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Symbolic Modeling of Prosody:
From Linguistics to Statistics
Nicolas Obin, Member, IEEE, Pierre Lanchantin, Member, IEEE

Abstract—The assignment of prosodic events (accent and
phrasing) from the text is crucial in text-to-speech synthesis
systems. This paper addresses the combination of linguistic and
metric constraints for the assignment of prosodic events in text-
to-speech synthesis. First, a linguistic processing chain is used
to provide a rich linguistic description of a text. Then, a novel
statistical representation based on a hierarchical HMM (HHMM)
is used to model the prosodic structure of a text: the root
layer represents the text, each intermediate layer a sequence
of intermediate phrases, the pre-terminal layer the sequence of
accents, and the terminal layer the sequence of linguistic contexts.
For each intermediate layer, a segmental HMM and information
fusion are used to fuse the linguistic and metric constraints for
the segmentation of a text into phrases. A set of experiments
conducted on multi-speaker databases with various speaking
styles reports that: the rich linguistic representation improves
drastically the assignment of prosodic events, and the fusion
of linguistic and metric constraints significantly improves over
standard methods for the segmentation of a text into phrases.
These constitute substantial advances that can be further used
to model the speech prosody of a speaker, a speaking style, and
emotions for text-to-speech synthesis.

Index Terms: text-to-speech synthesis, speech prosody, speak-
ing style, prosodic events, surface/deep syntactic parsing, hi-
erarchical HMMs, segmental HMMs, Dempster-Shafer fusion.

I. INTRODUCTION

SPEECH PROSODY - “the music of speech” - denotes the
long-term variations of speech that convey a large variety

of information in a speech communication, from linguistic
(e.g., meaning) to para/extra-linguistic (e.g., intentions,
emotions, origins of a speaker). In particular, speech prosody
constitutes the vocal signature of a speaker - his speaking
style -, which contributes as a part of his identity. Modeling
and adapting the speaking style of a speaker is desired for
natural and expressive text-to-speech synthesis [1], [2]. The
description of speech prosody can be divided into symbolic
and acoustic characteristics: the symbolic representation
accounts for the identification of prosodic events (i.e., accent
and phrasing); the acoustic representation accounts for the
acoustic variations over speech units (i.e., F0 and durations).
A large number of methods have been proposed for the
statistical modeling of the symbolic [3]–[8] and acoustic
[8]–[12] characteristics of the speech prosody of a speaker,
and the modeling and adaptation of speaking styles and
emotions [13], [14].
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A text-to-speech synthesis system requires the symbolic and
acoustic representation of speech prosody. First, the position
of prosodic events (accent and phrasing) is assigned from
text analysis. Then, text information and prosodic events are
combined to determine the sequence of speech parameters
corresponding to the text. In this system, the symbolic mod-
eling of speech prosody is crucial: the intelligibility and the
naturalness of the synthesized speech is conditioned by the
correct assignment of accents and phrases (Figure 1).
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Table 3.4: Description of the IVTS transcription system with the tone inventory proposed for
French.
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global phonetic * *
local phonetic * * *
prominence % * P *

syllable Long- temps ## je me suis cou- ché de bonne heure ##

sentence Longtemps , je me suis couché de bonne heure .

Table 3.5: Illustration of the text-to-prosodic-structure conversion.
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Fig. 1. Symbolic description of speech prosody corresponding to the
utterance: “Longtemps, je me suis couché de bonne heure” (“For a long
time I used to go to bed early”) as read by a professional actor. On bottom:
segmentation into prosodic phrases (/ and // denote minor and major phrases,
respectively). On top: description of the corresponding prosodic contours.

Among the number of linguistic representations proposed
for the description of prosodic events, TOBI (American-
English [15]) is widely considered as a standard. However,
the representation may substantially differ from one language
to the other (i.e., numerous alternatives exist for French:
INTSINT [16], IVTS [17], and PROSOGRAM [18]). The
symbolic modeling of speech prosody ranges from expert
to statistical models - from formal rules derived from of
a small number of linguistic observations, to the modeling
of statistical regularities observed over large speech databases.

