the Wiener-Hammerstein systems. The difference is that the linear part of the NE model is not a

dynamical system.

If a blind framework is considered, there are basically two approaches to deal with the nonlinear

mixing process given by Equations (2) and (3). The first one is to set up a nonlinear blind source

separation method that provides estimates of the signals z1(t), z2(t), . . . , zNs
(t) from the observations

x1(t), x2(t), . . . , xNm
(t) . This approach was considered in [15], [16].

A second approach is to consider a two-step framework in which the first stage consists in dealing

with a set of Nm nonlinear distortions, each one observed in a given electrode. Once these nonlinear

distortions are compensated, the mixing model given by Equation (3) can be tackled by linear blind

source separation (BSS) methods [17], [18].

Note also that, even in the situation in which the effect of the mixing process is negligible, i.e. when

there is only one ion within the solution under analysis, a blind estimation of the target ion activity still

requires compensating the logarithmic distortion. To sum up, a fundamental step here is to estimate sk(t)

from xk(t), which matches exactly the problem of compensating a nonlinear distortion.
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III. A METHOD BASED ON SPARSITY RECOVERY TO BLINDLY COMPENSATE A NONLINEAR

DISTORTION

A. The proposed approach

We shall introduce our idea by means of an example. Let us consider the input signal s which is shown

in Figure 2(a). In Figure 2(b), we plot a distorted version of the input signal given by xi = 3
√
si. The

signal s can be represented in a sparse manner after applying the DCT — this is shown in Figure 2(c).

In Figure 2(d), the DCT of the observed signal x is exhibited. The key point here is that the DCT of x

is clearly less sparse than the one of the input signal s — this feature, which is analogous to the spectral

spreading phenomenon that arises when bandlimited signals are submitted to nonlinear functions [10],

[11], will be further discussed in Section IV. Motivated by this observation, our proposal is to adjust the

compensating function g(·) so that the estimated signal y be as sparse as possible. We discuss in the

sequel how this idea can be put into practice.
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(a) Input signal s.
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(b) Observed signal x =
s1/3.
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(c) DCT of s.
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(d) DCT of x = s1/3.

Fig. 2. Signals s and x and the DCT of their cubic root functions.

B. A practical method

In order to implement our proposal, we must define a parametric model for the compensating nonlinear

function g(·). A crucial point related to this definition is the degree of flexibility of the chosen g(·).

For instance, if one considers a compensating function based on a multilayer perceptron (MLP) neural

network, then there arises the risk of overfitting [19]. In order words, due to its high degree of flexibility,

the MLP model can provide a yc = Φy that is very sparse but it is not a good estimation of s. Indeed,

if a frequency-based transform is considered, the MLP network can be adapted so that y is close to a

constant signal, thus resulting in a very sparse signal in the transformed domain.

In view of the risk of overfitting, the parametric model for g(·) must be always monotonic. Moreover,

one must consider a parametric model that is as flexible as possible, without violating the constraint of
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strict monotonicity. In this work, we consider the use of a polynomial compensating function, which is

given by

yi =

Np∑
j=1

wjx
2j−1
i . (4)

Monotonicity is ensured when the derivative of (4) is always positive or negative. In order to have a

derivative that is always positive, only the odd terms are considered and a non-negativeness constraint

must be imposed to the coefficients wj . Equivalently, if a non-positiveness constraint is imposed to wj ,

then (4) has negative derivative everywhere. In our work, we shall consider a non-negativeness constraint

and, due to the scale ambiguity, there is no loss of generality in this choice.

By considering a vector notation, the estimated signal y can be calculated as follows

y = XTw, (5)

where

X =


x1 x2 · · · xN

x31 x32 · · · x3N
...

...
. . .

...

x
2Np−1
1 x

2Np−1
2 · · · x

2Np−1
N

 , (6)

and

w = [w1 w2 . . . wNp
]T . (7)

Let us now turn our attention to the criterion that will be used to adjust the parameters w in Equation (5).

According to the idea introduced in Section III-A, the compensating function must be adjusted so as to

maximize the sparsity of yc, which denotes the coefficients of the output signal y in a given transformed

domain generated by Φ, that is, yc = Φy.

