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Abstract. Boolean networks (and more general logic models) are use-
ful frameworks to study signal transduction across multiple pathways.
Logical models can be learned from a prior knowledge network structure
and multiplex phosphoproteomics data. However, most efficient and scal-
able training methods focus on the comparison of two time-points and
assume that the system has reached an early steady state. In this paper,
we generalize such a learning procedure to take into account the time
series traces of phosphoproteomics data in order to discriminate Boolean
networks according to their transient dynamics. To that goal, we exhibit
a necessary condition that must be satisfied by a Boolean network dy-
namics to be consistent with a discretized time series trace. Based on
this condition, we use a declarative programming approach (Answer Set
Programming) to compute an over-approximation of the set of Boolean
networks which fit best with experimental data. Combined with model-
checking approaches, we end up with a global learning algorithm and
compare it to learning approaches based on static data.

1 Introduction

Generic prior knowledge about canonical cell signaling networks can be retrieved
from database sources. They provide a first insight on how cells respond to
their environment by triggering processes such as growth, survival, apoptosis
(cell death), and migration. However, little is known about the exact chaining
and composition of signaling events within these networks in specific cells and
specific conditions, as provided by the simulations of predictive mathematical
models (e.g. a set of differential equations or a set of logic rules). When building
predictive models, the parameters of a model (built accordingly to generic prior
knowledge) can be fitted to the data to obtain the most plausible model for
a specific cell type, if enough experimental data is available. This is normally
achieved by defining an objective fitness function to be optimized. In this context,
post-translational modifications, notably protein phosphorylation, play a key
role in signaling. They are very useful for the training of model parameters
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through the use of multiplex phosphorylation assays, a recent form of high-
throughput data providing information about protein-activity modifications in
a specific cell type upon various perturbations (clamping) [1].

Boolean logical networks [12] provide a simple yet powerful qualitative frame-
work which has become very popular during the last decade to model signaling
or regulatory networks [16]. In contrast to quantitative methods which permit
fine-grained kinetic analysis, qualitative approaches allow for addressing large-
scale biological networks. In this context, the manual identification of logic rules
underlying the system has been addressed under different hypotheses and meth-
ods [4]. Although, scalable methods restrain themselves to learning models from
two time points (start; end), assuming the system has reached an early steady-
state when the measurements are performed. As shown in [14], this assumption
prevents capturing important characteristics of signaling networks such as loops.

The goal of this paper is to introduce a new method to infer Boolean net-
works (BNs) from time series datasets which scales to the size of currently studied
BNs. Given multiplex time series data from the measurement of a partial set of
biological entities under different experimental conditions, we want to identify
all the BNs that have a structure compatible with a given prior knowledge in-
teraction graph and that can reproduce all the (experimentally) observed time
series. Time series data are assumed incomplete, i.e., only a subset of network
components are observed, with measurements made at discrete time points and
with normalized continuous values. It is possible that no BN, constrained by the
prior interaction graph, reproduces all the input time series. In such a case we
introduce a fitness function to measure the distance between a trace of a BN
simulation and a measured time series. Therefore, we aim to infer the BNs whose
dynamics contains traces with the best fitness to all measurements.

Our approach relies on the combination of several techniques. First, we intro-
duce a necessary condition for a discretized time series data to be the trace of a
BN. This provides an over-approximation of the successive reachability proper-
ties, leading to reject BNs that cannot reproduce the time series without a costly
exhaustive analysis of the dynamics. Then, we use efficient declarative program-
ming approaches (Answer Set Programming; ASP) to enumerate BNs which
approximate the best experimental data while satisfying the necessary condition
on the dynamics. At the end, we obtain a set of BNs associated with traces which
both satisfy the necessary condition and optimally fit with experimental data.
Because of the reachability over-approximation, part of the returned BNs cannot
reproduce the associated Boolean traces. Such false positives can be detected a
posteriori using a model-checking approach on the returned results.

We evaluated our inference method on synthetic data generated from BNs
between 13 and 17 nodes. On those BNs, six nodes have been selected as observ-
able, and several experimental conditions have been simulated. Our prototype
implementation has been able to identify efficiently all BNs satisfying the neces-
sary condition with a very low rate of false positives. Finally, we estimated the
added-value of models identified with our method on the full time series with
models learned from two time points, considered as a steady state.