Research into linguistics generally assumes that a prosodic
structure results from the integration of various constraints: in
particular, LINGUISTIC and METRIC constraints ( [19]–[24]
for English; [18], [25]–[29] for French). A prosodic structure
is primarily produced to clarify the linguistic structure
of an utterance (linguistic constraint). Simultaneously,
secondary extra-linguistic constraints tend to produce an
optimal prosodic structure (e.g., metric constraint [25], [30]).
These constraints conflict in the production of a prosodic
structure, and secondary extra-linguistic constraints may
override the primary linguistic constraint. The linguistic
constraint mostly concerns the specification of prosodic
boundaries that correspond to syntactic boundaries - e.g.,
syntactic constituency ( [19], [20], [24], [29]), and syntactic
dependency ( [22], [26]). The metric constraint is considered
as a secondary term used to adjust the length of prosodic
phrases in the prosodic structure [20], [26], [29].
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The statistical modelling used for the assignment of
prosodic event from the text aims at deriving the prosodic
structure from the linguistic structure of a sentence. From
the text processing, surface syntactic parsing is currently a
standard (part-of-speech, punctuation markers). Alternatively,
recent advances tend to replace standard linguistic description
of a text (e.g., part-of-speech) by unsupervised statistical
words representation (e.g., Latent Semantic Analysis) [31],
[32]. From the statistical modeling, a large number of
methods have been proposed: from static representations
(decision-tree [33], [34]), to sequential (HMM, N-grams
[4]–[6], [35]), and hierarchical (hierarchical HMM [3])
representations. Also, some recent advances have introduced
explicit formulation for the integration of the metric constraint
into the statistical modeling for the segmentation of a text
into phrases (segmental models [7], [13], [36]). From this
point, current statistical methods used for the assignment of
prosodic events mainly suffer from the following limitations:
the statistical modeling is limited to the surface structure
and does not exploit the deep structure of the sentence; the
statistical modeling is generally focused on the linguistic
constraint only, and there is still a room for a proper fusion
of multiple constraints into the statistical modeling.

The main contribution of this paper is the integration of
linguistic and metric constraints into the statistical symbolic
modeling of speech prosody for text-to-speech synthesis. First,
the paper explores the role of the linguistic description for
the assignment of prosodic events. A linguistic processing
chain that is used to provide a rich syntactic description of
a text (surface and deep syntactic structure) is presented in
sections II. Then, a novel statistical representation based on a
hierarchical HMM (HHMM) is presented in section III. In
this representation, the root layer represents the text, each
intermediate layer a sequence of intermediate phrases, the
pre-terminal layer the sequence of accents, and the terminal
layer the sequence of linguistic contexts. For each intermediate
layer, a segmental HMM and information fusion are used to
fuse the linguistic and metric constraints for the segmentation
of a text into phrases. The roles of the linguistic description
and the combination of linguistic and metric constraints are
presented in section IV.

II. RICH LINGUISTIC DESCRIPTION

A. Surface and Deep Syntactic Parsing

This section presents the details of the automatic linguistic
processing chain used to provide a rich syntactic representation
of a text for the assignment of prosodic events. The main
contributions here are the description of the deep syntactic
structure of a text - in terms of constituency and dependency
structures -, and the identification of a variety of syntactic
constructions during the deep syntactic parsing (e.g., incises,
parentheses, subordinate clauses).

The ALPAGE linguistic processing chain1 is a full linguis-

1The ALPAGE linguistic processing chain is available at: http://alpage.
inria.fr/alpc.en.html

tic processing chain for French that is organized as a sequence
of processing modules:

� a lexer module (LEfff : a French morphological and syn-
tactic lexicon [37]; SXPIPE: a full linguistic pre-processing
chain for French [38]);

� a parse module (DYALOG: a parser compiler and logic
programming environment; FRMG: a FRench Meta Gram-
mar [39]),

The lexer module segments a raw text into sentences and
words [38], and processes surface parsing (morpho-syntactic
and syntactic) for each sentence [37]. Then, deep parsing is
processed to retrieve the syntactic structure of each sentence.
Deep parsing is performed by the FRMG parser, a symbolic
parser based on a compact TREE ADJOINING GRAMMAR
(TAG) for French that is automatically generated from a
META-GRAMMAR (MG) [39].

A Tree Adjoining Grammar [40] is a tree automaton com-
posed of a finite set of elementary trees and a set of operations
that are used to derive trees from elementary trees. Tree
Adjoining Grammar accounts for all of the linguistic structures
that can be derived from elementary trees by successive
applications of the operations that are included in the grammar.

Elementary trees are minimal linguistic structures (initial
trees and auxiliary trees). Initial trees are non-recursive
linguistic structures that contain the essential structure of
a sentence (e.g., phrasal structure), and auxiliary trees
are recursive linguistic structures that contain the non-
essential structures (e.g., adjective, adverb, clause) that
can be adjoined to the essential structure of a sentence.
Each elementary tree is associated with a lexical item
which constitutes the anchor of the elementary tree.

Operations of substitution and adjunction are used to derive
trees from elementary trees. The operation of substitution
is associated with initial trees, and used to insert a non-
recursive tree in a tree. The operation of adjunction
is associated with auxiliary trees, and used to insert a
recursive tree in a tree.

The FRMG parser provides a derivation tree that
represents the most-likely structure derived from the sentence,
and indicates all TAG operations (substitution, adjunction)
that were used during the derivation.

The deep parsing processed with the TAG formalism allows
the representation of a sentence in terms of constituency and
dependency structures [41], and the description of a large
variety of syntactic constructions through the adjunction
operation.

