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Abstract 
 

We are presenting the electronic photo fragment spectra of the protonated pyrimidine 
DNA bases homo-dimers. Only the thymine dimer exhibits a well structured vibrational 
progression, while protonated monomer shows broad vibrational bands. This shows that 
proton bonding can block some non radiative processes present in the monomer.  
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1. Introduction 
Since a few years the effect of the proton on the excited states properties of aromatic 

molecules as well as clusters has been investigated.1 Some general trends begin to appear.  

(i) For many protonated systems in which the proton is quite far from the aromatic ring 
(as in aromatic amines and amino acids), the effect of the proton is more important on the 
excited state lifetime than on the excited state energy of the system (e.g. the excited state 
lifetime of tryptophan is shortened from the ns to the fs regime2–4 upon protonation, while the 
excitation energy only changes by 0.1 eV). The short excited state lifetime in protonated 
tryptophan has been quite nicely explained by the excited state dynamics of the proton due to 
the presence of a dissociative πσ* leading to proton transfer or H loss.5  

(ii) For other aromatic molecules such as PAHs (polycyclic aromatic hydrocarbons), 
indole, benzaldehyde, in which the proton is added to one atom of the aromatic ring, the 
effect of the proton is particularly important on the excited state energy, inducing a strong 
red-shift in the electronic absorption as compared to the neutral molecules.6–9 This was 
explained by the presence of a charge transfer excited state (CT), in which an electron from 
the “neutral” moiety of the molecules is promoted to the protonated part of the system.10 The 
simplest example is the protonated benzene dimer for which the first electronic transition lies 
in the visible and corresponds to the excitation of an electron from the HOMO on the neutral 
benzene toward the LUMO on the protonated benzene moiety.11  

(iii) We have recently investigated the protonated DNA/RNA bases and found that the 
electronic transitions are not much shifted as compared to the transitions of their neutral 
homologues and that the excited state lifetimes are strongly dependant on the tautomeric 
structure.12 For example in protonated uracil, the electronic spectrum of the Enol-Keto† 
(EK+) tautomer exhibits very sharp vibrational structures while the bands are considerably 
lifetime broadened in the Enol-Enol (EE+) tautomer. Thus, some non-radiative processes are 
involved in the excited state dynamics of the protonated bases. As there are heteroatoms such 
as oxygen and nitrogen in DNA/RNA bases, relaxation mechanisms could include the 
proton/hydrogen loss or hindered loss, mediated by a πσ* dissociative state as in protonated 
aromatic amines (including amino acids).13–15 One way to explore the importance of such a 
process is to block the H dynamics in a complex as in the case of protonated tryptophan for 
which the excited lifetime is considerably longer when the H loss mechanism is blocked by a 
water molecule.3 Thus if a longer lifetime is observed in the homo-dimers of DNA bases, it 
can be the sign of the importance of the H atom dynamics and this is one of the goal of the 
paper.  

The characterization of the most stable protonated conformer/tautomer is usually 
obtained through combination of infrared spectroscopy and ab-initio calculations.16–25 We 
have shown that electronic spectroscopy can be also used as a fingerprint to differentiate 
isomers and assign the most stable structures in the assumption that the thermal equilibrium is 
obtained in an ion trap, and that the oscillator strength, the Franck Condon factors and the 
fragmentation yield are known.9,12,26 

In addition to the canonical Watson-Crick pairs, DNA base pairs can form non-
canonical pairs27 for which special hydrogen bonds are found, such as 
Cytosine···H+···Cytosine (C2H

+)28 formed in DNA at acidic pH values. In this C2H
+ base pair, 

two Cytosine residues of two parallel strands share a single proton on the nitrogen atoms in 
the 3-position. The study of isolated protonated base pairs will allow determining their 
absorption spectra that may be used to identify the non-canonical structures.  



 We present new experimental results on the protonated homo-dimers of pyrimidine 
DNA/RNA bases (cytosine, thymine and uracil) in gas phase. It should be mentioned that 
these spectra have never been recorded before. The goal of this work is to address the 
following questions: 

i. Are the dimer electronic absorptions drastically different from the monomer 
absorptions as in the case of protonated benzene dimer compared to protonated 
benzene?11 i.e. can the electronic spectroscopy be used to monitor the formation 
of protonated dimers? 

ii.  Is there a strong change in the excited state lifetime between the protonated 
monomers and dimers (monitored through spectral lifetime broadening)? 

iii.  Can the electronic spectra of the homo-dimers be assigned to specific 
tautomers? 