2 Boolean Network Identification

2.1 Admissible Boolean Networks and multiplex time series data

Boolean Networks (BNs). A BN with n components {1, . . . , n} consists of a tuple

of n functions F = (f1, . . . , fn) where each function fi : Bn → B, B ∆
= {0, 1},

i ∈ {1, . . . , n}, associates to each global state x ∈ Bn of the network with the next
value of the i-th component. The value of the i-th component in x is noted xi.
The transitions between global states of the network are specified with a reflexive
transition relation → ⊆ Bn×Bn. The transitive closure of → is denoted by →∗.
Given x, x′ ∈ Bn, x→∗ x′ if and only if, either x = x′, or x→ · · · → x′.

Concrete semantics for the transition relation. Several definitions of the tran-
sition relation → can be used depending on the update schedule of the compo-
nents [2], ranging from so-called parallel (or synchronous) updates where each
transition updates the value of all the components, to the asynchronous update
where each transition updates the value of only one component chosen non-
deterministically. As the over-approximation results presented in this article are
independent from the update schedule, we use the general definition, where any
number of components can be updated during a transition: for any x, x′ ∈ Bn,

x→ x′
∆⇔ ∀i ∈ {1, . . . , n}, x′i 6= xi ⇒ x′i = fi(x) . (1)

Prior Knowledge Network and admissible BNs. An interaction graph between
n components is a digraph between nodes {1, . . . , n} where each edge is signed,
i.e., either positive or negative. The interaction graph of a BN F , noted IG(F ),
has a positive (resp. negative) edge from node j to node i if and only if there
exists x, x′ ∈ Bn which are identical except on the j-th coordinate where xj = 0
and x′j = 1 and such that fi(x) < fi(x

′) (resp. fi(x) > fi(x
′)).

In the rest of the paper, the Prior Knowledge Network (PKN) is an interac-
tion graph which delimits the set of admissible BNs: a BN F is admissible with
respect to a PKN G if and only if IG(F ) is a sub-graph of G and IG(F ) has at
one most (signed) edge between two nodes.

Multiplex Time Series Data. We consider classical biology experimental set-
tings where the activity of a subset of biological species is observed over time,
at discrete time points, in different experimental conditions, ranging over var-
ious input signals and clamping operations. Clampings consist of a subset A
of components with a forced activation, and a subset I of components with a
forced inhibition. Given a BN F = (f1, . . . , fn), the corresponding clamped BN
F[A,I] = (f ′1, . . . , f

′
n) is defined for all i ∈ {1, . . . , n} as:

f ′i
∆
=


x 7→ 1 if i ∈ A
x 7→ 0 if i ∈ I
fi otherwise.



Without loss of generality, we assume that the time series data relate to the
observation of m ≤ n nodes that match the nodes {1, . . . ,m} of the BN (so the
nodes {m+ 1, . . . , n} are not observed). The observations consist of normalized
continuous values: a time series of k data points is denoted by T = (t1, . . . , tk),
with ∀j ∈ {1, . . . , k}, tj ∈ [0; 1]m.

Hereafter, we consider a simple binarization of observations using a 0.5
threshold: given a continuous observation tji ∈ [0; 1] of a component, its Boolean

value is noted η(tji ) where η(tji )
∆
= 1 when tji ≥ 0.5, and η(tji )

∆
= 0 otherwise. The

distance between a binary sequence X = (x1, . . . , xk), where ∀i ∈ {1, . . . , k}, xi ∈
Bm, and a time series T is evaluated with the standard Mean Squared Error :

mse(X,T )
∆
=

√∑k
j=1

∑m
i=1 (xji − t

j
i )

2
.

2.2 Over-approximation of Boolean network verification

Given a BN F and a pair of states x, y ∈ Bn, checking the reachability of y
from x (x →∗ y) is a standard model-checking task, known to have a limited
scalability due to its theoretical complexity (NP-complete [11]). In this section,
we introduce a so-called meta-state semantics (⇒) for BNs. From such seman-
tics, we express a necessary condition for reachability in the concrete semantics
(→), referred to as support consistency ( ∗). Meta-state semantics offers prop-
erties (notably monotonicity) that make support consistency efficient to verify,
in particular with ASP. However, support consistency is not a sufficient condi-
tion for reachability, so this approach may lead to false positives but guarantees
the absence of false negatives. Therefore, we will apply exact model-checking
approaches on the inferred BNs in order to rule out false positives. Thanks to
the over-approximation criteria, one can expect that the set of BNs satisfying
the necessary condition is small compared to the full domain of BNs delimited
by the PKN, leading to a global gain in terms of performance.