Constituency and dependency structures. Constituency
and dependency provide complementary representations
of a sentence: the constituent structure represents the
phrasal structure of a sentence (each constituent is a
group of words which forms a phrase - e.g., verbal
phrase, noun phrase), and the dependency structure
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Fig. 2. Derivation structure of the sentence: ”Longtemps, je me suis couché de bonne heure.” (”For a long time I used to go to bed early”). Arrows represent
the insertion of elementary trees, and bold font indicates the lexical anchor of each elementary tree.

represents the local relation that connect each word of a
sentence (each dependency connects a governor word to
a governee word). An example of a dependency structure
and a constituency structure are presented in Figure 2
and Figure 3.

Adjunctions. Substitution is mostly used to handle the es-
sential phrase structure of a sentence (e.g., subject, verb,
object). Adjunction is mostly used to handle non-essential
modifiers (adjective, adverb, clause). In consequence, ad-
junction can derive a large amount of syntactic structures:
from the adjunction of a single word (e.g., adjective,
adverb), to the adjunction of complete structures (e.g.,
clauses, embedded clauses). In particular, adjunction cov-
ers a variety of syntactic constructions (e.g., incises,
parentheses, subordinate clauses) that are possibly im-
portant for the modeling of speech prosody. An example
of adjunctions is presented in Figure 4.

B. Extraction of Rich Syntactic Features

This section presents a description of the syntactic features
extracted during the linguistic processing (surface and deep
parsing), and further used as context-dependent labels for
the assignment of prosodic events. The feature sets are
composed of the three main syntactic classes presented in
the previous section: morpho-syntactic (M), dependency (D),
and constituency (C). An additional feature set that covers
adjunctions (A) is additionally introduced.

1) Morpho-Syntactic: The morpho-syntactic features con-
stitute the standard surface syntactic information:

� the morpho-syntactic category (part-of-speech) of a word;

� the morpho-syntactic class (i.e., function/content) of a
word.

2) Dependency: The dependency structure is represented
by:

� the category and class of the governor and governees of a
word (as defined above);

� the edge type and label of the dependencies that connect a
word to its governor and governees (e.g., type: substitution,
adjunction; and label: anchoring of an adverb, a nominal
phrase, a parenthesis, a subordinate clause);

� the signed dependency distance between a word and
its governors and governees (measured in words and in
chunks).

3) Constituency: The constituent structure is first converted
into a sequence of chunks - defined as the terminal syntactic
constituents of the constituent tree [42] -, and then represented
by:

� the chunk category of each chunk (e.g., nominal phrase,
verbal phrase, adverbial phrase), and each governor / gov-
ernee chunk;

� the edge type and label of the dependencies that connect
a chunk to its governor and governees;

� the signed dependency distance between the chunk and
each governor / governee chunk (measured in words and in
chunks);

� the depth of a chunk in the constituent tree (defined as the
depth of the chunk node in the constituent tree, measured
from the root node - i.e., the sentence);

� the depth difference between the current chunk and the left
/ right chunks.
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AdvP

S
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Fig. 3. Constituent tree derived from the sentence: ”Longtemps, je me suis
couché de bonne heure.” (”For a long time I used to go to bed early”). S,
AdvP, VP and NP denote respectively sentence, adverbial, verbal, and nominal
phrases.

4) Adjunction: Finally, adjunctions are retrieved by
considering the complete descendency from the introducer
of the adjunction. The introducer serves to introduce the
syntactic construction that is adjuncted: introducers are
commonly relative pronouns (e.g., who, which, that),
subordinating conjunction (e.g., as, after/before, though,
because), coordinating conjunction (e.g., and, or), and can
be empty (e.g., for incises and parentheses). Adjunctions are
represented by:

� the category and class of the introducer of the adjunction
(e.g., relative pronoun, subordinating conjunction, coordi-
nating conjunction, empty), and its governor / governee
(e.g., noun, verb).

� the edge type and label that connect the introducer of
the adjunction to its governor and governee (e.g., incise,
parenthesis, subordinate clause, coordinate clause);

� the signed dependency distance between the introducer of
the adjunction and its governor (in words and in chunks).

AdvP VP NP

incise

VMod

Fig. 4. Dependency structure of the sentence: ”Longtemps, je me suis
couché de bonne heure.” (”For a long time I used to go to bed early”).
Arrows represent dependencies: grey arrows, substitutions; and black arrows,
adjunctions. Black arrows indicate the left adjunction of the adverbial phrase
(AdvP) “longtemps” (“For a long time”) as an incise to the verbal phrase
(VP) “je me suis couché” (“I used to go to bed”), and the right adjunction of
the nominal phrase (NP) “de bonne heure” (“I used to go to bed early”) as a
verb modifier to the verbal phrase (VP).

Here, the nature of the introducer, governor, and governee,
and their edge labels suffices to identity a large variety of
syntactic constructions (e.g., incises, parentheses, subordi-
nate clauses). For instance, a subordinating conjunction that
modifies a noun and introduces an adjunction labelled as a

subordinate clause instantiates a subordinate relative clause;
in the case the introducer modifies a verb, then the adjunction
instantiates a subordinate conjunctive clause.

