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Abstract 

The electronic spectroscopy and the electronic excited state properties of cold protonated 

phenylalanine and protonated tyrosine have been revisited on a large spectral domain and 

interpreted by comparison with ab initio calculations. The protonated species are stored in a 

cryogenically cooled Paul trap, maintained at ~ 10K, and the parent and all the photo-fragment ions 

are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species 

with an improved mass resolution compared to what is routinely achieved with a quadrupole mass 

spectrometer. These new results emphasize the competition around the band origin between two 

proton transfer reactions from the ammonium group toward either the aromatic chromophore or the 

carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state 

with higher charge transfer states, the positions and coupling of which depend on the conformation 

of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation 

channels that supports the conformer selectivity observed in the photofragmentation spectra of 

protonated Tyrosine and Phenylalanine. 
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Introduction 

Gas phase spectroscopy of the neutral aromatic amino acids phenylalanine,1,2 tyrosine1,3–6 and 

tryptophan7–9 in molecular beams have been extensively documented over the last decades. In 

contrast, the protonated analogues have been studied very recently.10–12 The coupling of an 

electrospray source with a cold ion trap has contributed to the ease of production and spectroscopic 

studies of such species. An important milestone was reached in the seminal work of O. Boyarkin 

and T.R. Rizzo in Lausanne11–13 using a cold 22-pole ion trap developed by D. Gerlich.14 Since then, 

several experimental set-ups using this technique15–17 have been built and a simplified version has 

been developed using  a Paul ion trap.18–22 

The UV photofragmentation spectra of protonated phenylalanine (PheH+) and tyrosine (TyrH+) 

have already been recorded12 on a  limited spectral domain, and show well-resolved vibronic bands. 

For both protonated species, two low-lying conformers, which differ by ~2π/3 rotation of the 

carboxylic acid group along the Cα-Cβ bond, have been assigned using IR-UV double resonance 

spectroscopy and comparison with DFT calculations. In the case of TyrH+, each of these two 

conformations can adopt an anti or syn orientation of the hydroxyl group of the phenyl 

chromophore. One of the striking results of these photofragmentation experiments was the 

observation of specific fragmentation channels as compared to the typical fragmentation spectrum 

obtained through collision-induced dissociation experiments.23 Around the band origin of the 

electronic excitation, the two protonated molecules mostly fragment through the Cα-Cβ bond 

rupture.12 For PheH+, this is the only fragmentation pathway leading to the detection of m/z 74±1 

and 92±1 depending on the localization of the charge on the final product. It should be reminded 

that in the first studies of the Rizzo’s group,12 the detection scheme used a quadrupole mass 

analyzer that had a low mass-resolution and the exact mass of the product ions could not be 

accurately determined, within ±1 mass units. In the case of TyrH+, Cα-Cβ bond breaking is 

evidenced by the detection of m/z 107±1 along with minor CID-like fragments at m/z 147, 136, 123 

and 119, which account for less than 10% of the overall fragmentation yield. Higher mass-

resolution experiments showed that the m/z 107±1 fragment is in fact the protonated tyrosine side 

chain at m/z 108.17,24 Besides, it has been shown that the fragmentation channels in TyrH+ are 

conformer-dependent but this behavior has not yet been elucidated. This latter result strongly 

suggests that the fragmentation mechanisms are governed by complex dynamical processes in the 

electronic excited states. In this paper, we investigate and decipher the influence of the 

conformation of the molecules upon their fragmentation pathways and the evolution with the excess 

energy in the locally excited state. 

 

 2



The fragmentation time is also very important information that can help to differentiate 

fragmentations occurring in the excited states (very fast sub nanosecond) from processes occurring 

after internal conversion in the ground state or secondary fragmentations (i.e. dissociation of hot 

fragments). The different processes have been fully characterized for protonated tryptophan (TrpH+) 

using the ion beam ion/neutral coincidence experiment25–28 for fragmentation processes and 

pump/probe femtosecond experiment for fast dynamics in the excited state.29 These experiments 

combined with ab initio calculations provide a complete picture of the TrpH+ fragmentation 

following excitation at 266 nm and a relationship between the excited state and the fragmentation 

mechanism has been proposed. Less information has been obtained on PheH+ and TyrH+ due to 

their lower oscillator strengths at 266 nm. For TyrH+ the excited state lifetime is short (22 ps at 266 

nm) but longer than the TrpH+ lifetime, which exhibits a bi-exponential decay with time constants 

of 400 fs and 15 ps.29,30  

 

From a theoretical point of view, the excited state properties of neutral amino acids31–33 and 

protonated species34–36 have been investigated. For the protonated species, these calculations have 

shown that three low-lying excited states play a crucial role. They correspond to the promotion of 

an electron from the HOMO, which is a π orbital localized on the aromatic part, to three different 

unoccupied orbitals. The first one is the π* orbital localized on the aromatic ring and the ππ* state 

is responsible for the optical absorption and carries the oscillator strength (for TrpH+ there are two 

ππ* states so-called La and Lb).37 The second important orbital is a Rydberg-type orbital localized 

on the protonated amino group. This orbital has σ symmetry with respect to the glycine plane 

(σNH3*). The third one is mainly localized on the carbonyl group and has π type symmetry with 

respect to the glycine plane (πCO*). The energy gap between the locally excited ππ* state and the 

higher excited states of πσ* and ππCO* characters is the smallest in TrpH+ and increases for TyrH+ 

and PheH+. This variation of the energy gap can be understood with simple arguments:29,34,35 in 

essence, to reach these states, one electron has to be removed from the aromatic part and added to 

the protonated glycine part. The energies of these states then strongly depend on the ionization 

energy of the aromatic moiety, which is lowest for Trp, followed by Tyr and Phe. As a consequence, 

the electron transfer is more favorable in Trp than in Tyr or Phe. Ab initio calculations have 

confirmed this model: the energy gap between the ππ∗ state and the states localized on the glycine 

part is in the order of 0.3 eV for TrpH+ while it is 0.9 eV in TyrH+ and 1.1 eV in PheH+. In the case 

of TyrH+, the direct excitation of the πσ∗ state has been recently evidenced below 240 nm, leading 

to the formation of the radical cation (H loss channel), which subsequently fragments through the 

Cα-Cβ bond dissociation forming m/z 107 fragment.38 For PheH+, calculation indicates that vertical 
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excitation of the πσ∗ occurs at higher energy, more than 1 eV above the origin transition of the ππ* 

state and that cannot be reached with our UV laser. 