Meta-state semantics. A meta-state u of dimension n is a vector of n non-empty

subsets of B, noted M ∆
= {{0}, {1}, {0, 1}}; the set of meta-states is Mn. In the

following, meta-states characterize a set of Boolean states: a state x ∈ Bn belongs
to a meta-state u ∈Mn, noted x ∈ u, iff each Boolean component xi belongs to
the set ui, i.e., ∀i ∈ {1, . . . , n}, xi ∈ ui. Given a state x ∈ Bn, x is the meta-state
such that ∀i ∈ {1, . . . , n}, xi = {xi}. In the scope of a BN F = (f1, . . . , fn),
we define a reflexive transition relation between meta-states ⇒ ⊆ Mn ×Mn as
follows: from a meta-state u, there is one transition for each i ∈ {1, . . . , n} which
adds to ui all the possible values of the function fi applied to every x ∈ u:

u⇒ v
∆⇔ ∃i ∈ {1, . . . , n}, v = 〈u1, . . . , ui ∪ {fi(x) | x ∈ u}, . . . un〉 . (2)

Several properties arise from this definition, in particular u ⇒ v implies that
∀i ∈ {1, . . . , n}, ui ⊆ vi; therefore x ∈ u ⇒ x ∈ v (monotonicity). Moreover,
ui 6= vi if and only if vi = {0, 1} and ∃x ∈ u such that fi(x) /∈ ui.



Lemma 1 establishes the consistency of the meta-semantics (⇒) with the con-
crete semantics (→): given x, y ∈ Bn, x → y requires that there exists a meta-
state u such that y ∈ u and x ⇒∗ u, where ⇒∗ is the transitive closure of ⇒.

Lemma 1. ∀x, y ∈ Bn, x→ y =⇒ ∃u ∈Mn, y ∈ u : x⇒∗ u.

Proof. Assuming x → y, let us define the set I
∆
= {i ∈ {1, . . . , n} | yi 6= xi}.

From equation (1), ∀i ∈ I, yi = fi(x). Let us assume that for some strict subset
J ( I, ∃v ∈ Mn, x⇒∗ v with ∀i ∈ J , yi ∈ vi. It is notably the case with J = ∅.
By induction, we show that, for any k ∈ I \ J , ∃u ∈ Mn such that x⇒∗ v ⇒ u
with ∀i ∈ J ∪ {k}, yi ∈ ui. Remarking that x ∈ v and defining u ∈ Mn such as
ui = vk ∪ {fk(z) | z ∈ v} if i = k and ui = vi if i 6= k, we obtain that v ⇒ u,
with yk = fk(x) ∈ uk. ut

Such a necessary condition for reachability can be furthermore refined by
ensuring that for each component i ∈ {1, . . . , n} that is equal in x and y, if all
meta-states u containing y with x⇒∗ u are such that ui = {0, 1}, then u contains
a state z with fi(z) = yi = xi. Intuitively, this refinement ensures that if the
i-th component has to temporarily change its value for reaching y, a state from
which it can recover its initial (and final) value has to be reached in between.
Such a condition is referred to as support consistency (definition 1). Theorem 1
states that support consistency is a necessary condition for reachability.

Definition 1 (Support Consistency ( ∗)). A state x ∈ Bn is support-
consistent with y ∈ Bn, denoted by x  ∗ y, if and only if there exists u ∈ Mn

with x ⇒∗ u such that y ∈ u and for all i ∈ {1, . . . , n} where yi = xi, ui =
{0, 1} =⇒ ∃z ∈ u : fi(z) = yi.

Theorem 1. ∀x, y ∈ Bn, x→∗ y =⇒ x ∗ y.