Several criteria can be applied to quantify sparsity. In this work, we shall consider the ℓ0-norm [13],

which, for a vector p ∈ RN , is given by

||p||0 = N −
N∑
i=1

10(pi), (8)

where 10(·) corresponds to the indicator function on zero. Note that the ℓ0-norm simply counts the

number of non-null elements of p.

In a practical situation, sparse signals often present many coefficients that are close to zero, but are

not exactly null. Such a fact restricts the direct application of the ℓ0-norm, thus requiring some sort
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of approximation. In the present work, we make use of the smoothed version of the ℓ0-norm that was

considered in [20]. This measure is given by:

Sℓ0(p) = N −
N∑
i=1

k(pi, σ), (9)

where k(pi, σ) is Gaussian kernel of zero mean and standard deviation σ, that is:

k(pi, σ) = exp

(
− p2i
2σ2

)
, (10)

Note that:

lim
σ→0

Sℓ0(p) = ||p||0. (11)

Based on the elements described so far, the idea introduced in Section III-A can be implemented by

formulating the following optimization problem:

min
w

Sℓ0(yc) = Sℓ0(ΦXTw)

subject to wi ≥ 0, i = 1, . . . , Np

||yc||2 = wTXXTw = 1.

(12)

As discussed before, the inequality constraints are required to ensure the monotonicity of g(·). The

equality constraint is necessary to avoid trivial solutions, in which all the elements of yc are null — this

constraint corresponds to simply setting the energy of the estimated signal y to one.

The optimization problem expressed in Equation (12) is an example of a nonlinear programming

problem with equality and inequality constraints [21]. In this work, we consider an algorithm from the

class of sequential quadratic programming (SQP) methods. More details on this classical optimization

strategy can be found in Appendix A.

IV. THEORETICAL ASPECTS

Having defined a practical algorithm to implement our idea, let us turn our attention to an important

theoretical issue: what are the conditions for which maximizing the sparsity of yc leads to a perfect

compensation of the nonlinear distortion? Our analysis is based on the ℓ0-norm and can be summarized

by the following theorem.

Theorem 1 (Perfect compensation by sparsity recovery): If the global mapping between the input sig-
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nal s and the estimated signal y, y = q(s) = g ◦ f(s), can be represented by

y = βs+ γh(s), (13)

where h(·) is a nonlinear residual function, β ∈ R∗ and γ ∈ R, and if

||sc||0 = ||Φs||0 <
||Φh(s)||0

2
(14)

then,

||yc||0 ≥ ||sc||0,

being the equality achieved if and only if γ = 0 or, equivalently, if y = βs (perfect compensation case).

Proof: The rationale behind the proof is to find the lower bound of ||yc||0 as a function of γ. Since

the global mapping between s and y can be written according to Equation (13), yc is given by:

yc = Φy = Φ(βs+ γh(s)) = βsc + γΦh(s). (15)

Strictly speaking, the ℓ0-norm is not a mathematical norm, but it satisfies the triangle inequality, and,

thus, the reverse triangle inequality [13]2. Therefore, Equation (15) leads to:

||yc||0 ≥
∣∣∣||sc||0 − ||γΦh(s)||0

∣∣∣. (16)

Equation (16) can be inspected in two situations: i) γ ̸= 0 (situation in which there is still a nonlinear

distortion) and ii) γ = 0 (case in which perfect compensation is achieved). In the first case, given that

the ℓ0-norm is not homogeneous, which means that ||γΦh(s)||0 = ||Φh(s)||0, Equation (16) becomes:

||yc||0 ≥
∣∣∣||sc||0 − ||Φh(s)||0

∣∣∣. (17)

If the condition (14) holds, then one can easily check from Equation (17) that

||yc||0 > ||sc||0. (18)

On the other hand, in the case in which γ = 0, it asserts, from Equation (13), that yc = βsc , and,

thus, ||yc||0 attains its minimum value, which is given by ||sc||0.

2Given two vectors a and b, the reverse triangle inequality states that:

||a− b||0 ≥
∣∣∣||a||0 − ||b||0

∣∣∣.
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Theorem 1 provides two joint sufficient conditions that guarantee that the minimization of ||yc||0 leads

to a perfect nonlinear compensation case. The first condition Equation (13) is not a very restrictive one,

since many functions can be represented in this way by means, for instance, of a Maclaurin series [22].