 

In this paper we present new experimental results of the UV photodissociation of cold PheH+ and 

TyrH+ on a large spectral domain supported by high-level ab initio calculations on the electronic 

excited states. The protonated species, produced with an ESI source, are guided and trapped in a 

cold quadrupole ion Paul trap (10-15 K). All ionic fragments and parent molecules are mass-

analyzed in a time-of-flight mass spectrometer, which allows detecting all the ionic species with 

very good mass-resolution. The present results emphasize the close relationship between the 

electronic character of the excited states and the fragmentation channels which is evidenced by the 

profound variation of the branching ratio of the fragmentation channels as a function of the 

excitation energy. Geometry optimizations of the different excited states have evidenced the role of 

electron transfer and proton transfer reactions in the UV photodissociation process. Besides, we 

propose an explanation for the dependence of the fragmentation channels on the conformation of 

the protonated aromatic amino acids.  

 

Experimental methods 
The electronic spectrum of protonated aromatic amino acids was obtained via photo-fragment 

spectroscopy in a cryogenic cold quadrupole ion trap (Paul ion trap from Jordan TOF Products, 

Inc.) installed in the Orsay laboratory (CLUPS). The setup is similar to the one developed by Wang 

and Wang.18,19 Gas-phase protonated species are produced in an electrospray ionization source built 

at Aarhus University.39 At the exit of the capillary, the ions are guided in an octopole and trapped 

by applying a positive voltage (~10 V) on the exit electrode for 90 ms. They are extracted by 

applying a negative voltage of -30 V during 4 µs and are further accelerated to 200 V by a second 

pulsed voltage just after the exit electrode. This time sequence of pulsed voltages produces ion 

packets with a duration time between 500 ns and 1 µs. The ions are driven by a couple of 

electrostatic lenses toward the Paul trap biased at a voltage close to the kinetic energy of the ions, 

which is defined by the second pulsed voltage at the exit of the octopole. This ensures that limited 

collisions-induced fragmentation occur when the ions enter the trap. A mass gate placed at the 

entrance of the trap allows selecting the parent ion. The Paul trap is mounted on the cold head of a 

cryostat connected to a water-cooled He compressor. The temperature of the trap is monitored by 

temperature diode-sensors: a first one directly mounted on the cold head of the cryostat (Ta) and a 

second one (Tb) mounted on top of the copper box which houses the trap. Typical temperatures are 

Ta = 9 K and Tb = 12 K. Helium as buffer gas is injected in the trap using a pulsed valve (General 

Valve) triggered 1-2 ms before the ions enter the trap. The valve is opened for 150 µs and the 
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pressure in the vacuum chamber rises by 5-8 10-7 mbar. The ions are trapped and thermalized 

through collisions with buffer gas: the thermalization is reached after a trapping time of typically 3 

ms19. The photodissociation laser is triggered after 30 ms, and the parent and fragment ions are kept 

in the trap for 80 ms before extraction to the time-of-flight mass spectrometer. This delay ensures 

complete evacuation of the He buffer gas from the trap. In these conditions, no collision-induced 

fragmentation is observed when the ions are extracted and accelerated for analysis in the linear time 

of flight mass spectrometer of 1.0 m long. Photo-fragmentation spectra are obtained by recording 

the fragment ion signal on a microchannel plates (MCP) detector as a function of laser wavelength 

with a digitizing storage oscilloscope interfaced to a PC. 

The photo-dissociation laser is a dye laser (Quantel TDL 90), which has a resolution of ~0.2 

cm-1. For protonated phenylalanine, the UV radiation (254-267 nm) is produced by mixing the 

frequency-doubled output of the dye lasers with the fundamental radiation of the Nd:YAG pump 

laser (Quantel). For protonated tyrosine, the laser radiation is obtained by frequency doubling 

several dyes to cover the 275-285 nm region. All the recorded spectra have been obtained with 

energy from 10 to 100 µJ/pulse (2-3 mm2 collimated beam). For this typical energy of the laser, the 

fragmentation signal is on the order of 1-3% of the parent ion signal. The photo-fragmentation 

signal is normalized by the parent ion signal to account for the fluctuations of the electrospray ion 

source and corrected by the laser intensity. 