Proof. Let us consider any tuple of states (x1, . . . , xk) with x1 = x, xk = y, and
∀j ∈ {1, . . . , k − 1}, xj → xj+1. From lemma 1, ∃u ∈ Mn such that x⇒∗ u and
∀j ∈ {1, . . . , k}, xk ∈ u. If for all such u, for any i ∈ {1, . . . , n}, ui = {0, 1}
implies that there exists l ∈ {1, . . . , k} with xli 6= xi. If yi = xi, there necessarily
exists m ∈ {l, . . . , k − 1} such that fi(x

m) = yi. Therefore xm ∈ u. ut

2.3 Optimization with respect to time series data

Our objective is to infer BNs that are admissible with a given PKN and that
verify the sequential reachability of binary states in Bm that are as close as
possible to a given time series data and its associated experimental settings.

Distance between a time series data and a BN. Given a time series T with
associated clamping A, I, the distance between a BN F and (T,A, I), noted
mse(F[A,I], T ), is the minimal MSE between T and a sequence of binary states

X = (x1, . . . , xk), with ∀j ∈ {1, . . . , k}, xj ∈ Bn, that are successively reachable



in F[A,I]: x
1 →∗ x2 . . . →∗ xk. We notice that the lowest possible mse(X,T )

among all Boolean traces is the MSE between T and its binarization η(T ) =

((η(t1i ))i=1...m, · · · , (η(tki ))i=1...m). Let us call MSET
∆
= mse(η(T ), T ) this min-

imum MSE which is intrinsic to the time series T and to the threshold for
binarization (0.5); mse(F[A,I], T ) ≥ MSET . Whenever mse(F[A,I], T ) = MSET ,
we say the BN F reproduces the time series data T .

Relaxing the semantics constraint. In order to prevent an exhaustive exploration
of the BN dynamics for characterizing the sequences of reachable (→∗) Boolean
states, we consider any sequence X = (x1, . . . , xk), with ∀j ∈ {1, . . . , k}, xj ∈ Bn,
that are support-consistent ( ∗), i.e., x1  ∗ x2 . . .  ∗ xk in the scope of the
BN F[A,I]. The MSE of such a support-consistent Boolean state sequence X
w.r.t. the time series T is noted m̂se(X,T ); and the minimal distance among
all support-consistent sequences in F[A,I] with T is referred to as m̂se(F[A,I], T ).
Because any reachable sequence is support-consistent (theorem 1), we obtain
that mse(F[A,I], T ) ≥ m̂se(F[A,I], T ) ≥ MSET ; and in particular mse(F[A,I], T ) 6=
m̂se(F[A,I], T ) only if none of the support-consistent sequences X with minimal
m̂se(X,T ) are actually sequences of reachable Boolean states. In such cases, F
is a false positive. Determining if F is a true positive can be done a posteriori
with a model-checking approach: if m̂se(F[A,I], T ) = MSET , we check that η(T )
is a valid sequence of reachable states in F[A,I]; otherwise, we check the validity
with respect to reachability of at least one sequence X with minimal m̂se(X,T ).

Optimization problem. We consider a PKN G and a set of r multiplex time
series D = (T 1, A1, I1), . . . , (T r, Ar, Ir). The distance between a BN F and

the dataset is the sum of distances m̂se(F,D)
∆
=

∑r
l=1 m̂se(F[Al,Il], T

l). The
optimization procedure identifies the BNs compatible with the PKN G that have
the minimal distance m̂se(F,D). In the scope of this paper, we enforce that each
non-observed node starts with the same initial value in all the time series: for
each l ∈ {1, . . . , r}, if X l is a sequence of support-consistent Boolean states in Bn
such that m̂se(F[Al,Il], T

l) = mse(X l, T l), for all i ∈ {m+ 1, . . . , n}, X l
1,i = X1

1,i.
Whereas this constraint reduces the space of sequences to explore, it also ensures
consistency between the different experimental settings.

Depending on the number of nodes in the PKN, and on the discriminative
power of the time series dataset, a rather large number of BNs may be expected
to be inferred. As an alternative, we can output only the BNs having the smallest
Disjunctive Normal Form (DNF) representation with respect to clause inclusion,
i.e., no literal nor clause can be removed. This means that no unnecessary edges
occur in the BNs, thus providing only the simplest BNs. In the following, we
refer to such a set of solutions as subset-minimal.