A counterexample in this respect would be an even distorting function. Indeed, the Maclaurin series of

an even function has only even powers and, thus, cannot be represented by (Equation (13)). Note that

in this situation, f(·) would not be a monotonic function, which, as mentioned before, poses a tricky

problem of compensation.

The second condition, expressed by Equation (14), requires that the transform of the nonlinear function

h(s) be at least half less sparse than the transform of the input signal s. This result somehow extends

the original work of Landau and Miranker [10] and also the more recent results provided in [11], [15].

Indeed, in these works, one assumes that the signal is bandlimited, that is, there is a sort of block sparsity

representation in which the first elements of the vector sc are not null. Then, since the nonlinear distorting

function spreads the spectrum of the observed signal, it is possible to perform compensation by retrieving

a signal that is as bandlimited as possible. Conversely, Theorem 1, although relying on an analogous idea,

does not require this block sparsity structure (bandlimited signals) that is necessary in the aforementioned

works; it requires that the retrieved signal be as sparse as possible in a conjunction with the nonlinear

distortion, so that Equation (14) is satisfied.

In order to illustrate the result stated in Theorem 1, let us consider an example in which the distorting

function is given by

xi = f(si) = 3
√
si,

and the compensating function by

yi = g(xi) = βx3i + γxi.

Therefore,

yi = q(xi) = βsi + γ 3
√
si,

and, thus, according to Equation (13), the residual function is given by

h(si) = 3
√
si.

A crucial point here is that if we consider, for instance, a frequency transform such as the DCT, and if the

input signal s is sparse in this domain, then the signal h(s) will tend to be much less sparse than s, thus

satisfying Equation (14). This result was already illustrated in the Example discussed in Section III-A
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(see Figure 2).

V. RESULTS

In order to test the proposed method, we provide experiments with synthetic and actual data in

Sections V-A and V-B, respectively.

The peformance index adopted in our experiments is the signal-to-distortion ratio (SDR) in dB, which

is defined as:

SDR = 10 log

(
sT s

(s− y∗)T (s− y∗)

)
,

where y∗ denotes the recovered signal after performing a normalization with respect to s. This normal-

ization, which is given by y∗ = ky, where k = argmink∗(s − k∗y)T (s − k∗y), is necessary since the

best one can expect in a blind situation is an estimation given by y = βs (scale ambiguity).

In some experiments, we compare our proposal with a minimum mean-squared error (MMSE) approach,

in which the coefficients of polynomial compensator (4) are adjusted by solving the following optimization

problem

min
w

(
(s−XTw)T (s−XTw)

)
. (19)

Note that such a solution is a supervised one since it assumes that samples of the input signal are

available. Therefore, the MMSE solution can be seen as a performance bound for our proposal.

A. Experiments with synthetic data

In the experiments with synthetic data, the input signal s was generated as follows:

s = Φ⊤sc = Φ⊤(scS + αr), (20)

where scS correspond to realizations of a Bernoulli-Gaussian process, i.e., each element of scS has a

probability P of being non-zero, and, when active, it is obtained from a zero-mean Gaussian distribution

of unity variance. The elements of r are also obtained from a standard Gaussian distribution, and the

rationale of this vector, which is weighted by the coefficient α, is to model the small residual energy

typical of practical sparse signals. Therefore, when α = 0 and P is small, sc becomes a sparse signal in

the sense of the ℓ0-norm. Finally, in our tests, we consider that Φ corresponds to the DCT matrix for

the reasons exposed in Section II.

In the sequel, we shall discuss four experiments, each one carried out in a different scenario.
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1) Case in which perfect inversion is possible: We first study the situation in which it is possible to

achieve a perfect compensation of the nonlinear distortion. In particular, we address the compensation of

f(si) = 3
√
si via the polynomial function (4) with Np = 4. The sparse signal was generated according

to (20), considering P = 0.2, α = 0 (ideal sparse signal), and N = 1000 samples. Figure 3(a) shows the

mapping between si and xi.

After solving the optimization problem expressed in (12) (with σ = 0.01), we obtained a compensating

function that achieves an almost perfect inversion (SDR= 57.7dB); this can be seen in Figure 3(b), which

exhibits the mapping between si and yi. Note, also in Figure 3(b), that there is a scale indeterminacy,

since the obtained line does not have an angular coefficient equal to one.
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(a) Joint plot si vs. xi.
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tained by our proposal.

Fig. 3. Nonlinear compensation when a perfect inversion is possible.