Computational methods 

Ab initio calculations have been performed with the TURBOMOLE program package 

(v6.2)40 making use of the resolution-of-the-identity (RI) approximation for the evaluation of the 

electron-repulsion integrals.41 The equilibrium geometries of protonated aromatic amino acids in 

their ground electronic (S0) and excited states (Sn=1-4) have been determined at the CC2 level. In 

construction of the reaction path for the proton transfer reaction from NH3
+ to the cycle, the 

coordinate-driven minimum-energy-path (MEP) approach was utilized, i.e. for a given N-H distance, 

all remaining intramolecular coordinates were optimized in the S1 state. Calculations were 

performed with the correlation-consistent polarized valence double-zeta aug-cc-pVDZ basis set 

augmented with diffuse functions.42 The vibrational modes of the ground and the first excited states 

have been calculated at the same level and the Franck-Condon analysis have been performed using 

PGOPHER software.43 The NBO analysis44 has been performed as implemented in the G09 

software.45 
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Results 

Protonated Phenylalanine  

The figure 1 shows the vibrationnally resolved ultraviolet photo-fragmentation spectra from the 

origin of the electronic transition located at 37520.9 cm-1 and up to 1800 cm-1 above in energy. This 

spectrum is similar to the one recorded in the group of T. Rizzo12 from the S1 origin band up to ~ 

800 cm-1 above in energy, in which two conformers A and B, which differ by a 2π/3 rotation around 

the Cα-Cβ bond, were assigned. The conformer with both carbonyl and protonated amino groups 

lying above the aromatic ring will be denoted stack (conformer B in ref 12), and the conformer 

obtained by a 2π/3 rotation along the Cα-Cβ bond, with only the protonated amino group lying 

above the ring, will be denoted rot (conformer A in ref 12). In our study, the mass resolution of the 

time-of-flight mass spectrometer allows to firmly assign the fragmentation channels and their 

branching ratio as a function of the excess energy in the S1 state. At low photon energies, only two 

photo-fragments at m/z 75 and m/z 92 are detected (see Supporting Information Figure SI1). These 

two fragments originate from the Cα-Cβ bond rupture after proton transfer to the aromatic ring, 

leading to the formation of the C6H6
+-CH2 radical cation that most probably rearranges into toluene 

ion (m/z 92) or the glycine ion (m/z 75) after back proton transfer to the amino acid fragment. The 

photo-fragmentation yield of m/z 75 fragment is greater than that of m/z 92 fragment by a factor of 

two in our experimental conditions.  

In this low energy region, an intense vibronic band at 531 cm-1 above the band origins assigned 

to the excitation of the 6b vibrational mode of benzene and its derivatives (in plane deformation of 

the benzene ring)46 is observed for the two conformers. From this excess energy above the origin 

transition, a new fragmentation channel at m/z 120 appears. This fragment results from the loss of 

CO + H2O, leading to the formation of the iminium ion of phenylalanine. The photofragmentation 

yield recorded on this fragment is null at the S1 origin, very weak for the 6b0
1 band, and increases 

continuously afterwards while the vibrational progression observed on the m/z 75 and m/z 92 

fragments disappears 630 cm-1 above the origin. It is noteworthy that the electronic spectrum of 

protonated phenylalanine still exhibits well-structured transitions more than 1500 cm-1 above the 

band origin. In particular, the same vibrational progression of low frequency modes observed from 

the origin and 6b0
1 bands shows up from the band at 38975 cm-1, i.e. 1454 cm-1 above the origin 

transition. This transition is assigned to the 6b0
1120

1 combination band based on the assignment of 

neutral47 and protonated22 phenylethylamine. Note that the relative intensity of the 6b0
1120

1 

combination band and the 6b0
1 band is greater for the rot conformer than for the stack conformer, at 

variance with what is observed at the band origin. The intensity of the origin transition assigned to 

the rot conformer is significantly smaller than the one of the stack structure with a ratio of 0.5 
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which rises to 2.6 and 3.4 for the 6b0
1 band and the 6b0

1120
1 combination band, respectively. In 

conclusion, the electronic spectrum recorded up to 1800 cm-1 above the origin band reveals the π* 

character of the first excited state of protonated phenylalanine. The most striking result is the drastic 

evolution of the branching ratio of the different fragmentation channels and the relative intensity of 

the transitions assigned to the rot and stack conformers with the excess energy in the ππ* state.  

 

37500 37750 38000 38250 38500 38750 39000 39250

0 250 500 750 1000 1250 1500 1750

Excess energy above band origin / cm-1

m/z 75

m/z 92 

m/z 120

 wavenumber / cm-1

 
Figure 1: Photo-fragmentation spectra of protonated phenylalanine recorded on the three main fragmentation channels 
(same y axis scale) over a large spectral range: at low energies the fragmentation results in m/z 75 and m/z 92 
following a proton transfer to the aromatic chromophore, while at higher energies these fragments disappear and m/z 
120 is the only fragment produced.  

 

Protonated Tyrosine  

The vibrationnally resolved electronic spectrum of protonated tyrosine up to 2000 cm-1 above 

the band origin is shown in figure 2. In the low frequency region, this spectrum is very similar to 

those obtained previously by Stearns et al.12 and more recently by Redwine et al.17 in a 22-pole trap.  

Four conformers have been previously assigned from IR/UV depletion spectroscopy,12 which differ 

from each other by a 2π/3 rotation around the Cα-Cβ bond (stack and rot as for phenylalanine) and 

the orientation of the hydroxyl group of the phenyl ring compared to the position of the protonated 
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amino group. To distinguish the orientation of the OH group, we introduce the anti and syn labels 

that correspond to the localization of the hydroxyl lone pair relative to the protonated ammonium 

group. Stack-syn, rot-syn, stack-anti and rot-anti conformers thus correspond to A, B, C and D 

conformers of reference 12, respectively.  

As for phenylalanine, the fragmentation channels drastically change as a function of the excess 

energy. At the band origin, the main fragmentation channel is m/z 108, assigned to the Cα-Cβ bond 

rupture after proton transfer from the ammonium group to the aromatic ring. This fragment is 

tenfold more intense than the other ones at m/z 147, m/z 136, m/z 123 and m/z 119. From 800 cm-1 

above the band origins of the four conformers, the sum of the fragmentation yields of the m/z 147, 

m/z 136, m/z 123 and m/z 119 becomes equal to the signal recorded on the m/z 108 fragment. 