III. INTEGRATION OF METRIC AND LINGUISTIC
CONSTRAINTS

In this section, a statistical method that combines linguistic
and metric constraints for the modeling of prosodic events is
introduced based on segmental HMMs and Dempster-Shafer
fusion. A hierarchical HMM (HHMM) is used to model a
sequence of prosodic events conditionally to the sequence of
observed linguistic contexts (section III-A), in which phras-
ing (segmentation into prosodic phrases) is represented by
a segmental HMM that accounts explicitly for the metric
constraint, and the sequence of prosodic events corresponding
to a prosodic phrase is represented by a standard HMM that
accounts for the linguistic constraint (section III-B). Then,
Dempster-Shafer fusion is used to combine the linguistic and
the metric constraints into the segmental HMM (section III-C).

A. Hierarchical HMMs

The assignment of prosodic events (accent and phrasing)
from the text can be formulated as a hierarchical processing:
first, the segmentation of a text into prosodic phrases
(phrasing); and second, the assignment of remaining prosodic
events (accent). The phrasing comprises a structure of
speech units which cover major phrases and a number
of intermediate phrases. For each major phrase and each
intermediate phrase, linguistic and metric constraints are
combined for the segmentation. Then, the remaining prosodic
events are conditioned by the linguistic constraint only.

A hierarchical HMM (HHMM) [43] is presented here
to model jointly the segmentation into prosodic phrases
and the sequence of prosodic events. Theoretically, the
HHMM can assume any number of intermediate layers to
represent additional intermediate phrases. For simplicity here,
a single layer is used for the segmentation into major phrases
(phrasing), and intermediate phrases are processed in the pre-
terminal layer with the remaining prosodic events (accent).
First, the text is converted into sequence of linguistic contexts.
The first layer of the HHMM represents the phrasing of a
speaker, the second layer represents the sequence of prosodic
events emitted by the major phrase, and the third layer
represents the observed sequence of linguistic contexts. For
the first layer, the joint process of the major phrases and the
prosodic events is modeled by a segmental HMM in order to
account explicitly for the contribution of the metric constraint
in the phrasing. For the second layer, the joint process of
the prosodic events and the linguistic contexts is modeled by
a HMM. An illustration of the HHHM is provided in Figure 5.

The remaining of the section details the use of the segmental
HMM for the integration of the metric constraint, and the
statistical fusion of the linguistic and the metric constraints
for the segmentation of a text into major phrases.
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B. Segmental HMMs
The segmental HMM is used to integrate the metric

constraint for the segmentation of a text into major phrases.
The main advantage of segmental HMMs [44], [45] (also
referred as Hidden Semi Markov Models - HSMM) over
hidden Markov models is the representation of a sequence of
states as a sequence of segments whose duration (respectively,
length) is explicitly modeled. In particular, segmental HMMs
can be exploited for the integration of the metric constraint:
major phrases are represented as segments whose statistical
distribution of length can be modeled straightforwardly.

A segmental hidden Markov model λ is defined in a similar
manner to the hidden Markov model with a reformulation of
the state sequence into a segment sequence with associated
segment duration distribution:

λ = (Π,A,B,D) (1)

where: Π, A, B denote the initial state probability, the
transition probability, and the observation probability
distributions, respectively; and D the segment duration
probability distribution.

Let cN1 = [c1, . . . , cN ] be the observed sequence of
N linguistic contexts, where cn = [cn(1), . . . , cn(C)]>

is the (Cx1) linguistic context vector that describes the
linguistic characteristics associated with the n-th syllable;
let lN1 = [l1, . . . , lN ] be the corresponding sequence of N
hidden prosodic events, where ln denotes the prosodic event
(accent and break) associated with the n-th syllable; let
sK1 = [s1, . . . , sK ] be the associated sequence of K major
phrases sk, and dK1 = [d1, . . . , dK ] be the corresponding
sequence of K hidden major phrase lengths, where dk
denotes the length of the k-th major phrase sk (here, counted
in syllables). Here, the linguistic contexts cn are observed,
the labels of the major phrases sk, the duration dk of the
major phrases, and the labels ln of the prosodic events
are hidden variables. Finally, the labels sk are fully known
since the layer of phrasing is only composed of major phrases.

A major phrase is defined as the segment left/right bounded
by major phrase breaks, so the correspondence of a major
phrase sk to the sequence of prosodic events can be written
as follows:

sk = [ lnk−1
nk−1+1 = b̄, lnk

= b ] (2)

where: [nk−1, nk] denotes the position of the left/right
major phrase breaks of the k-th major phrase with length
dk, and b and b̄ denote the presence/absence of a major
phrase break, respectively. In this representation, each
ln for n ∈ [nk−1 + 1 : nk − 1] can be any prosodic
event (accent, intermediate break) with the exception of a
major phrase break, and lnk

can only be a major phrase break.