2.4 Implementation

Answer Set Programming (ASP; [3,7]) is a declarative approach to solving knowl-
edge-intense combinatorial (optimization) problems comprising up to tens of



millions of variables. ASP’s distinguishing combination of a high-level model-
ing language with high-performant solving tools allows for concentrating on an
actual problem, rather than a smart way of implementing it. The basic idea of
ASP is to express a problem in a logical format so that the (logical) models of
its representation provide the solutions to the original problem. Problems are
expressed as logic programs and the resulting models are referred to as answer
sets. Although determining whether a program has an answer set is the fun-
damental decision problem in ASP, modern ASP solvers like clasp [9] support
various combinations of reasoning modes, among them, regular and projective
enumeration, intersection and union, multi-criteria optimization and subsets [8]
and/or sum-based minimal (maximal, resp.) model enumeration.

Here we describe the general design of the encoding, while the complete ver-
sion is available online5. For the encoding we follow the general design approach
in ASP in a way that we first guess all admissible BNs given a PKN. Guessing
in this context does not mean choosing a BN by some heuristic, but exhaus-
tively trying all possible combinations of edges and logical connectives. We also
guess time series, a value {0, 1} for every species in every experiment and every
time point. In the case of non-observed nodes we add a constraint that fixes
their initial value, at time point 0, across all the experiments. We then restrict
this search space by posting constraints that the guessed time series shall be
support-consistent with the guessed BN. In this way all enumerated BNs are
consistent with the guessed time series. As an optimization function we mini-
mize the distance between the guessed time series and the measured one. In the
optimal case, this means that the guessed time series is equal to the measured
one, and the BN is support-consistent with the measured data.

3 Evaluation

3.1 Case study

As a proof of concept we used the PKN published in [14] (see the compressed
PKN in Fig. 1A). From this PKN, the authors of [14] randomly generated an
admissible golden-standard BN to simulate synthetic time series data (Fig. 1C).
Afterwards, they removed the link from tnfa to ap1 from the PKN to represent
incomplete regulatory knowledge. After confronting the incomplete PKN with
the time series data, our method learned a family of BNs consisting of 3 subset-
minimal BNs. All BNs were checked to be true positives, therefore they have an
optimal MSE score of 0.07 with respect to the data. The family of optimal BNs
was learned after 0.04 seconds of computation on a standard desktop computer.
In Fig. 1B we plot the subset-minimal family of BNs learned for this case study.
It recovers the complete logical behaviors of the golden-standard, except for the
one regulation from tnfa to ap1 which was removed from the PKN. Only the
logical function of the regulation over p38 is not consensually learned across all
BNs in the family; the rest of logical functions learned are shared by all models.
The quality of our results concerning the learned BNs is comparable to the one
obtained in [14] for the same case study. The computation time of our method



Fig. 1. (A) Compressed PKN from [14]. Green and red edges indicate activations and inhibi-
tions respectively. Colors of the nodes represent the chosen experimental design: green refers to
inputs/stimuli, red, to inhibited nodes, and blue, to measured species. (B) Boolean networks (BNs)
learned from time series data which are subset-minimal. All BNs predictions have minimal ∆MSE
with respect to the synthetic time series data. A black circle represents a logical AND gate. A number
written over an edge represents the frequency of this logical gate or edge with respect to the family
of BNs when the edge is not shared by all BNs. (C) Synthetic time series data used in [14] simulated
using a BN admissible for the PKN in A. In total 10 experimental conditions were simulated. Red
boxes indicate the minimal set of 3 error time-points detected.

improves the one of published methods in a range of 2 to 4 orders of magnitude.
Moreover, our method is exhaustive: all logical networks are learned. The full
set of solutions (not only the subset-minimal BNs) was also computed showing
one more BN with an OR gate above p38 from tnfa and map3k1.