Higher in energy, the fragmentation yield of the m/z 108 almost vanishes while the other fragments 

gain in intensity. Regardless of the number of conformers, the spectra recorded up to 2000 cm-1 

above the band origin are similar to that of the neutral species,3–5 indicating that the electronic 

transition has a ππ* character. For instance, the vibrational pattern located at +810 cm-1 arises from 

the ring “breathing” mode, or mode 1, according to Wilson notation. The transitions seen at 

+ 1600 cm-1 are assigned to the 10
2 band.  

35000 35250 35500 35750 36000 36250 36500 36750 37000

0 250 500 750 1000 1250 1500 1750 2000

Excess energy above band origin / cm-1

m/z 108

*20 m/z 136

 

m/z 147

 wavenumber / cm-1

 
Figure 2: Photo-fragmentation spectra of protonated tyrosine recorded on the three main fragmentation channels 
(same y axis scale) over a large spectral range: at low energies the fragmentation results mainly in m/z 108, while at 
higher energies the m/z 147 and m/z 136 fragments become as intense as the former one. The spectra recorded on m/z 
123 and m/z 119 fragments are not presented but they are similar to m/z 136 and m/z 147.The vertical dotted lines show 
positions of the origin and the first vibronic band at 43 cm-1 of the stack-syn conformer. 
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As previously reported by Stearns et al.12 and Redwine et al.17, we do observe a clear 

dependence of the fragmentation channel upon the probed conformer. Around the origin, the rot 

conformers are mostly detected at m/z 108, while the stack conformers are barely observed. This is 

the inverse when looking at the spectra of other fragmentation channels, i.e. the transitions assigned 

to the rot conformers are almost absent. Around the 10
1 band at +810 cm-1, the rot conformers are 

the only ones detected on the m/z 108 fragment, while all conformers exhibit vibronic transitions on 

the m/z 147, m/z 136, m/z 123 and m/z 119 fragmentation channels. From the 10
1 band, the absence 

of transition assigned to the stack conformations on the fragmentation channel related to the Cα-Cβ 

bond break (m/z 108) clearly reveals that this fragmentation channel is conformer-dependent, which 

suggests that the dynamics in the ππ* excited state has changed drastically. 

It should be noted that such a strong selectivity in the branching ratio of the fragmentation yield 

with the conformations of tyrosine is observed at low laser intensity. The photofragmentation yield 

follows a linear dependence as a function of the laser energy for low laser powers below 100 

µJ/pulse, while a two-photon absorption regime occurs above 100 µJ/pulse until saturation is 

reached from 200 µJ/pulse (Figure SI 3 of supplementary information). 

 

For both molecules, the width of the vibronic bands does not change in the entire spectral range, 

being in the order of 5 cm-1, while the change in the fragmentation channels as a function of the 

excitation energy is noteworthy. For PheH+, the closing of m/z 75 and m/z 92 channels is correlated 

to the opening of the m/z 120 fragmentation channel. For TyrH+, the m/z 108 channel has the 

highest relative photofragmentation yield but is in competition with other fragmentation channels. It 

is worth mentioning that the Cα-Cβ bond cleavage is a UV photo-specific fragmentation channel. 

The other fragmentation channels that appear with increasing excess energy in the first excited state 

are those which are detected in low-energy CID experiments.23 At low excess energy in the excited 

state, the Cα-Cβ bond cleavage is the dominant fragmentation channel (and even unique in PheH+). 

The same trends and competition have been observed in the UV photofragmentation of protonated 

phenylethylamine and tyramine.22 In these simpler protonated aromatic amines, this competition has 

been rationalized in the frame of the ππ* - πσ* model.48 Around the band origin, proton transfer 

from the amino group to the aromatic ring is the dominant process in the excited state leading to the 

Cα-Cβ bond cleavage. At higher excess energy in S1, the coupling of the ππ* state with the πσ* 

charge transfer state (σ* orbital located on the NH3
+ moiety) increases and opens or enhances other 

fragmentation channels. At even higher energies, the πσ* state is excited about 4000 cm-1 above the 

origin transition, leading to the formation of the radical cation after H loss from protonated 

tyramine.22 In the case of protonated tyrosine, the same trend is observed, with a broad structure 
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that appears about 6000 cm-1 above the band origin, which leads to the hydrogen loss channel 

(m/z=181), the radical cation m/z 181 further fragmenting to m/z=107.38 In the case of protonated 

phenylethylamine and phenylalanine, the direct excitation of the πσ* state is expected to lie higher 

in energy. For phenylethylamine, the loss of H atom is observed > 6000 cm-1 above the band 

origin,22 while for phenylalanine, this channel cannot be reached with the available laser (Figure SI 

2). As it will be detailed below, charge transfer states localized either on the ammonium or the 

carboxyl groups play a crucial role in the photodynamics of the protonated aromatic amino acids. 

Ab initio calculations 

Comparison between spectroscopic results and ab initio calculations 

General considerations: 

Well-resolved electronic photodissociation spectroscopy of protonated ions has made tremendous 

progress and it is thus worthwhile to compare with ab initio calculations, which can shed light on 

the excited state relaxation processes. We have reported in Figure 3 the excited state energies 

calculated at the CC2/aug-cc-pVDZ level along with the molecular orbital (MO) representations at 

the first excited state optimized structures of the rot and stack conformers of PheH+ and TyrH+, 

respectively. For sake of simplicity, we only present the results of the syn conformers of TyrH+.  