2. Methods 
2.a. Experimental  
The setup has been described previously.9,15 The electronic spectra of the homo-dimers 

of the protonated DNA/RNA bases were obtained via parent ion photo-fragmentation 
spectroscopy in a cryogenically-cooled quadrupole ion trap (Paul Trap from Jordan TOF 
Products, Inc.). The setup is similar to the one developed in several groups based on the 
original design by Wang and Wang.29,30 The protonated ions are produced in an electrospray 
ionization source built at Aarhus University.31 At the exit of the capillary, ions are trapped in 
an octopole trap for 90 ms. They are extracted by applying a negative pulse of c.a. 50 V and 
are further accelerated to 190 V by a second pulsed voltage just after the exit electrode. This 
time sequence of pulsed voltages produces ion packets with duration between 500 ns and 1 
µs. The ions are driven by a couple of electrostatic lenses toward the Paul trap biased at 
190 V so that the ions enter the trap gently avoiding fragmentation induced by collisions. A 
mass gate placed at the entrance of the trap allows selecting the parent ion. The Paul trap is 
mounted on the cold head of a cryostat (Coolpak Oerlikon) connected to a water-cooled He 
compressor. Helium as buffer gas is injected in the trap using a pulsed valve (General Valve) 
triggered 1 ms before the ions enter the trap as previously reported by Kamrath et al.32 The 
ions are trapped and thermalized at a temperature between 20 and 50 K through collisions 
with the cold buffer gas. The ions are kept in the trap for several tens of ms before the 
photodissociation laser is triggered. This delay is necessary to ensure thermalization of ions 
and efficient pumping of the He buffer gas from the trap to avoid collision induced 
dissociation of the ions during the extraction towards the 1.5 m long time-of-flight mass 
spectrometer. After laser excitation, the ions are stored in the trap for a delay that can be 
varied between 20 and 90 ms before extraction to the TOF mass spectrometer. Full mass 
spectrum is recorded on a micro channel plates (MCP) detector with a digitizing storage 
oscilloscope interfaced to a PC. The photofragmentation yield detected on each fragment is 
normalized to the parent ion signal and the laser power. We can also detect the neutral 
fragments produced by photodissociation of the parent ions in the TOF, which allows to 
perform UV-UV hole burning experiment.26 

The photo-dissociation laser is an OPO laser from EKSPLA, which has a 10 Hz 
repetition rate, 10 ns pulse width, a resolution of 10 cm-1 and a scanning step of  0.02 nm. 
The laser is shaped to a 1 mm2 spot to fit the entrance hole of the trap and the laser power is 
around 20 mW in the UV spectral region.  



2.b. Calculations  
Ab initio calculations have been performed with the TURBOMOLE program package,33 

making use of the resolution-of-the-identity (RI) approximation for the evaluation of the 
electron-repulsion integrals.34 The equilibrium geometry of the protonated species in their 
ground states (S0) have been determined at the MP2 (Møller-Plesset second order 
perturbation theory) level. Vertical excitation energies of the lowest excited singlet states 
have been determined at the RI-ADC(2)(second order Algebraic Diagrammatic Construction) 
level.35 Due to numerous conical intersections between the nπ∗ and ππ* states,36,37 the 
excited state optimization is not straightforward and failed in many systems as shown already 
for protonated adenine.38 Calculations were performed with the correlation-consistent 
polarized valence double-zeta (cc-pVDZ) basis set. 

 

3. Experimental Results 
All the dimers show a very broad absorption band in the UV starting around 33500 -  

35000 cm-1 and extending over about 9000 cm-1 (upper right parts of Figures 1, 2 and 3). For 
all of them, the protonated monomer is the only photofragment observed, which corresponds 
to breaking the weakest bond. Compared to the protonated monomers, the relative 
fragmentation yield is large and can reach 50%.  

a) Protonated cytosine dimer 
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Figure 1:  photo-fragmentation spectrum of the protonated cytosine dimer (cytosine)2H
+ compared to protonated cytosine 

monomer cytosineH+. Upper right: protonated cytosine dimer photo-fragmentation spectrum; lower right:  protonated 
cytosine monomer photo-fragmentation spectrum. The red band system is assigned to the K+ tautomer and the blue band 
system to the E+ tautomer. Left: enlarged view of the band origins; upper left: (cytosine)2H

+, middle left: E+ monomer (blue 
system), lower left: K+ monomer (red system). All the bands are intrinsically broad 

 

For the protonated cytosine monomer, two band systems have been observed, the red 
one (32900 cm-1) being assigned to the ππ* ← ππ transition of the Keto (K+) tautomer and 
the blue band (37305 cm-1) to the transition of the Enol (E+) tautomer.12 The spectrum of the 
protonated dimer of cytosine (Figure 1) consists of well defined vibronic bands starting with 
a 0-0 transition at 34850cm-1, between the origins of the two bands systems of protonated 
cytosine monomers. The vibrational progression is similar to the one observed in the 
protonated cytosine spectra, which indicates that the intramolecular vibrations are not heavily 



perturbed in the proton bond dimer. The bands are broad, which can be due to a short excited 
state lifetime or spectral congestion.  

b) Protonated thymine dimer 
The protonated thymine dimer exhibits a spectrum extending over more than 9000 cm-1 

(Figure 2 upper right) with  sharp vibrational transitions clearly observed at the origin of the 
transition (33625 cm-1, 4.17 eV) (upper left part of Figure 2). The origin of this progression is 
red-shifted by -3775 cm-1 from the origin of the transition of the protonated thymine 
monomer (Enol-Enol (EE+) tautomer at 37400 cm-1, 4.63 eV).12 The Enol-Keto (EK+) 
tautomer of the protonated thymine monomer has not been observed in our previous 
experiment but the origin of its electronic transition has been calculated to be around 
28600 cm-1.12 Thus, the electronic absorption of the protonated dimer lies between the 
transitions of the two tautomers of protonated thymine. In protonated thymine, the 0-0 
transition is quite broad, which has been assigned to a very short excited state lifetime,12 
whereas in the protonated dimer, the vibrational structure near the origin is well resolved with 
vibrational bandwidths of 10 cm-1, which is the spectral resolution of the laser. The contrast is 
quite astonishing, if one compares the spectrum of the protonated monomer in which the 
bands are quite broad (100 cm-1) to the spectrum of the protonated homo-dimer in which the 
bands are at least ten times narrower (left side of Figure 2) near the origin. There is no reason 
to have a simpler vibrational structure in the complex than in the monomer, so the proposition 
that the width of the bands in protonated thymine is due to lifetime broadening seems to be 
strengthened. In other words, the complexation seems to inhibit the non-radiative decay. 