The method also automatically identified the list of minimal errors in the
time series data, selecting time-points that cannot be explained by the learned
BNs. For the case of all optimal BNs, we found the following 3 errors (see Fig.
1C) in all of them. For experiment 10, time-point 10, species p38, the error can
be explained by the noise artificially introduced in the dataset. The predecessors
of p38 are tnfa and egfr, both active in experimental condition 10 (see Fig.1C).
The signal of p38 can therefore only increase (or stay the same). However, the
measure of p38 slightly decreases (due to noise) at time-point 10; this generates
an error since the BNs cannot satisfy the data at this particular time-point. For
experiment 6, time-point 2 and 4, species ap1, the errors can be explained by the
fact that one edge (the link from tnfa to ap1) was deleted from the PKN, but was
kept to generate the synthetic time series data. All BNs agree on a regulation
of p38 and ap1 from map3k1. In experiment 6 tnfa is stimulated and pi3k is
inhibited (see Fig. 1C). At time-point 2 the value of map3k1 has to be activated
(transition 0 → 1) to justify the activation of ap1. However, since map3k1 is
the only regulator of p38, which is all the experiment at value 0, this cannot be
explained by the BN and generates an error.

3.2 Benchmarks

In this section we evaluate our method for BN identification on synthetic mul-
tiplex time series data. Given a PKN, a dataset and a set of inferred BNs, we
focus on two evaluation criteria: the MSE distance of the BNs to the dataset,
and the rate of false positives due to our reachability over-approximation.



Synthetic multiplex time series datasets. 10 PKNs were derived by randomly
removing or adding edges from the compressed PKN published in [14]. For each
PKN we randomly selected 3 golden-standard admissible BNs. Each golden-
standard BN was used to generate synthetic time series data by simulating the
BN with logic-based ODEs. In total we generated 30 datasets (see appendix A
for details).

MSE computation. Following section 2.3, our method optimizes the MSE of the
BNs F to the dataset D up to the reachability over-approximation criteria: if the
BN is a true positive, the estimated MSE m̂se(F,D) is the exact MSE mse(F,D),
otherwise the estimated MSE is an under-approximation - the exact MSE may
be larger. Due to the optimization, all the BNs have the same estimated MSE.
The value of the estimated MSE can be computed using the equation given in
section 2.1 by sampling one BN from the result set with one Boolean trace X
for each time series T of dataset D such that m̂se(X,T ) is minimal.

True-positive rate computation. Any BN inferred by our method satisfies the
necessary condition depicted in section 2.2 for producing Boolean traces as close
as possible to a given time series dataset. Verifying that the BN can actually
reproduce those Boolean traces requires an exhaustive analysis of the dynamics
to ensure the successive reachability of the Boolean states. In the scope of this
paper, we performed such a verification using a model-checking approach. The
presented experiments have been conducted using the tool NuSMV [5] which
allows an efficient encoding of the dynamics accounting for the range of clamping
settings of the different time series in the dataset5. The true-positive rate eval-
uation proceeds by iteratively checking each inferred BN. In the case when the
estimated MSE is MSET (section 2.3), the model-checking is performed with re-
spect to the binarized time series. Otherwise, we iterate over the closest Boolean
traces computed in section 2.3 until a sample is validated by model-checking; if
no such a sample exists, the BN is a false positive.

Results. For each dataset, the model identification has been performed with
respect to the PKNs from which the BNs used for data generation have been
extracted; and with respect to the PKNs where some edges have been deleted so
the BNs used to generate the data are not in the considered domain. Detailed
results are given in appendix B. With the exact PKNs, the estimated MSE is
always the minimum MSET ; moreover, the rate of true positive is 100% in 28
benchmark datasets, and above 90% in the 2 others. With the PKNs with deleted
edges, most of the cases show a very high true positive rate (often 100%) and an
estimated MSE close to (often equal to) MSET . Note that for some dataset, no
true positive has been found. For the cases when the estimated MSE is different
from MSET , the true positive rate can only be evaluated by sampling Boolean
traces close to the time series data. Because of the very high combinatorics of
such sampling space, the computation has been aborted after one hour, hence

5 Scripts and data available at http://loicpauleve.name/cmsb15-suppl.tbz2
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we cannot guarantee that no true positive exists. When no true positives have
been identified, the MSE may be under-estimated.

The inference of the subset-minimal solutions for the 30 benchmarks with
exact PKNs took less than 2 seconds on average. The performance is similar
for the benchmarks with incomplete PKNs that contained a true positive BN
in the result. The number of results varies between 12 and 2640 with the exact
PKN and from 2 to 1188 with modified PKNs. Depending on the size and the
complexity of its dynamics, the model-checking of one BN took between 1s and
5 minutes. The full set of solutions (not only the subset-minimal BNs) have also
been performed with the exact PKN, showing very similar results and running
time, with subsequently more results (up to 54,000 BNs, data not shown).