 
Figure 3: Excited state energies (CC2/aug-cc-pVDZ) along with the most contributing MO representation at the S1 
optimized structure for the rot and stack conformers of PheH+ and TyrH+ (syn orientation of the hydroxyl group).  
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The electronic excited states of PheH+ and TyrH+ molecules share many similarities. The 

first excited state S1 is noticeably separated from the higher excited states by roughly 1 eV. The 

electronic structure of S1 is mainly of ππ* character, corresponding to a pure πHOMO-π* transition 

(Lb state in the Platt’s nomenclature49) in TyrH+, while in PheH+, there is a mixing between the 

πHOMO-π* and πHOMO-1-π* transitions along with a contribution of the πCO* orbital. For both 

molecules, the optimized structure of the first excited state leads to a puckering of the aromatic ring 

and a lengthening of the N-H bond pointing to the ring. This is also reflected in the mixing of the 

ring π* orbital on the carbon atom facing the ammonium group with the 3p Rydberg34 orbital of the 

NH3 group. As it will be shown below, such structures can lead to the proton transfer reaction to the 

aromatic ring, as found in protonated tryptophan. 

 

The electronic structures of the higher excited states are clearly different from the S1 state 

and mostly involve diffuse electronic orbitals of σΝΗ3* and πCO* characters. Because of the dense 

manifold of excited states from S2, it is not straightforward to firmly assign the electronic structures 

of these higher excited states. However, these excited states have a charge transfer character in 

which an electron from the aromatic ring is transferred to either NH3
+ or CO groups. In the last part 

of this section, we will show that the structure optimizations of ππCO* states for both PheH+ and 

TyrH+ lead to proton transfer to the carboxylic group through a barrier, which is conformer-

dependent. 

 

ππ* state: Franck-Condon (FC) analysis and proton transfer to the aromatic ring 

FC analysis 

In Table 1, we have reported the calculated energy of the optimized structures of the ground 

and first excited states (at the CC2/aug-cc-pVDZ level) for the two conformers of PheH+ and the 

four conformers of TyrH+. The theoretical adiabatic 00
0 transition energy of all conformations has 

been calculated by taking into account the difference in zero point energy between the S0 and the S1 

states. All the calculated 00
0 transition energies are within ± 500 cm-1 of the experimental values. 

For PheH+, the experimental origin transitions of the two conformers are very close, separated by 

only 9 cm-1, while the calculations predict a 31 cm-1 shift but of opposite sign. In TyrH+, the gap 

between the experimental band origins of the four conformers is larger and the calculations predict 

the same energy ordering between the transitions of the different conformers as the experiment. The 

electronic spectra simulated for the four conformers of TyrH+ are plotted in Figure 4 and compared 

to the experimental spectrum recorded on m/z 108 in which all conformers are detected. All the 

calculated spectra are convoluted by a gaussian function of 3 cm-1 and the origin transitions 

calculated for each conformer are scaled to the experimental values, which allow predicting the first 
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vibronic bands observed experimentally. For all conformers, the active modes involve motions of 

the NH3
+ group, the aromatic ring, the carboxylic acid group and out-of-plane bending of C-H 

group of the cycle (see Fig. SI 4). 

 

Table 1: Energy (in cm-1) of the ground and first electronic states of the conformers of PheH+ and TyrH+ obtained by 

geometry optimization at the CC2/aug-cc-pVDZ level.  

Protonated amino acids S0 ππ* adia.a 00
0 calcb 00

0 expc Δexp / first 00
0(d) Δcalc(e)  

       

PheH+ stack  0 39 285 37 912 37 529 9 -31 

PheH+ rot  230 39 298 37 943 37 520 0 0 

       

TyrH+ stack syn  0 35 794 34 493 35 081 0 0 

TyrH+ stack anti  42 35 914 34 619 35 186 105 126 

TyrH+ rot syn  260 35 871 34 584 35 111 30 91 

TyrH+ rot anti  265 36 014 34 738 35 234 153 245 
(a)adiabatic 00

0 energies calculated without zero point energy correction  
(b)00

0 calc energies are obtained after frequency calculations with correction for the difference in zero point energy 
between the ground and excited states. 

(c)00
0 exp represent the experimental transition origins. 

(d)Δexp / first 00
0 represent the energy difference between the experimental transition origins, the reddest transition 

origin being the reference as in figure 1 and 2. 
(e)Δcalc represent the energy difference between the calculated transition origins referenced to the experimental 

reddest transition origin.  
 

For both molecules, intense vibronic bands are detected even at high excess energy above the 

origin transition. In PheH+, the 6b (calculated at 514 and 512 cm-1 for the rot and stack conformers,  

respectively) and the 12 modes (calculated at 948 cm-1) in combination with the 6b mode are 

observed along with the same progression of the low frequency modes built off of the origin 

transition. In TyrH+, the 1 mode (calculated at 812 and 804 cm-1 for the rot and stack (syn) 

conformers respectively) is observed along with the same low frequency vibrations as seen at the 

band origin. The 6b and 12 modes have weak Franck-Condon activities and do not show up in the 

simulated FC spectra. As already mentioned in previous studies on toluene,46 aromatic amino 

acids4,12 and protonated aromatic amines,22 the large intensity of these bands arises from vibronic 

coupling between ππ* excited states. In overall, the good agreement between the calculated band 

positions and the experimental transitions strongly supports that the electronic spectra of both 

molecules correspond to the ππ* transition up to 2000 cm-1 above the origin band. 
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Figure 1: comparison between the experimental (recorded on the m/z 108, lower trace) and the calculated spectra 
(color on line: blue, stack/syn; red, rot/syn; green, stack/anti; cyan, rot/anti) of the 4 conformers of TyrH+.  