 

 

Figure 2: Comparison between the photo-fragmentation spectra of protonated thymine dimer (thymine)2H
+ and protonated 

thymine monomer thymineH+. Upper right: protonated thymine dimer photo-fragmentation spectrum; lower left:  protonated 
thymine photo-fragmentation spectrum (only the EE+ structure has been observed); left: enlarged view of the band origins: 
Upper trace:  for the protonated thymine dimer, the vibrational bandwidths are laser limited, lower trace: at the same scale, 
the bands of the protonated monomer are considerably broader.  
 

 

The vibrational progression is not easy to assign due to the lack of resolution of the 
laser and the small vibrational frequency spacing (around 30 cm-1). From calculation of the 

34000 36000 38000 40000 42000

(thymine)
2
H+

34000 36000 38000 40000 42000

Energy (cm-1)

thymineH+

33500 34000 34500

(thymine)
2
H+

cm-1

37200 37400 37600 37800 38000 38200

thymineH+

cm-1



ground state frequencies of the protonated thymine dimer, these vibrational modes can be 
assigned to intermolecular out-of-plane vibrations, the in-plane intermolecular frequencies 
being in the order of 120 cm-1. These modes being active in the spectrum, the excited state 
should have a slightly non planar structure.   

c) Protonated uracil dimer 
In protonated uracil as in protonated cytosine (monomers), two electronic band systems 

have been observed,12 which have been assigned to transitions of  two tautomers, the EE+ and 
KE+, through calculations12 and UV-UV hole burning experiments.26 The red isomer assigned 
to the KE+ tautomer shows sharp vibrational bands whereas for the blue one (EE+ tautomer) 
the bands are much broader, which has been assigned to lifetime broadening. 

For the protonated uracil dimer (Figure 3), in contrast with the thymine case, the band 
contour in the vicinity of the 0-0 transition is very broad, as for the EE+ protonated monomer. 
The bandwidth can be due to spectral congestion or to lifetime broadening but it is not clear 
why there should be more spectral congestion in this system than in the protonated thymine 
dimer.  
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Figure 3:  Comparison between the photo-fragmentation spectra of protonated uracil dimer and protonated uracil 
monomer.  Upper right: protonated uracil dimer photo-fragmentation spectrum. Lower right:  protonated uracil photo-
fragmentation spectrum. The red part is assigned to the KE+ tautomer and the blue part to the EE+ tautomer. Left enlarged 
view of the origin region: upper panel:  protonated uracil dimer, middle panel: EE+ monomer, lower panel: KE+ monomer. 
The bands of the protonated dimer are broader than the bands of the KE+ uracil tautomer (red band system).  
 

4. Calculations and discussion 
 The most strongly bond dimers are those in which the number of hydrogen bonds is 

maximized. The ground states of π-bonded conformers have been calculated to be at least 1 
eV higher in energy than that of σ-bonded conformers. For the protonated cytosine dimer, 



only one isomer allows three hydrogen bonds but for thymine and uracil a few isomeric 
structures can be obtained. In 
excited states energy (S1, S2 and the charge transfer 
vertical values and the experimental measurement and the adiabatic S
calculated in Cs symmetry. 

 
Table 1: Calculations of the ground an
All the energies are in eV. 
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(a) the ground state energies are calculated at the MP2/cc-pVDZ level 
(b) the excited states are calculated at the ADC(2)/cc-pVDZ level 
(c) difference between the experimental band origin (exp) and the S1 calculated vertical energy (cal) 
(d) CT means charge transfer state 
(e) opt a’ means adiabatic S1 transition energies calculated in Cs symmetry   
(f) the structure is the same as calculated in references[39,40]   
(g) trans and cis isomers refers to the relative orientation of the nitrogen atoms, where the glycosidic bond takes place in 
nucleosides, of one moiety with respect to the other moiety.    
(h) PT means that the initial trans EK+…KE structure converges in the ground state to the trans EE+...KK isomer, i.e. there 
is a proton transfer  
(i) PT means that the initial EE+…KK  structure converges in the excited state to the lowest excited state of the EK+...EK 
isomer, i.e. there is a proton transfer. 

 

a) Ground state structure 

One expects that the homo-dimer is built in bringing together the most stable 
tautomeric structures of both the neutral and the protonated monomers. For example, in the 
case of the protonated uracil monomer, the most stable structure is the EE+ isomer, which lies 
0.08 eV below the KE+ isomer,12,16,41 while for neutral uracil, the Keto-Keto (KK) form is the 
most stable one, lying 0.5 eV lower in energy than the Enol-Keto (EK) tautomer. When the 
two species are separated, the protonated EE+ plus neutral KK system has an energy 0.6 eV 
lower than the protonated KE+ plus neutral EK system (Figure 4). But the KE+….EK dimer is 
calculated to be the most stable structure (Figure 4) and has a calculated electronic transition 
that corresponds to the experimental observation (Table 1). The same observation is also 
valid for the protonated thymine dimer. The stronger stability of the KE+….EK structure can 
be seen as a nice example of the H bond resonance effect.42,43 This shows also that the most 
stable structure of the dimer cannot be simply deduced from the monomer stability as shown 
also in neutral systems.44,45  
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Figure 4: schematic of the dissociation potential curve for the protonated uracil dimer. At long distance the EE+…KK 
structure is by far the most stable one but at the equilibrium geometry the KE+…EK is the most stable.  