2) Case in which perfect inversion is not possible: Let us now consider a more realistic experiment

in which f(si) = tanh(3si); N = 1000, P = 0.2 and α = 0. In Figure 4(a), the nonlinear distortion is

illustrated by the resulting mapping between si and xi.
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(a) Joint plot si vs. xi.
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tained by our proposal.
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Fig. 4. Case in which a perfect inversion is not possible.

The experiment in this case was performed considering a polynomial of degree 9 (Np = 5) and

σ = 0.1; we noticed that very similar results are obtained for values of σ in the range [0.001, 0.1]. As
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can be observed in Figure 4(b), our method was able to mitigate the effects of the nonlinear distortion;

this is specially clear for high amplitudes. Concerning the signal-to-distortion ratio, we obtained a value

of SDR= 17.1dB. For matter of comparison, the MMSE supervised solution (see Equation (19)) achieved

a value of SDR= 17.4 — the resulting input signal-estimated signal mapping in this case is shown in

Figure 4(c). Note that the proposed method was able to provide a solution very close to the MMSE

solution.

3) Influence of residual elements: Let us analyze the case in which α ̸= 0 in the signal model expressed

in (20). This situation simulates actual sparse signals, which usually have small coefficients that are not

necessarily zero. In our analysis, we performed a set of simulations in which the parameter α was varied

from 0 to 1. In these tests, we considered Np = 4 and the following different bandwidths: σ = 0.1 and

σ = 0.01. The nonlinear distortion is f(si) = tanh(1.5si) and N = 1000 samples of the input signal

were generated considering P = 0.2 — in this case, we performed a variance normalization of the input

signal (this signal was divided by its standard deviation) to obtain fair comparisons between different

values of α.

As can be seen in Figure 5, which shows the average SDR obtained considering 100 trials for each

α, the performance of the proposed approach becomes worse as α increases. This is expected, since the

input signal tends to be less sparse as α increases, violating the basic assumption underlying our proposal.

Another interesting point here is the influence of σ. A higher value of σ, in this case, leads to a better

performance as α increases. Conversely, for α close to zero, one can note that defining a smaller σ leads

to a better performance, very close, in fact, to that associated with the supervised solution. Finally, note

that, as expected, the performance of the supervised solution does not depend on the degree of sparsity

of the input signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

α

S
D

R
 (

dB
)

 

 

Proposed method σ = 0.1
Proposed method σ = 0.01
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Fig. 5. Influence of α on the SDR obtained by the proposed method and the MMSE solution.
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4) Performance in the presence of noise: Let us now consider a noisy situation in which the observed

signal is given by:

x = f(s) + n, (21)

where n are samples of an additive white Gaussian noise (AWGN).

We consider the same scenario of Experiment 2 (N = 1000, P = 0.2, α = 0, Np = 5 and nonlinear

function f(si) = tanh(3si)). A set of experiments were carried out for different signal-to-noise ratios

(SNR). The evolution of the obtained SDR against the SNR is shown in Figure 6 — each point corresponds

to the average obtained in 100 trials. A first point that should be stressed here is that our proposal (with

both σ = 0.1 and σ = 0.01) provided SDRs very close to the ones obtained by the MSE-based supervised

solution. It is also interesting to stress the effects of the noise, which in nonlinear systems can be very

harmful. In this example, for instance, we note a rapid performance degradation for SNRs smaller than

approximately 30dB, even for the supervised MMSE solution.
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Proposed method σ = 0.1
Proposed method σ = 0.01
MSE−based supervised approach

Fig. 6. Influence of noise on the SDR obtained by the proposed method and the MMSE solution.

B. Experiments with data provided by an ion-selective electrode

We here test our proposal in a real scenario. The data comes from the experiments S1K10−1NH4 and

S1K10−4NH4 of the Ion-Selective Electrode Array (ISEA) dataset (see [23] for details). In this case,

we are interested in the response of an ISE whose target is the ion potassium (K+). However, in the

solution under analysis, there is, besides the ion K+, the ion ammonium (NH+
4 ), which can be seen as

an interfering ion. The response of the K+-ISE can be modeled by Equations (2) and (3) and our goal

here is to provide an estimate for s1(t) from the observation x1(t) — the index 1 means here that x1(t)

corresponds to the response of the first sensor within the array.
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In the ISEA database, the actual ionic activities of potassium and ammonium are known — these

are, respectively, the signals z1(t) and z2(t) in Equations (2) and (3). Therefore, we can, by applying a

nonlinear regression, estimate the signal s1(t), which corresponds to the desired signal in our analysis.