 

Minimum energy path for proton transfer to the ring 

In a previous theoretical paper,34 we have shown that proton transfer from the ammonium to 

the aromatic ring in TrpH+ and TyrH+ is a very efficient deactivation channel. In TrpH+, geometry 

optimization of the first excited state S1 leads to a barrier-less proton transfer to the ring for all low 

lying conformers. These calculations agree with the very short excited state lifetime measured by 

pump-probe spectroscopy30 and corroborated by the UV photo-dissociation spectra recorded in the 

Rizzo’s group.11 In TyrH+, geometry optimization of the S1 excited state induces the puckering of 

the aromatic ring with a ring dihedral angle of roughly 13° and a lengthening of the N-H bond 

pointing to the ring to 1.065 Å. The minimum energy path (MEP) for the proton transfer to the ring 

in TyrH+ has already been calculated34 and exhibits a small energy barrier of 0.10 eV at the CC2 

level with a mixed basis sets (aug-cc-pVDZ for N and O atoms, SVP for C and H). We have 

performed new calculations with the aug-cc-pVDZ basis set for all atoms and found an energy 

barrier of 0.15 eV for the proton transfer to the ring for the stack and rot conformers of TyrH+ syn. 

For PheH+, geometry optimization of the first excited state also induces a slight increase of the NH 
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bond pointing to the ring and a puckering of the aromatic chromophore, but in a lesser extent than 

for TyrH+. The N-H bond increases to 1.049 Å (1.027 Å for the N-H bond not involved in H 

bonding) and the ring dihedral angle shifts to 9° instead of being planar  (see Figure SI 5). As for 

TyrH+, we have calculated the MEP for the proton transfer to the ring by minimizing the first 

excited state energy at given N-H bond lengths. For both rot and stack conformers, we found an 

energy barrier of 0.25 eV for the reaction, i.e. slightly larger than for Tyrosine. In Figure 5, we have 

plotted the MEP for proton transfer to the cycle as a function of the N-H bond length for the rot and 

stack conformers of TyrH+ and PheH+. At N-H distance of 1.5 Å, the N-H constraint is released and 

the free optimization of the S1 leads to the proton transferred species (N-H distance around 3.2 Å) in 

which the ground and excited states are very close in energy. The proton transfer reaction in S1 is 

exothermic by about 0.6 eV for TyrH+ and 0.5 eV for PheH+. 
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Figure 5: Minimum Energy Path (MEP) for the proton transfer reaction from the ammonium group to the aromatic ring 
for the stack (red line) and rot (black line) conformers of TyrH+ syn (left) and PheH+ (right). The last point at large N-
H distance corresponds to the excited state energy of the transferred structures. 

 

Cα-Cβ bond rupture after proton transfer to the ring: Natural Bond Orbitals (NBO) analysis 

We have performed a NBO analysis at the MP2/cc-pVDZ level for the rot and stack 

conformers of protonated tyrosine (syn) and protonated phenylalanine for the CC2/aug-cc-pVDZ 

optimized ππ* structures and proton transferred to the cycle species. This analysis is conducted in 

order to reveal the destabilization of the Cα-Cβ bond between the locally excited state structures 

(ππ* S1 state) and the structures where the proton has been transferred from the ammonium group 

to the aromatic cycle. The most important results are reported in Table SI1 (Supporting 

Information). It is noteworthy that the strength of the Cα-Cβ bond is greatly reduced in the proton 

transferred species independently of the molecules or the conformations. This is reflected by the 

increase of the bond length (0.03-0.04 Å) along with a drastic change in the electron density of the 
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Cα-Cβ bond. The occupation number of the Cα-Cβ bond drops by ~ 7 10-2 (atomic unit) in 

conjunction with the increase of its antibond of roughly 1.5 10-2 in TyrH+ and PheH+. These 

changes have a noticeably high value and are by far the largest ones observed in the NBO analysis 

of the four calculated molecules. The NBO analysis (see Supporting Information) clearly 

emphasizes that the Cα-Cβ bond is destabilized and explains why the protonated tyrosine and 

phenylalanine molecules dissociate through the Cα-Cβ bond break following the proton transfer 

reaction to the cycle. 

 

Structure optimization of the higher electronic states 

Starting from the optimized structure of the ππ* S1 state, we have optimized the structure of 

the ππCO* excited states for the rot and stack conformers of TyrH+ and PheH+. In both cases, we 

have followed the same procedure. A structure optimization is started on the electronic surface 

which has mainly a πCO* character. When a crossing with the lower electronic state is reached, the 

optimization is stopped and started again on the Sn-1 surface, until the last crossing with the S1 state 

occurs. At that point, structure optimization is performed on the S1 state, which has now acquired a 

ππCO* character, until the convergence criteria are fulfilled or until the crossing with the ground 

electronic state is reached. Within this procedure, we can estimate the height of the barrier from the 

ππ* to the ππCO* states, which are reported in Figure 6 for the stack and rot conformers of PheH+ 

and TyrH+, respectively. Practically, for the stack conformers, the optimization starts from the S2 

state, while for the rot conformer the optimization starts either from S3 or S4 states. 

For both molecules, structure optimization of the ππCO* state leads to a proton transfer 

reaction from the NH3
+ to the CO group. This excited state proton transfer reaction is exothermic by 

about 1 eV and leads to a conical intersection with the ground electronic state. In the course of the 

ππCO* state optimization, the locally excited ππ* state (S1 optimized structure) is destabilized, 

which leads to ππ*/ππCO* barrier height that is conformer-dependent. In these transition state 

structures, there is a concomitant breaking of the planar symmetry of the carboxylic acid group 

(dihedral angle OCOH of 5°) and a slight lengthening of 0.01 Å of the N-H bond pointing to CO, 

while the aromatic ring recovers planarity. For both molecules, the height of the barrier is in the 

order of 0.4-0.45 eV for the stack conformer and significantly larger (about 0.6-0.65 eV) for the rot 

structure.  
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Figure 6: Potential energy profiles of the S1 state for the proton transfer to CO reaction following the optimization of 
the ππCO* excited state for the stack and rot conformers of PheH+ (left) and TyrH+syn  (right). The starting point is the 
adiabatic energy of the ππ* state. The last point corresponds to the proton transferred species to the carboxylic group 
(structures represented at the bottom of the figures). For both molecules, the height of the barrier for the ππ*/ππCO* 
curve crossing is about 0.4 eV for the stack conformer and 0.6 eV for the rot structure. For each conformer, the most 
contributing molecular orbitals of the transition states are represented on the top of the figure.  