 

For uracil, in the ground state of the trans KE+….EK structure, calculations at the MP2 
level localize the proton on one side (NH distance=1.07 Å). The transition state for which the 
H atom is at equal distance between the two Nitrogen (NH=1.36 Å in C2v symmetry) is 
higher in energy by 2150 cm-1, which is slightly more than the zero point energy of the NH 
vibration. Thus the proton is probably tunneling from one position to the other, i.e. the 
protonated dimer in the ground state has a Zundel type structure. 

The  KE+….EK and EE+…KK structures can also interconvert by proton transfer from 
one oxygen on the protonated KE+ moiety that becomes the KK tautomer, to one oxygen 
atom of the neutral EK part that becomes protonated EE+ isomer. The barrier for this PT in 
the ground state is calculated between 700 cm-1 (minimum energy path at the DFT level) and 
4000 cm-1 (non relaxed O-H distance scan at the MP2 level ) (Figure 5). The barrier is 
probably not high enough to localize the proton on one isomer or the other. Thus, the notion 
of specific isomer has no real meaning, as already discussed by other authors.46 

The case of protonated thymine and cytosine dimers should be quite similar, only small 
variations of the barrier heights are expected.    

 

b) Assignment of the electronic transitions 

As for the protonated monomers, the assignment of the isomers can be obtained from 
the ground state energy and the excited state vertical transition.12 Due to the low temperature 
of the trap, only the lowest energy isomers (less than 0.1 eV above the most stable one) are 
considered for excited state calculations. In many aromatic molecules, the excited state 
vertical energies are consistently calculated ~ 0.5 eV higher in energy than the experimental 
ones, this effect being due to the variation of the energy upon the excited state 



optimization.7,8,10,12,47 This is what we also found in this work for the lowest energy isomers 
of the homo-dimers (Table 1). In the protonated uracil dimer, the EE+…KK isomer, which is 
only 0.07 eV higher in energy than the KE+….EK isomer in the ground state, cannot be 
responsible for the absorption at 4.32 eV since it has a vertical excitation energy at 5.3 eV, 
which would correspond to an adiabatic S1 ← S0 transition at 4.8 ± 0.2 eV, rather far from the 
observed experimental band origin. This isomer may be present but hidden in the broad 
continuous absorption at higher energy.  

In most of the monomers of DNA bases (neutral or protonated), the excited state 
optimizations are not possible due to the out-of-plane deformation of the ring, which leads to 
many conical intersections where the calculation fails.36,38 For the protonated dimers, the 
ground state structures are planar and for the most stable structures of Table 1, excited state 
optimizations have been performed with a Cs geometry constraint. The Cs adiabatic energies 
(last column in Table 1) are very close to the experimental values indicating that the excited 
states are indeed planar or just slightly out-of-plane distorted. 

c) Electronic transition for the different tautomers of the homo-dimers 
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Figure 5: scheme of the potential energy function along the OH..O coordinate in the protonated uracil dimer. The blue 
horizontal lines indicate v=0 level, which is near the barrier in the ground state, indicating that both tautomers cannot be 
discriminated. In the excited state one tautomer has a quite significantly lower energy than the other. Excitation at the origin 
of the S1←S0 transition localizes the proton in only one tautomeric form. 

 

For the protonated monomers, both E+ and K+ tautomers of cytosine or KE+ and EE+ 
tautomers of uracil have been experimentally observed or calculated for thymine.12 The 
protonated K+ or KE+ forms, when observed, have an excited state band origin red shifted by 
0.5 to 1 eV as compared to the EE+ forms. The Cs excited state optimization of the first ππ* 
(A’ in Cs geometry) of the EE+….KK isomer leads to the KE+….EK isomeric structure 
without barrier on the PT reaction path (Table 1). The potential curves along the O-H…O 
coordinate are schematically presented in Figure 5. The difference in the vertical transition 
energies between both species is around 1 eV, thus, the eventual barrier vanishes in the 



excited state. Excitation of the system starting from the EE+…KK structure will reach a high 
energy part of the potential where the density of states is high and the FC factors will be 
weak. Thus this absorption will be buried in the continuum observed at high energy and only 
the isomer with the lowest electronic transition can be detected clearly.  

It should be noted that although in the ground state the vibrational wavefunction is not 
localized specifically on one of the tautomers, the excitation at the origin of the S1←S0 
transition localizes the proton in only one tautomeric form since the excitation energies and 
Franck Condon factors are quite different for both isomers. Therefore, although the proton is 
delocalized in the ground state and the notion of specific isomer is meaningless in this state, it 
is justified in the excited state and from a theoretical point of view, it is the only way to get 
electronic properties. 

d) Nature of the excited state 

For most of the dimers (in particular the most stable ones), the first excited state is a 
transition localized on the protonated entity and corresponding to a ππ* excitation. The 
second excited state corresponds to an electronic transition on the neutral species. In a 
previous study on the electronic absorption of protonated benzene dimer, the first electronic 
transition was due to a charge transfer transition from the HOMO on the neutral part to the 
LUMO on the protonated ion.11 This was giving rise to an absorption strongly shifted to the 
low energy region i.e. in the visible. A first electronic transition with a strong CT character 
leading to a red shifted absorption was also observed for protonated polycyclic aromatic 
molecules.10 In the protonated pyrimidine base dimers, the CT transitions (nπ* and πσ* 
states) are at the best, the third electronic transition, 1 eV higher than the locally excited ππ* 
transitions. In the protonated benzene dimer, the charge is clearly localized on the protonated 
species (100%) whereas in the protonated pyrimidine base homo-dimers the charge is 
delocalized at 20% on the neutral part of the systems in the ground state. 
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Figure 6 : Experimental energies of the electronic transitions for the different tautomeric structures of the protonated 
monomers (in black) and electronic transitions of the protonated homo-dimers (in red). For protonated thymine the value of 
the EK+ transition (dotted line) is not observed but calculated. 