This signal is depicted in Figure 8 (in blue), which also show the observed signal x1(t) (in gray). The

number of samples in this case is N = 169.

In order to obtain a sparse representation of the input signal s1(t), we consider the DCT transform.

In Figure 7(a), we show the DCT of the input signal, which is indeed very sparse. On the other hand,

the DCT of the observed signal x1(t) is less sparse, as can be seen in Figure 7(b).
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(a) DCT of s1(t).
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(b) DCT of x1(t).
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(c) DCT of y1(t).

Fig. 7. DCTs of input, observed and estimated signals.

We applied our proposal with Np = 20 and σ = 0.05, having obtained a good estimate of the signal

s1(t), as can be seen in Figure 8 (signal in black). In Figure 7(c), the DCT of y1(t), the estimate of the

input signal. Note that the algorithm provided a sparser signal with respect to the observed signal. The

signal-to-distortion rate in this case was SDR= 28.4dB. For the sake of comparison, we calculate the

SDR between the observed signal and the desired one — this is a situation in which no compensation

strategy is considered. The obtained value was SDR= 7.1dB.

VI. CONCLUSIONS

In this work, we proposed a new approach to the problem of blind compensation of nonlinear distortions.

The proposal relies on the assumption that the desired signal can be sparsely represented in a given

(known) transform. We performed a set of simulations considering synthetic data in different situations,

and it was observed that the new method was able to provide solutions close to those generated with an

MMSE-bases supervised approach.

We also tested our method in a real problem: that of nonlinear compensation in an ion-selective

electrode array. The obtained results showed that our approach provided good estimates of the input

signal despite the strong nonlinear distortion. In the context of ISE arrays, the use of the proposed idea
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Fig. 8. Experiment with real data: input signal s1 (blue), observed signal x1 (gray), retrieved signal y1 (black) and estimation
error s1 − y1 (red).

can open the way for the application of linear blind source separation methods in the same way as done

in [12].

There are still several points that deserve future investigation. For instance, it would be quite helpful

to extend the theoretical result described in Section IV so as to consider the smoothed version of the

ℓ0-norm [20] — this would clarify what are the limitations in using such an approximation. We also

intend to study the use of more flexible structures (such as splines and monotonic neural networks) to be

used in the compensating device. An extension to more general Wiener-Hammestein systems, in which

the linear stage has memory, is also envisaged. Finally, we also intend to apply our method in other

actual problems, e.g., to compensate nonlinear distortions introduced by amplifying stages that follow

transduction.

APPENDIX A

SEQUENTIAL QUADRATIC PROGRAMMING

The optimization problem expressed in Equation (12) is a nonlinear programming problem with equality

and inequality constraints. This problem can be tackled by an approach known as sequential quadratic

programming (SQP). In the sequel, we provide an overview on this classical optimization strategy, and

we refer the reader to [21], [24] for further details.

According to the Karush-Kuhn-Tucker (KKT) conditions [24], a set composed of a local minimizer
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and Lagrange multipliers, {w,λ,µ}, for the problem (12) should satisfy:

∇wL(w,λ,µ) = 0

wTXXTw = 1

wi ≥ 0, i = 1, . . . , Np

µ ≥ 0

µiwi = 0, i = 1, . . . , Np

(22)

where L(w,λ,µ) corresponds to the Lagrangian function and is given by:

L(w,λ,µ) = Sℓ0(ΦXTw)− λ1w
TXXTw −

Np∑
i=1

µiwi. (23)

A first step in SQP is to define a initial point for {w,λ,µ}. Then, one searches for an increment

{δw, δλ, δµ}. This search is based on a quadratic approximation of the Lagrangian function, which leads

to a quadratic programing (QP) problem, for which there are very efficient solutions. After solving this

QP problem, one ends up with a new increment {δw, δλ, δµ} and consequently with a new candidate

solution given by {w+δw,λ+δλ,µ+δµ} . Such a procedure can be conducted in an iterative fashion

until either the increments are smaller than a pre-defined value or a maximum number of iterations is

achieved.
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