Same experiments have been conducted on the time series generated with
noise (appendix A) but show no difference in the results (data not shown). This
may indicate that the noise influence may be tempered by the binarization.

3.3 Comparison with inferences using pseudo steady-states

In this section we compare our results with the previously developed approach
Caspo [10]. Caspo, as well as other state-of-the-art approaches such as CellNopt
[15], considers two time-points (an initial point and a pseudo-steady state) and
a PKN. It computes a set of BNs with minimal size that can explain the best the
transition between the two time-points. Due to its static nature and the minimal
size condition, it is not possible to infer feedback loops or dynamic behaviour,
because models with loops would not improve the fitting with the data assuming
a steady state. With this comparison, we aim at emphasizing the importance of
taking into account model dynamics to obtain accurate model predictions.

Applied on the 30 synthetic datasets of section 3.2 with the PKNs used for the
data generation, we compared the best MSE obtained applying our optimization
procedure on the BNs returned by Caspo on one time point (assumed steady
by Caspo) and on all BNs delimited by the PKNs. Therefore, we compare the
best estimated MSE with respect to the multiplex time series for both the Caspo
approach and the method introduced by this paper. As explained in section 2.3,
and as in section 3.2, the computed MSE may be under-estimated so we used
model-checking a posteriori to verify the presence of true positive BNs.

Figure 2 plots the estimated MSEs, where the 6th time point of the time
series has been selected for the learning with Caspo; other time points give
very similar results (data not shown). On the contrary to our approach where
it was always possible to find a BN which was fully consistent with the data,
having the minimum MSE = MSET , Caspo failed to identify a consistent model
with the data in 25 over the 30 experiments. Among those 25 experiments, the
estimated MSE on Caspo results may be under-estimated in 5 experiments where
the returned BNs are actually false positives (streaked bars). This evidences the
role of feedback loops which cannot be captured with a two-timepoints learning
procedure and the information gain brought by time series data.
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Fig. 2. Comparing MSE with Caspo for 10 different PKNs with 3 datasets each.
“=” indicates equal MSE.

4 Conclusion

We have introduced a procedure based on combinatorial optimization with declar-
ative programming approaches and model checking to identify BNs from multi-
plex time series data given a prior network structure. To cope with the complex-
ity of an exhaustive analysis of BNs dynamics, we defined an abstract semantics
of BNs from which we derived a necessary condition for the satisfaction of suc-
cessive reachability properties, induced by the time series data. Our procedure
identifies all the BNs that satisfy this necessary condition with the shortest
distance (in terms of MSE) to the observed experimental data. Because the sat-
isfaction criteria for the dynamics is over-approximated, our method may lead
to BNs that are false positive, and have an under-estimated MSE. Applied to
synthetic multiplex time series datasets on networks composed of 13 to 17 nodes,
the identification of BNs takes only a few seconds and exhibits a very low rate
of false positives, showing a remarkable efficiency.

In the present form, we assume that the experimental data is normalized be-
tween 0 and 1 and use a discretization threshold at 0.5. Whereas such a setting
is relevant for phosphoproteomics data, future work may generalize our opti-
mization framework to account for adaptive and multiple discretization levels.
Moreover, application to larger networks should be considered, although few of
such data are currently available, and generating synthetic data with sufficient
discriminant power may be challenging.

Because our identification method can be exhaustive, the framework we pro-
pose is suited for the complete Thomas parameters identification for BNs from
incomplete time series data [13,6].Thanks to our abstract semantics, our method
is able to filter out very efficiently a large number of candidate BNs without a
costly exact model-checking, which is postponed to the validation of the results.
In that way, future work may further explore the combination of dynamics over-



approximations with model-checking approaches to provide scalable and exact
inference of BNs from time series data.
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A Synthetic data generation

We produced a family of 10 PKNs derived by randomly removing or adding
edges to the compressed PKN published in [14]. The 10 PKNs had a number
of nodes and edges in the range of 13-17 and 16-22 respectively. For each PKN
we generated its expanded version, that is, a super-structure of BNs in which
all nodes of the PKN are associated to their predecessors in the graph using
all possible combinations of AND and OR gates. The expansion method was
introduced in [15].