 

 The 0-0 transition energies of the protonated homo-dimers are in between the transition 
energies of the E+ (or EE+) and K+ (or EK+) tautomers of the protonated monomers as seen in 
Figure 6, which could be due to the delocalization of the proton between the two moieties of 
the dimers (Figs. 4 and 5).  

e) Line broadening and excited state lifetime 

 The variation of the vibrational bandwidths has already been observed in the 
protonated DNA/RNA bases.12 As an example in the protonated uracil monomer, the KE+ 
structure presents narrow vibrational bands (12 cm-1 FWHM) whereas the EE+ structure 
exhibits very broad bands (100 cm-1 FWHM). 

  In the protonated thymine dimer, a vibrational progression in a low frequency mode 
(33 cm-1) is clearly observed, whereas in the protonated monomer, the bands have a FWHM 
of (91±20) cm-1. The broadening in the protonated monomer can be due to a short excited 
state lifetime or to spectral congestion with low frequency mode separated by less than the 
experimental resolution i.e. 10 cm-1. This second possibility is very unlikely since such low 
frequency modes are only expected for very floppy molecules and should be also present in 
the dimer. Thus it is reasonable to assume that the broadening in the protonated monomer is 
due to the excited state lifetime, which implies that the excited state lifetime of the protonated 
thymine dimer is longer than that of the monomer. The reason for a shorter lifetime in the 
protonated monomer than in the dimer is not clear.  

One possibility to explain the lifetime difference is that we are not comparing the 
same conformers in the monomer and in the dimer. In the protonated dimer, the protonated 
part is of the EK+ form whereas the conformer observed for the protonated monomer is the 
EE+ form. Unfortunately, the EK+ protonated monomer has not been observed in the trap and 



direct comparison cannot be done. This would imply that the EK+ monomer has a long 
lifetime as in the protonated uracil monomer.  

 

Another  possibility could be that in the monomer the short lifetime is controlled by the 
H loss mechanism mediated by a πσ* NH/OH dissociative state as in many protonated 
aromatic molecules (tryptophan, aromatic amines…)15,48 or neutral systems (phenol, 
indole…).49 In these systems the complexation with a molecule preventing the direct H loss 
increases considerably the excited lifetime.3,49 However, the signature of this mechanism in 
the protonated monomer would be the H loss channel, which has not been observed 
experimentally. One explanation could be the coupling of the πσ* state with the ground state, 
leading to internal conversion.15  

For the other two dimers, the vibronic bands are broad, either the lifetime is short or the 
spectral congestion is more severe than in the protonated thymine dimer. Laser spectroscopy 
with higher resolution or pump-probe fs experiments are needed to solve this issue. A 
comparison with neutral systems would be interesting but such data for pyrimidine bases 
seems to be still missing.50,51  

If we assume that the bandwidths in the protonated uracil dimer spectrum are due to 
short lifetimes, one could wonder why the lifetimes of thymine and uracil dimers are so 
different? We searched for some explanation in the nature of the orbitals, and in the energy of 
the nπ* as compared to the ππ* but we found no obvious explanation. Maybe the difference 
of lifetime is not as large as it seems: the lifetime for the protonated thymine dimer is at least 
1 ps (this is the lower limit to observe resolved spectra) and for the protonated uracil dimer 
the lifetime is of the order of 200 fs. This decrease of lifetime by a factor of ~5 from the 
protonated thymine dimer to the protonated uracil dimer would be enough to wipe out the 
vibrational structure due to very low frequency. A very small change in the potential energy 
surface (position of the conical intersection, coupling elements) would be sufficient to 
explain the observed experimental behavior. 

 

Conclusions 
We have presented the electronic photo-fragmentation spectra of the protonated 

pyrimidines DNA/RNA homo-dimers. The absorption of the first exited state is relatively 
structured indicating that the lifetime of the excited states is longer than a few hundreds of 
femtoseconds, and even longer for the protonated thymine dimer. The case of the protonated 
thymine dimer is surprising since sharp vibrational bands are observed. The electronic 
absorptions of the dimers lie between the absorptions of the different tautomers of the 
protonated monomer (E+/EE+ and K+/KE+) and calculations show that the transition 
corresponds to a localized excitation on the protonated part. The electronic shift of the bands 
of the dimers with respect to that of the monomers is larger than 0.2 eV which means that the 
electronic absorption might be used for monitoring the formation of dimers in condensed 
medium.  

The calculations show that several tautomers of dimers exist in the ground state, 
probably due to the hydrogen bond resonance effect.  