The remaining of this section details the use of segmental
HMMs for the segmentation of a text into major phrases and
the complete assignment of the sequence of prosodic events.

1) Parameters Training: The model parameters are esti-
mated from annotated speech databases, in which all vari-
ables are observed. The linguistic model λ(linguistic) is a
context-dependent HMM model derived from decision-tree
based parameter clustering. First, linguistic contexts are
clustered so as to derive a context-dependent tree based
on maximum-likelihood minimum-description-length (ML-
MDL, [46]). Then, a context-dependent model λ(linguistic) =

(λ
(linguistic)
S1

, . . . , λ
(linguistic)
SM

) is constructed from the set of
terminal contexts S = (S1, . . . , SM ) of the context-dependent
tree. Here, the observation probabilities p(ln|cn) are deter-
mined from the context-dependent tree, and the stationary
distribution and transition probabilities {p(ln),p(ln|ln−1)} are
estimated from the number of occurrences in the speech
database. The segment duration model λ(metric) = {p(d)}Dd=1

is a normal distribution estimated from the length distribution
of major phrases in the speech database, where D corresponds
to the maximal length allowed (in syllables).

phrase
(intermediate
layer)

accent
(pre-terminal 
layer)

metric constraint

linguistic constraint

sentence
(root
layer)

linguistic context
(terminal 
layer)

Fig. 5. Schematic illustration of the HHMM for the assignment of prosodic
events.

2) Parameters Inference:

� Standard HMM

In the standard HMM, the random process of prosodic
events lN1 is a stationary Markov chain and the observed
linguistic contexts cN1 are conditionally independent on the
prosodic events lN1 , so that:

p(lN1 ) =

N∏
n=1

p(ln|ln−1) (3)

p(cN1 |lN1 ) =

N∏
n=1

p(cn|ln) = p(cN1 )

N∏
n=1

p(ln|cn)

p(ln)
(4)
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The optimal sequence of prosodic events l̂N1 is then determined
by maximising p(lN1 |cN1 ) as:

l̂N1 = argmax
lN1

p(lN1 |cN1 ) (5)

with:

p(lN1 |cN1 ) =
p(lN1 )p(cN1 |lN1 )

p(cN1 )
=

N∏
n=1

p(ln|ln−1)
p(ln|cn)

p(ln)
(6)

� Segmental HMM
In the proposed HHMM, the first layer of the HHMM

represents the phrasing of a speaker, the second layer
represents the sequence of prosodic events emitted by the
major phrase, and the third layer represents the observed
sequence of linguistic contexts. On the one hand, the joint
random process of the major phrases (sK1 ,d

K
1 ) and the

prosodic events lN1 is modeled by a segmental HMM. On the
other hand, the joint process of the prosodic events lN1 and
the linguistic contexts cN1 is modeled by a HMM.

The optimal segmentation into major phrases d̂K1 and the
sequence of prosodic events l̂N1 are jointly determined by
maximising p(lN1 ,d

K
1 |cN1 ) as:

̂(lN1 ,d
K
1 ) = argmax

lN1 ,d
K
1

p(lN1 ,d
K
1 |cN1 ) (7)

Durations dK1 being independent and identically distributed,
and assuming that the joint sequences {lNnk−1

, cNnk−1
}Kk=1 are

independent conditionally on dK1 , its distribution is given by:

p(lN1 ,d
K
1 |cN1 ) =

K∏
k=1

pl(k)︸ ︷︷ ︸
linguistic

constraint

× pm(k)︸ ︷︷ ︸
metric

constraint

(8)

where:

pl(k) = p(lnk
nk−1+1|cnk

nk−1+1) (9)

=

nk∏
n=nk−1+1

p(ln|ln−1)
p(ln|cn)

p(ln)
(10)

pm(k) = p(dk) (11)

The notations pl(k) and pm(k) are introduced here as
short-cuts for the contribution of the linguistic and the metric
constraints whose expressions are presented in equations
(10) and (11). These notations will be used for clarity in the
remaining of the paper (especially in section III-C).

The solution to equation (8) is obtained by using a
dynamic programming algorithm which is a reformulation of
the standard VITERBI decoding algorithm (VA) (as detailed in
[45]). The main modification to the standard VITERBI search
stands in the add of all possible major phrase segmentations
as a supplementary dimension in the search space. The
remaining of this section describes the details of the dynamic
programming algorithm.

Define δn the log-probability of the most-likely sequence
of major phrase lengths dk1 and the corresponding sequence
of prosodic events ln1 that end a major phrase at time n,
conditionally to the sequence of linguistic contexts cn1 :

δn = max
ln1 ,d

k
1

log p(ln1 ,d
k
1 |cn1 ) (12)

The traceback information is stored in ψn, which contains
the length of the major phrase dk and the sequence of
prosodic events lnn−dk+1 corresponding to the k-th major
phrase conducting to δn.