 

In the stack conformer, electron transfer from the aromatic ring to the CO group is reflected 

by the π*/πCO* orbital overlap. This electron transfer triggers the proton transfer reaction to the 

oxygen atom of the CO group. This mechanism can thus be viewed as an electron-driven proton-

transfer process. In the rot conformer, the carboxylic acid group is not lying above the UV 

chromophore and direct electron transfer is hampered. However, during the excited state 

optimization, a concomitant stabilization and mixing of the σNH3* and πCO* orbitals first occurs. 

This mixing is evidenced by the most contributing molecular orbitals at the transition state 

structures of the rot conformers of TyrH+ and PheH+ depicted in Figure 6. When this transient point 

is reached, the excited state optimization is performed on the S1 state and leads without barrier to 

the proton transfer reaction to the carbonyl with a pure πCO* orbital on the carboxylic acid group.  

Discussion  

The electronic spectroscopy in TyrH+ and PheH+ is very similar. In the low frequency region 

around the band origin, Franck-Condon analysis confirms that the vibronic progression seen on the 

electronic spectra is assigned to low vibrational modes of the first ππ* state of each conformer. The 

electronic spectra of these protonated molecules share many similarities with their neutral analogues, 

in particular, the large intensity of some modes induced by vibronic coupling with higher electronic 

excited states. Up to 2000 cm-1 above the band origin, the electronic spectra are thus firmly assigned 

to the excitation of the first ππ* state.  

The change in the fragmentation channels as a function of the excess energy in the ππ* state 

is the most striking result. At the band origin, the main fragmentation channel corresponds to m/z 
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108 for TyrH+ and m/z 92 and m/z 75 for PheH+. These fragments are produced through the Cα-Cβ 

bond cleavage following proton transfer to the aromatic ring. Proton transfer reaction from the 

ammonium to the ring is indeed confirmed by ab initio calculations. The optimized structures of the 

locally excited ππ* state show ring puckering and lengthening of the N-H bond pointing to the ring. 

MEP reveals that this reaction has a low energy barrier of 0.15 eV for protonated tyrosine and larger 

for protonated phenylalanine (0.25 eV) and is independent of their conformations.  

For PheH+, the m/z 75 fragment (glycine cation) is observed along with the m/z 92 fragment, 

and the former fragment is probably produced in the exit channel, via a back proton transfer when 

the two fragments separate. In TyrH+, only the m/z 108 fragment is detected. We tentatively 

rationalize this behavior by calculating, at the U-B3LYP/6-31+G* level of theory, the 

exothermicities of the Cα-Cβ bond cleavage reaction leading to the two final ionic products, i.e. with 

the proton located on the glycine part or on the ring as indicated in Figure 7. The initial excess 

energy is determined by the energy of the 00
0 transition of the two protonated amino acids. For both 

protonated species, the most stable ionic fragments are m/z 92 and m/z 108 that correspond to the 

methylated aromatic cationic form. For TyrH+, calculations show that the exothermicity for the exit 

channel m/z 75 is negligible (0.2 eV) if compared to the reaction leading to the m/z 108 fragment. 

For PheH+, the exit channel m/z 75 is open with the available energy in the system, which could 

explain the observation of both m/z 75 and m/z 92.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Calculated exothermicities (energies in eV) of Cα-Cβ bond cleavage reactions leading to the final ionic 
products in PheH+ and TyrH+. 
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The Cα-Cβ bond cleavage reaction is in competition with a second reaction leading to the 

detection of new ionic fragments related to the loss of neutral H2O + CO. This reaction seems to be 

correlated to the coupling of the locally excited ππ* state with higher excited states since it appears 

at higher excitation energy. Indeed, dynamics on the ππCO* state leads without barrier to proton 

transfer to the carbonyl group. The locally excited ππ* state is decaying through this channel via 

ππ*/ππCO* curve crossing, which is located higher in energy than the barrier for proton transfer to 

the aromatic ring. This process becomes the dominant deactivation channel from roughly 1000 cm-1 

above the transition origin. It is noteworthy that the two deactivation processes are not really in 

competition as soon as the ππCO* state is accessible. This can be explained by the nature of the 

driving force for the two proton transfer reactions. In the case of proton transfer to the ring, reaction 

involves also large atomic displacements such as ring puckering, while the electronic density stays 

localized on the aromatic ring. At the opposite, reaching the ππCO* state from the locally excited 

ππ* state implies an electron transfer from the ring to the carboxylic acid group, which drives very 

efficiently and without barrier the proton transfer from the ammonium. In the case of PheH+, the 

proton transfer reaction to the cycle (energy barrier of 0.25 eV) is no more competitive from 800 

cm-1 of excess energy in the ππ* state. Conversely, in TyrH+, the proton transfer reaction to the ring 

above 800 cm-1 is still feasible due to the lower energy barrier (0.15 eV) but is conformer-

dependent. 