 



Acknowledgements 
This works was supported by ECOS-MinCyT cooperation program (A11E02) the ANR 

Research Grant (ANR2010BLANC040501), FONCyT, CONICET and SeCyT-UNC. We 
acknowledge the use of the computing facility cluster GMPCS of the LUMAT federation (FR 
LUMAT 2764). 

 

References 

† In all the manuscript, we use the notation E+ or K+ for the protonated cytosine 
monomer to indicate that the proton is on the oxygen or on the nitrogen (N3), respectively. 
For protonated thymine and uracil monomers, we use the notation EE+ to indicate that the 
hydrogen and proton are on the two oxygen atoms and EK+ when the hydrogen and proton 
are on one oxygen and on nitrogen (N3) atoms. 

We represent the dimers with the protonated moiety on the left. We use the notation 
EE+…KK or KE+…EK for the protonated thymine and uracil homo-dimers to indicate the 
hydrogen and proton positions on the protonated moiety…the hydrogen position on the 
neutral moiety. 

 

(1)  Nielsen Brondsted, S. Photophysics of Ionic Biochromophores; Brøndsted Nielsen, S.; 
Wyer, J. A., Eds.; Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, 2013. 

(2)  Boyarkin, O. V; Mercier, S. R.; Kamariotis, A.; Rizzo, T. R. Electronic Spectroscopy 
of Cold Protonated Tryptophan and Tyrosine. J. Am. Chem. Soc. 2006, 128, 2816–
2817. 

(3)  Mercier, S. R.; Boyarkin, O. V; Kamarioti, A.; Guglielmi, M.; Tavernelli, I.; Cascella, 
M.; Rothlisberger, U.; Rizzo, T. R. Microsolvation Effects on the Excited-state 
Dynamics of Protonated Tryptophan. J. Am. Chem. Soc. 2006, 128, 16938–16943. 

(4)  Kang, H.; Dedonder-Lardeux, C.; Jouvet, C.; Grégoire, G.; Desfrançois, C.; 
Schermann, J.-P.; Barat, M.; Fayeton, J. A. Control of Bond-cleaving Reactions of 
Free Protonated Tryptophan Ion by Femtosecond Laser Pulses. J. Phys. Chem. A 2005, 
109, 2417–2420. 

(5)  Grégoire, G.; Lucas, B.; Barat, M.; Fayeton, J. A.; Dedonder-Lardeux, C.; Jouvet, C. 
UV Photoinduced Dynamics in Protonated Aromatic Amino Acid. Eur. Phys. J. D 
2009, 51, 109–116. 

(6)  Patzer, A.; Zimmermann, M.; Alata, I.; Jouvet, C.; Dopfer, O. Electronic Spectra of 
Protonated Benzaldehyde Clusters with Ar and N2: Effect of ππ* Excitation on the 
Intermolecular Potential. J. Phys. Chem. A 2010, 114, 12600–4. 

(7)  Alata, I.; Omidyan, R.; Broquier, M.; Dedonder, C.; Dopfer, O.; Jouvet, C. Effect of 
Protonation on the Electronic Structure of Aromatic Molecules: NaphthaleneH(+). 
Phys. Chem. Chem. Phys. 2010, 12, 14456–14458. 



(8)  Alata, I.; Broquier, M.; Dedonder, C.; Jouvet, C.; Marceca, E. Electronic Excited 
States of Protonated Aromatic Molecules: Protonated Fluorene. Chem. Phys. 2012, 
393, 25–31. 

(9)  Alata, I.; Bert, J.; Broquier, M.; Dedonder, C.; Feraud, G.; Grégoire, G.; Soorkia, S.; 
Marceca, E.; Jouvet, C. Electronic Spectra of the Protonated Indole Chromophore in 
the Gas Phase. J. Phys. Chem. A 2013, 117, 4420–4427. 

(10)  Alata, I.; Dedonder-Lardeux, C.; Broquier, M.; Marceca, E.; Jouvet, C. Role of the 
Charge-Transfer State in the Electronic Absorption of Protonated Hydrocarbon 
Molecules. J. Am. Chem. Soc. 2010, 132, 17483–9. 

(11)  Chakraborty, S.; Alata, I.; Jouvet, C. Protonated Benzene Dimer: An Experimental and 
Ab Initio Study. J. Am. Chem. Soc. 2009, 131, 11091–11097. 

(12)  Berdakin, M.; Féraud, G.; Dedonder-Lardeux, C.; Jouvet, C.; Pino, G. A. Excited 
States of Protonated DNA/RNA Bases. Phys. Chem. Chem. Phys. 2014, 16, 10643–
10650. 

(13)  Lepere, V.; Lucas, B.; Barat, M.; Fayeton, J. A.; Picard, Y. J.; Jouvet, C.; C�arc�abal, 
P.; Nielsen, I. B.; Dedonder-Lardeux, C.; Grégoire, G.; Fujii, M. Characterization of 
Neutral Fragments Issued from the Photodissociation of Protonated Tryptophane. 
Phys. Chem. Chem. Phys. 2007, 9, 5330–5334. 

(14)  Kang, H.; Jouvet, C.; Dedonder-Lardeux, C.; Martrenchard, S.; Grégoire, G.; 
Desfrançois, C.; Schermann, J.-P.; Barat, M.; Fayeton, J. A. Ultrafast Deactivation 
Mechanisms of Protonated Aromatic Amino Acids Following UV Excitation. Phys. 
Chem. Chem. Phys. 2005, 7, 394–398. 