Then, the decoding algorithm can be described as follows:
� initialization: n = 1, d1 = 1

δ1 = log p(l1)p(d1)p(l1|c1) (13)

� recursion: n ∈ [2, N ], dk ∈ [1, D]

δn = max
lnn−dk+1,dk

δn−dk+ log pl(k) + log pm(k) (14)

= max
lnn−dk+1,dk

δn−dk+ log p(lnn−dk+1|cnn−dk+1) + log p(dk) (15)

ψn = argmax
lnn−dk+1,dk

δn−dk+ log p(lnn−dk+1|cnn−dk+1) + log p(dk) (16)

Here, the calculation of δn requires to compute for each
possible major phrase length dk the posterior probability of
the most-likely sequence of prosodic events corresponding to
the major phrase.

Finally, the most-likely sequences of major phrases and
prosodic events ̂(lN1 ,d

K
1 ) are retrieved through backtracking:

� initialization: n = N , k = K

( ̂lNN−dK+1, dK) = ψN (17)

� recursion: n ∈ [1, N [

n′ = n− dk (18)
k = k − 1 (19)

( ̂ln
′
n′−dK+1, dk) = ψn′ (20)

Here, the number K of major phrases remains actually un-
known until the backtracking is completed.

C. Segmental HMMs & Dempster-Shafer Fusion

In equation (8), the linguistic and the metric probabilities
are equally considered. However, the linguistic and the metric
constraints are not necessarily equally important for the
segmentation into major phrases. Consequently, a proper
fusion of the linguistic and the metric probabilities into
the segmental HMMs must be formulated. The Dempster-
Shafer fusion is here presented to perform the statistical fusion
of the linguistic and metric constraints in the segmental HMM.

Dempster-Shafer theory of evidence [47] is a mathematical
theory commonly used as a method for sensor fusion in
statistical signal processing. In particular, Dempster-Shafer
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theory provides a powerful framework for information fusion
in which the reliability that can be conferred to different
sources of information can be explicitly formulated. In the
Dempster-Shafer fusion, probability density functions (PDFs)
can be reformulated into mass functions (MFs) to account
for the reliability that can be conferred to each source of
information, and then combined with the Dempster-Shafer
fusion rule. The principle of the Dempster-Shafer combination
is shortly described, and its integration into the segmental
HMM for the segmentation into major phrases is detailed.

1) Mass Function: An elementary mass function m is a
function of P(C) in R+ that verify:{

m(ø) = 0∑
A∈P(C) = 1

(21)

where C is the state alphabet, and P(C) is the power set of C.

Mass functions present the advantage over standard prob-
abilities that a mass can be assigned to composite classes
rather than singletons only. It allows one to specify a degree
of ignorance instead of being forced to supply probabilities
that add to unity. It can be used to model the reliability of a
source of information during the fusion by assigning more or
less weight to the composite class composed of all the classes.

2) Dempster-Shafer Fusion: The Dempster-Shafer fusion
of two masses is given by:

m(A) = (m1 ⊕m2)(A) (22)

∝
∑

B1∩B2=A

m1(B1)×m2(B2) (23)

Hence, the Dempster-Shafer fusion of a mass m and a prob-
ability p is a probability given by:

(m⊕ p)(x) =

∑
x∈um(u)p(x)∑

x′∈C
∑
x′∈u′ m(u′)p(x′)

(24)

where m(u) (u ∈ P(C)) denotes the mass associated with a
source of information for which the reliability may vary and p
the probability associated with another source of information.

In order to control the relative importance of the linguistic
constraint pl(k) and the metric constraint pm(k) during their
combination in the segmental HMM (equation (8)), PDFs are
replaced by the following mass functions (MFs):

ml(k) = α pl(k) ml(C) = 1− α (25)
mm(k) = β pm(k) mm(C) = 1− β (26)

where α ∈ [0, 1] and β ∈ [0, 1] are coefficients which denote
the reliability that is associated with the linguistic constraint
pl(k) and metric constraint pm(k) respectively, and ml(C)
and mm(C) model the ignorance of each source.

The Dempster-Shafer fusion of ml and mm is then given
by:

(ml ⊕mm)(k) ∝ α(1− β)pl(k) + αβ pl(k)pm(k)

+β(1− α)pm(k) (27)

Hence,

(ml ⊕mm)(k)∝


pl(k), α = 1, β = 0 1
pm(k), α = 0, β = 1 2
pl(k) pm(k), α = 1, β = 1 3

(28)

1 denotes that only the metric probability is considered
(metric constraint), 2 denotes that only linguistic probability
is considered (linguistic constraint), and 3 denotes that the
linguistic and metric probabilities are equally considered
(linguistic/metric constraints).