 

 Ab initio calculations reveal that the height of the barrier between the ππ∗ locally excited 

state and the ππCO* state is conformer-dependent. Stack conformers, in which the carboxylic acid 

group lies above the aromatic ring, have lower energy barrier (0.4 eV) than the rot conformers 

(barrier of 0.6 eV). This is consistent with the high conformer selectivity experimentally observed 

in TyrH+ in which rot conformations have the most intense fragmentation yield at the origin 

transition and are still detected from 800 cm-1 of excess energy on the m/z 108 channel. This implies 

that the proton transfer reaction to the ring (barrier of 0.15 eV) for the rot conformers is in 

competition with the proton transfer reaction to the carbonyl (barrier of 0.6 eV). In contrast, the 

stack conformations are mostly detected on the m/z 147, m/z 136, m/z 123 and m/z 119 channels 

around the origin transition and exclusively from 800 cm-1 of excess energy. These fragmentation 

channels are thus assigned to the access and dynamics on the ππCO* state. 
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Figure 8: Schematic potential energy functions for the excited states of PheH+ or TyrH+ as a function of the proton 
transfer coordinate towards the aromatic ring (left), towards CO (middle), and versus the NHfree coordinate (right). The 
barrier heights are qualitatively indicated by blue arrows. They differ from one conformer to the other along the proton 
transfer to the CO. 

 

To sum up, the different photo-fragmentation channels can be inferred from the geometry of 

the protonated amino acids in their excited states. Indeed, one hydrogen atom of the protonated 

amino group is pointing toward the ring (inducing a strong puckering of the chromophore), another 

one to the carbonyl and the last one is “free”. Following excitation of the first electronic state (ππ*) 

and because of its coupling with other electronic states (ππCO* and πσ*), several proton transfer or 

bond dissociations can occur (Figure 8). Excitation of the ππ* state leads to the proton transfer to 

the aromatic ring and to Cα–Cβ bond cleavage. This channel is in competition with a second 

channel: the proton transfer from the NH3
+ to the carbonyl, which is due to a crossing between the 

ππ* state and the ππCO* giving the H2O+CO loss (m/z 136 and m/z 120 for TyrH+ and PheH+, 

respectively). The third channel (NH dissociation) has been observed at higher excitation energies 

for TyrH+.38   

 

The UV induced photo-fragmentation of the protonated amines22 and amino acids shows 

drastic competitions in the fragmentation channels as a function of the excess energy in the locally 

excited state. In both cases, the coupling of the ππ* state with charge transfer states plays a key role 

and triggers proton transfer reactions from the ammonium to different acceptor groups. In 

protonated amines, one hydrogen of the ammonium group is involved in a strong H-bond 
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interaction with the aromatic chromophore while in the protonated amino acids, the ammonium 

group faces both the aromatic ring and the carboxylic acid group, leading to a competition in the 

proton transfer reactions. In all cases, the electronic spectra are assigned to ππ* transition. In the 

low energy region, the main fragmentation channel corresponds to the Cα-Cβ bond cleavage 

following proton transfer to the ring. In the course of proton transfer reaction, the electronic density 

stays localized on the aromatic ring, with large nuclear displacements. The coupling between the 

locally excited state and charge transfer states increases with the excess energy and triggers the 

opening of new fragmentation channels. For protonated phenylethylamine and tyramine, the only 

charge transfer state present has a σ* electronic character in which an electron from the π* orbital 

on the aromatic ring is promoted to a σ* Rydberg like orbital localized on the NH3
+ group. The 

ππ*/ πσ* dynamic is responsible for the opening of the NH3 loss channel as the excess energy 

above the 00
0 transition increases. In the case of the protonated amino acids, two low-lying charge 

transfer states (ππCO* and πσ* states) can couple with the ππ∗ and it is not straightforward to reveal 

which of these states triggers the excited state dynamics leading to the opening of the new 

fragmentation channels. However, the fragmentation properties of the stack conformers are clearly 

different from the rot structures, which are supported by the theoretical calculations on the ππCO* 

excited state. The coupling between the locally excited state and charge transfer states depends on 

the overlap of the molecular orbitals. Irrespective of the conformers, the ammonium group lies 

above the aromatic ring which ensure a constant ππ*/πσ*coupling and no conformer selectivity. In 

contrast, the carboxylic group lies above the aromatic ring only for the stack conformers, which 

would explain the observed conformational selectivity. 

Conclusions 

These new spectroscopic experiments and calculations on protonated tyrosine and 

phenylalanine give clear evidence of the extreme dependence of the UV induced fragmentation 

channels upon the electronic nature of the electronic excited states. The vibrational analysis of the 

electronic spectra of both molecules shows that the locally excited state has a ππ* character up to 

2000 cm-1 above the band origin. At the band origin, the main fragmentation channel corresponds to 

the Cα-Cβ bond cleavage following proton transfer from the ammonium group to the aromatic ring. 

This fragmentation channel is specific to the electronic excitation in the S1 state and is not observed 

in the collision induced dissociation experiment. The calculated energy barrier for this reaction is in 

the order of 0.2 eV for both molecules. As the excess energy in the ππ* state increases, new 

fragmentation channels related to the loss of CO+H2O open and compete with the Cα-Cβ bond 

cleavage reaction. For both molecules, these new fragmentation channels are triggered by a 
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coupling of the locally excited state with the ππCO* state leading to a proton transfer from the 

ammonium to the carboxyl group. The charge transfer from the aromatic ring to the carboxylic acid 

group depends on the overlap of the corresponding orbitals and is thus conformer-dependent, as 

experimentally observed. The stack conformers, in which the carboxylic acid group lies above the 

aromatic ring, have a lower excited state energy barrier (about 0.4 eV) for the proton transfer 

reaction to the carbonyl than the rot conformations (about 0.6 eV). We are currently investigated 

the excited state lifetimes of the different conformers of these molecules as a function of the excess 

energy in the ππ* state through a pump/probe detection scheme at picosecond resolution in order to 

reveal the excited state dynamics and coupling in these protonated aromatic amino acids.  
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