(15)  Féraud, G.; Broquier, M.; Dedonder-Lardeux, C.; Grégoire, G.; Soorkia, S.; Jouvet, C. 
Photofragmentation Spectroscopy of Cold Protonated Aromatic Amines in the Gas 
Phase. Phys. Chem. Chem. Phys. 2014, 16, 5250–5259. 

(16)  Salpin, J.-Y.; Guillaumont, S.; Tortajada, J.; MacAleese, L.; Lemaire, J.; Maitre, P. 
Infrared Spectra of Protonated Uracil, Thymine and Cytosine. Chem. Phys. Chem. 
2007, 8, 2235–44. 

(17)  Rajabi, K.; Theel, K.; Gillis, E. a L.; Beran, G.; Fridgen, T. D. The Structure of the 
Protonated Adenine Dimer by Infrared Multiple Photon Dissociation Spectroscopy and 
Electronic Structure Calculations. J. Phys. Chem. A 2009, 113, 8099–8107. 

(18)  Škríba, A.; Janková, Š.; Váňa, J.; Barták, P.; Bednář, P.; Fryčák, P.; Kučera, L.; Kurka, 
O.; Lemr, K.; Macíková, P.; Marková, E.; Nováková, P.; Papoušková, B.; Skopalová, 
J.; Švecová, H.; Roithová, J. Protonation Sites and Fragmentations of Para-
aminophenol. Int. J. Mass Spectrom. 2013, 337, 18–23. 

(19)  Bouchoux, G.; Salpin, J. Gas-phase Basicities of Polyfunctional Molecules. Part 2: 
Saturated Basic Sites. Mass Spectrom. Rev. 2012, 353–390. 



(20)  Dopfer, O. IR Spectroscopic Strategies for the Structural Characterization of Isolated 
and Microsolvated Arenium Ions. J. Phys. Org. Chem. 2006, 19, 540–551. 

(21)  Solcà, N.; Dopfer, O. Protonated Benzene: IR Spectrum and Structure of C(6)H(7)(+). 
Angew. Chem., Int. Ed. 2002, 41, 3628–31. 3517. 

(22)  Adesokan, A. a; Chaban, G. M.; Dopfer, O.; Gerber, R. B. Vibrational Spectroscopy of 
Protonated Imidazole and its Complexes with Water Molecules: Ab Initio Anharmonic 
Calculations and Experiments. J. Phys. Chem. A 2007, 111, 7374–81. 

(23)  Scuderi, D.; Lepere, V.; Piani, G.; Bouchet, A.; Zehnacker-Rentien, A. Structural 
Characterization of the UV-Induced Fragmentation Products in an Ion Trap by Infrared 
Multiple Photon Dissociation Spectroscopy. J. Phys. Chem. Lett. 2014, 5, 56–61. 

(24)  Duncan, M. A. Infrared Laser Spectroscopy of Mass-selected Carbocations. J. Phys. 
Chem. A 2012, 116, 11477. 

(25)  Berdakin, M.; Steinmetz, V.; Maitre, P.; Pino, G. A. Gas Phase Structure of Metal 
Mediated (Cytosine)2Ag(+) Mimics the Hemiprotonated (Cytosine)2H(+) Dimer in i-
Motif Folding. J. Phys. Chem. A 2014, 118, 3804–3809. 

(26)  Féraud, G.; Dedonder, C.; Jouvet, C.; Inokuchi, Y.; Haino, T.; Sekiya, R.; Ebata, T. 
Development of Ultraviolet − Ultraviolet Hole-Burning Spectroscopy for Cold Gas-
Phase Ions. J. Phys. Chem. Lett. 2014, 5, 1236–1240. 

(27)  Lieblein, A. L.; Krämer, M.; Dreuw, A.; Fürtig, B.; Schwalbe, H. The Nature of 
Hydrogen Bonds in Cytidine...H+...Cytidine DNA Base Pairs. Angew. Chemie 2012, 
51, 4067–4070. 

(28)  Gehring, K.; Leroy, J. L.; Gueron, M. A Tetrameric DNA Structure with Protonated 
Cytosine-Cytosine Base Pairs. Nature 1993, 363, 561 – 565. 

(29)  Wang, X. B.; Wang, L. S. Development Of A Low-Temperature Photoelectron 
Spectroscopy Instrument Using An Electrospray Ion Source And A Cryogenically 
Controlled Ion Trap. Rev. Sci. Instrum. 2008, 79, 073108–9. 

(30)  Kamrath, M. Z.; Relph, R. A.; Guasco, T. L.; Leavitt, C. M.; Johnson, M. A. 
Vibrational Predissociation Spectroscopy of the H2-Tagged Mono- and Dicarboxylate 
Anions of Dodecanedioic Acid. Int. J. Mass Spectrom. 2011, 300, 91–98. 

(31)  Andersen, L. H.; Lapierre, A.; Nielsen, S. B.; Nielsen, I. B.; Pedersen, S. U.; Pedersen, 
U. V; Tomita, S. Chromophores of the Green Fluorescent Protein Studied in the Gas 
Phase. Eur. Phys. J. D 2002, 20, 597–600. 

(32)  Kamrath, M. Z.; Garand, E.; Jordan, P. a; Leavitt, C. M.; Wolk, A. B.; Van Stipdonk, 
M. J.; Miller, S. J.; Johnson, M. a Vibrational Characterization of Simple Peptides 
Using Cryogenic Infrared Photodissociation of H2-tagged, Mass-selected Ions. J. Am. 
Chem. Soc. 2011, 133, 6440–8. 