The reliability coefficients α and β are rewritten into a
single coefficient γ = (α, β) so that the fusion is always a
probability, and so that the relative importance of linguistic
and the metric probabilities is linearly interpolated from the
metric constraint solely to the linguistic constraint solely.
Thus: γ = −1 will refer to α = 0 and β = 1, γ = 0 to α = 1
and β = 1, and γ = +1 to α = 1 and β = 0.

Finally, the Dempster-Shafer fusion of the linguistic and
the metric constraints as expressed in equation (27) is used to
replace the standard fusion in equation (8):

( ̂lN1 ,dK1 ) = argmax
lN1 ,d

K
1

p(lN1 ,d
K
1 |cN1 ) (29)

= argmax
lN1 ,d

K
1 ,γ

K∏
k=1

(ml ⊕mm)(k) (30)

The decoding algorithm is simply rewritten in order to
account for the combination of the metric and linguistic
constraints (ml ⊕ mm)(k). For each possible coefficient
γ, the most-likely sequences of prosodic events and major
phrases ̂(lN1 ,d

K
1 ) are determined. Then, the most-likely

sequences of major phrases and prosodic events ̂(lN1 ,d
K
1 ) are

determined so as to maximise the conditional probability to
the combination γ.

IV. EXPERIMENTS

In order to investigate the role of the linguistic constraint,
and the combination of linguistic and metric constraints for the
assignment of prosodic events, two objective experiments were
conducted: first, the role of the linguistic constraint for the as-
signment of prosodic events (accent and phrasing) is addressed
in section IV-C. Then, the combination of the linguistic and
the metric constraints for the segmentation into major phrases
is addressed in section IV-D. The experiments were conducted
on a multi-speaker speech database with various speaking
styles (read and spontaneous speech). Finally, a subjective
experiment was conducted to address the combination of the
linguistic and the metric constraints in the context of text-to-
speech synthesis.

A. Speech Material and Annotations

This study investigates the assignment of prosodic events
in the context of French text-to-speech synthesis. Contrary to
research for text-to-speech synthesis in English for which a
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number of large speech databases is available with manual
annotations of prosodic events (accent and/or major phrases)
(e.g., [48], [49]), there is currently no comparable resources
available for French. In consequence, a French speech database
containing multi-speaker with various speaking styles (read
and spontaneous speech) was specifically designed and used
for the experiments (see [8] for details). Speaking styles
include read speech and a number of more/less spontaneous
speech.

� A READ corpus is composed of short sentences, selected
in order to design a phonetically well-balanced speech
database for text-to-speech synthesis. Each prompt is read
by a non-professional French speaker and recorded in an
anechoic room (9 hrs.).

� A SPONTANEOUS SPEECH corpus is composed of multi-
speaker French spontaneous speech recordings in 4 speaking
styles: church offices, political speech, journalistic chroni-
cles, and sports commentary (4 hours in total, and around
1 hour for each speaking style). Speech recordings were
collected from broadcast (radio, television).

A short description of the French speech database is pre-
sented in table I.

TABLE I
OVERVIEW OF THE SPEECH DATABASES: NUMBER OF SPEAKERS, NUMBER

OF UTTERANCES, TOTAL DURATION.

SPEAKING # SPEAKER # UTTERANCE TOTAL DURATION
STYLE
READ 1 1030 1h00
CHURCH 7 598 1h20
POLITICS 5 454 1h10
JOURNAL 5 840 1h10
SPORT 4 743 0h35

Firstly, speech recordings come with manually processed
text transcriptions. Then, speech-to-text alignment was
processed by IRCAMALIGN [50] - a HMM-based speech
segmentation system for French based on the HTK toolkit [51]
and trained on the BREF [52] multi-speaker French speech
database. Front-end processing for speech-to-text alignment
includes the LIAPHON system [53] for text-to-phoneme,
-syllable, and -word conversion. The resulting alignment was
then manually corrected.

Secondly, the alphabet of prosodic events used is a compact
representation of speech prosody in terms of accent and
phrasing. The alphabet is composed of: a single element
for accent (prominence: P), and two degrees of break for
phrasing (intermediate break: Fm, and major phrase break
FM , respectively) [54]. Prosodic events were automatically
transcribed based on the IRCAMPROM system - a GMM-based
system for the automatic transcription of prosodic events [55]
-, and then manually corrected. Statistics of prosodic events
and phrases for the various speaking styles are presented in
table II.

Finally, text parsing (surface and deep) was processed by the
ALPAGE linguistic processing chain [39], and then converted
into context-dependent labels aligned to the speech signal

TABLE II
STATISTICS OF PROSODIC EVENTS AND PHRASES FOR THE SPEAKING
STYLES: MEAN PROPORTION OF PROSODIC EVENTS (%), AND MEAN

LENGTH OF PROSODIC PHRASES IN SYLLABLES.

SPEAKING PROSODIC EVENTS PHRASE
STYLE FM

(%)
Fm

(%)
P
(%)

TOTAL
(%)

LENGTH
(syl.)