From this super-structure we selected 3 golden-standard BNs with a number
of AND gates lower or equal to 1, 3, and 5 respectively. The AND gates were
chosen randomly, however preserving that all nodes are connected to the input
nodes (signaling or stimuli) of the experimental design.

Afterwards, each golden-standard BN was used to generate synthetic time-
series data by simulating the BN with logic-based ordinary differential equations
and arbitrary parameters based on the experimental design used in [14]. We
generated synthetic expression values of 6 species (ap1, erk, gsk3, nfkb, p38
and raf1) across 16 time-points {0, 2, 4, 6, . . . , 30} in 10 experimental clamping
settings which were either stimulation of the inputs (egf, tnfa) or inhibition of
inhibitors (pi3k, raf1). In total we generated 30 time-series synthetic datasets.

For the BN learning process we used synthetic datasets with or without noise,
as well as altered PKNs by removing one or two edges from the 10 PKNs. The
noise of the datasets was uniformly distributed between −0.5 and 0.5 and added
to the values contained in the dataframe (for each combination of species and
time/experiment). The new values were X̂ = X + noise(−.5, .5) ∗ dr, where dr
was fixed to 0.1 and 0.2. To generate the synthetic data we used the R package
CNORode and the Python package cellnopt.wrapper.



B Detailed benchmarks for section 3.2

Given a BN F and a dataset D, let us define ∆MSE
∆
= mse(F,D) − MSET ,

i.e., the difference between the minimum MSE MSET and the actual MSE of
the BN F with respect to the time series in D. The following table show the
true positive rate (TP), number of subset-minimal solutions (#), and ∆MSE
of the inferred BNs with the PKN used to generate the datasets (exact PKN),
and the incomplete PKNs from appendix A. True positive rates pre-pended
with “≥” indicates that the computations have been aborted due to time limit
constraints, therefore the rate may be under-estimated. When no true positive
have been found, the displayed ∆MSE may be under-estimated because MSET ≤
m̂se(F,D) ≤ mse(F,D) = MSET + ∆MSE; this is indicated by pre-pending ≥
to ∆MSE.

Dataset
Exact PKN PKN w/ 1 deletion PKN w/ 2 deletions

TP # TP # ∆MSE TP # ∆MSE
1.1 100% 54 100% 18 0 100% 6 0
1.2 100% 12 100% 9 0.06 100% 3 0.06
1.3 100% 24 100% 18 0.07 100% 6 0.07
2.1 100% 64 100% 16 0 100% 16 0
2.2 100% 264 100% 48 0 100% 12 0
2.3 98% 258 96% 54 0 100% 18 0
3.1 100% 36 100% 18 0 100% 6 0.07
3.2 100% 72 100% 36 0 100% 27 0.04
3.3 100% 72 100% 36 0 100% 27 0.04
4.1 100% 216 100% 72 0 100% 36 0
4.2 100% 504 100% 168 0 100% 48 0
4.3 100% 156 100% 60 0 100% 6 0
5.1 91% 675 ≥0 % 135 ≥0.04 ≥0 % 54 ≥0.03
5.2 100% 2640 100% 1188 0 100% 486 0
5.3 100% 780 ≥0 % 156 ≥0.01 ≥0 % 36 ≥0.01
6.1 100% 890 100% 285 0 100% 120 0
6.2 100% 2304 100% 720 0 100% 288 0
6.3 100% 426 100% 126 0 100% 102 0
7.1 100% 960 100% 456 0 100% 140 0
7.2 100% 820 100% 364 0 100% 144 0
7.3 100% 1536 100% 480 0 100% 144 0
8.1 100% 108 100% 54 0 100% 54 0
8.2 100% 54 ≥0 % 54 ≥0.23 ≥0 % 54 ≥0.23
8.3 100% 96 ≥0 % >2 ≥0.19 ≥0 % >3 ≥0.19
9.1 100% 21 100% 3 0 100% 3 0
9.2 100% 156 100% 54 0 100% 18 0
9.3 100% 36 100% 36 0 100% 12 0

10.1 100% 336 100% 84 0 100% 36 0
10.2 100% 864 100% 216 0 100% 72 0
10.3 100% 864 100% 216 0 100% 72 0
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