(33)  Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic Structure 
Calculations on Workstation Computers: The Program System Turbomole. Chem. 
Phys. Lett. 1989, 162, 165–169. 

(34)  Hattig, C. Geometry Optimizations With the Coupled-cluster Model CC2 Using the 
Resolution Identity Approximation. J. Chem. Phys. 2003, 118, 7751–7761. 

(35)  Schirmer, J. Beyond the Random-phase Approximation: A New Approximation 
Scheme for the Polarization Propagator. Phys. Rev. A 1982, 26, 2395–2416. 

(36)  Delchev, V. B.; Sobolewski, A. L.; Domcke, W. Comparison Of The Non-Radiative 
Decay Mechanisms Of 4-Pyrimidinone And Uracil: An Ab Initio Study. Phys. Chem. 
2010, 12, 4897–8. 

(37)  Schermann, J.-P. Spectroscopy and Modelling of Biomolecular Building Blocks; 
Elsevier, Ed.; 2008. 

(38)  Marian, C.; Nolting, D.; Weinkauf, R. The Electronic Spectrum Of Protonated 
Adenine: Theory And Experiment. Phys. Chem. Chem. Phys. 2005, 7, 3306–3316. 

(39)  Yang, B.; Wu, R. R.; Berden, G.; Oomens, J.; Rodgers, M. T. Infrared Multiple Photon 
Dissociation Action Spectroscopy Of Proton-Bound Dimers Of Cytosine And 
Modified Cytosines: Effects Of Modifications On Gas-Phase Conformations. J. Phys. 
Chem. B 2013, 117, 14191–201. 

(40)  Yang, B.; Rodgers, M. T. Base-Pairing Energies Of Proton-Bound Heterodimers Of 
Cytosine And Modified Cytosines: Implications For The Stability Of DNA I-Motif 
Conformations. J. Am. Chem. Soc. 2014, 136, 282–90. 

(41)  Bakker, J. M.; Sinha, R. K.; Besson, T.; Brugnara, M.; Tosi, P.; Salpin, J.-Y.; Maître, 
P. Tautomerism of Uracil Probed via Infrared Spectroscopy of Singly Hydrated 
Protonated Uracil. J. Phys. Chem. A 2008, 112, 12393–12400. 

(42)  Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. The Nature of 
the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance 
Assistance. Chem. Eur. J. 1999, 5, 3581–3594. 

(43)  Góra, R. W.; Maj, M.; Grabowski, S. J. Resonance-Assisted Hydrogen Bonds 
Revisited. Resonance Stabilization Vs. Charge Delocalization. Phys. Chem. Chem. 
Phys. 2013, 15, 2514–22. 

(44)  Scuderi, D.; Le Barbu-Debus, K.; Zehnacker, A. The Role Of Weak Hydrogen Bonds 
In Chiral Recognition. Phys. Chem. Chem. Phys. 2011, 13, 17916–29. 

(45)  Le Barbu-Debus, K.; Broquier, M.; Mahjoub, A.; Zehnacker-Rentien, A. Chiral 
Recognition In Jet-Cooled Complexes Of (1R,2S)-(+)-Cis-1-Amino-2-Indanol And 
Methyl Lactate: On The Importance Of The CH--π Interaction. Phys. Chem. Chem. 
Phys. 2009, 11, 7589. 



(46)  Fridgen, T. D.; MacAleese, L.; Maitre, P.; McMahon, T. B.; Boissel, P.; Lemaire, J. 
Infrared Spectra Of Homogeneous And Heterogeneous Proton-Bound Dimers In The 
Gas Phase. Phys. Chem. Chem. Phys. 2005, 7, 2747–55. 

(47)  Pino, G. A.; Oldani, A. N.; Marceca, E.; Fujii, M.; Ishiuchi, S.; Miyazaki, M.; 
Broquier, M.; Dedonder, C.; Jouvet, C. Excited State Hydrogen Transfer Dynamics In 
Substituted Phenols And Their Complexes With Ammonia: ππ*-πσ* Energy Gap 
Propensity And Ortho-Substitution Effect. J. Chem. Phys. 2010, 133, 124313. 

(48)  Kang, H.; Dedonder-Lardeux, C.; Jouvet, C.; Martrenchard, S.; Grégoire, G.; 
Desfrançois, C.; Schermann, J.-P.; Barat, M.; Fayeton, J. A. Photo-Induced 
Dissociation Of Protonated Tryptophan Trph+: A Direct Dissociation Channel In The 
Excited States Controls The Hydrogen Atom Loss. Phys. Chem. Chem. Phys. 2004, 6, 
2628–2632. 

(49)  Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. Excited-State 
Hydrogen Detachment And Hydrogen Transfer Driven By Repulsive πσ* States: A 
New Paradigm For Nonradiative Decay In Aromatic Biomolecules. Phys. Chem. 
Chem. Phys. 2002, 4, 1093–1100. 

(50)  Saigusa, H. Excited-State Dynamics Of Isolated Nucleic Acid Bases And Their 
Clusters. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 197–210. 

(51)  Kleinermanns, K.; Nachtigallová, D.; de Vries, M. S. Excited State Dynamics Of DNA 
Bases. Int. Rev. Phys. Chem. 2013, 32, 308.  

 

  



 

O9….…H…….O´7

trans KE+…EK trans KK…EE+

O9
O’7 O9 O’7

S0

S1