READ 11 10 5 26 7.5
CHURCH 14 10 11 35 5.5
POLITICS 13 7 10 30 5.3
JOURNAL 6 12 7 25 10.1
SPORT 17 7 10 34 6.8

(as presented in section II). In this study, prosodic events
and context-dependent labels were aligned on syllables in
order to provide a common unit for the assignment of all
prosodic events: accents (mostly, aligned on the syllable),
and breaks (mostly, aligned on the word). Also, linguis-
tic information extracted from text and computed on word
unit were aligned on syllable unit, and then converted into
context-dependent labels. Additional position/number infor-
mation were added to the context-dependent labels: posi-
tion/number of units (syllable/word/chunk/adjunction) within
larger units (word/chunk/adjunction/sentence) - also aligned
on syllable unit.
B. Experimental Procedure

Objective experiments were conducted in order to
investigate: 1) the role of the linguistic constraint, and 2)
the combination of the linguistic and the metric constraints
for the assignment of prosodic events. For the role of the
linguistic constraint: the assignment of prosodic events
(accent P and phrasing Fm and FM ) is assessed depending
on the nature of the linguistic information: morpho-syntactic
(M), dependency (D), constituency (C), and adjunction (A).
For the combination of linguistic and metric constraints:
the segmentation of a text into major phrases (FM ) is
assessed depending on the combination of linguistic and
metric constraints, and the nature of the linguistic information.

Experiments were conducted based on a 10-fold cross-
validation. First, the whole database was split into 10 folds. For
each fold, linguistic (linguistic constraint) and metric (metric
constraint) PDFs were estimated on the 10 folds minus one.
Then, the sequence of prosodic events was determined for each
sentence of the remaining fold. Finally, the assigned sequence
of prosodic events are compared with the reference sequence
of prosodic events. The F-measure (harmonic mean of recall
and precision) was used to measure the performance of the
assignment. Experiments were conducted with comparison to a
STANDARD model based on surface information only (M), and
a BASELINE punctuation rule-based model (PUNC) in which
a major phrase break (FM ) is inserted after each punctuation
marker.

C. Role of Linguistic Contexts

Tables III and IV summarize the mean performance and
95% confidence interval obtained for the read and sponta-
neous speech databases with a standard HMM (as defined in
section III-B2). For clarity, tables III and IV report only the
performance obtained for the best combinations of linguistic
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information, and the individual performance of all linguistic
information.

TABLE III
ROLE OF THE LINGUISTIC CONTEXT ON READ SPEECH: MEAN F-MEASURE
(AND 95% CONFIDENCE INTERVAL) FOR THE ASSIGNMENT OF PROSODIC

EVENTS (FM , Fm , P) DEPENDING ON THE LINGUISTIC CONTEXT
(M/D/C/A).

READ
FM Fm P

MDCA 94.8 (±0.9) 55.0 (±1.5) 34.5 (±1.1)
MCA 94.2 (±0.7) 53.3 (±1.6) 33.8 (±1.2)
MDA 91.8 (±1.1) 52.3 (±1.1) 33.0 (±1.3)
MDC 83.7 (±1.1) 48.9 (±1.3) 34.4 (±1.2)
CA 94.5 (±1.2) 53.7 (±1.4) 34.3 (±1.1)
...

...
...

...
A 90.9 (±0.9) 21.4 (±1.3) 0.7 (±1.9)
C 83.2 (±1.0) 39.9 (±1.4) 4.2 (±1.3)
D 60.5 (±1.2) 30.2 (±1.1) 2.2 (±1.6)
M 74.3 (±1.1) 43.5 (±1.2) 33.1 (±1.4)
PUNC. 65.9 (±1.4) - -

The role of the linguistic information depends on
the prosodic event. Firstly, the assignment of breaks
presents substantial (major phrase break: FM) and moderate
(intermediate break: Fm) performance, and accent (P)
presents poor performance only. Secondly, the deep linguistic
information does not uniformly affects the assignment of
prosodic events. On the one hand, the improvement for
the assignment of phrase breaks is substantial: drastically
significant for major phrase breaks (FM), and significant for
intermediate breaks (Fm) (from surface syntactic information
(M) to deep syntactic information (MDCA)). In particular,
the constituency and adjunction information (C, A) are
particularly significant for the assignment of breaks. On the
other hand, the improvement for the assignment of accents
(P) is negligible: the surface syntactic information (M) is
robust, and the deep syntactic information is insignificant (D,
C, A).

This proves the role of deep syntactic information for the
assignment of prosodic events. In particular, constituency and
adjunction information - as global syntactic constructions -
are proved to be extremely significant for the assignment of
phrase breaks. This indicates that the prosodic structure more
closely relates to global syntactic information (associated
with large syntactic units) rather than on local syntactic
information (associated with small syntactic units). Finally,
the syntactic information is not sufficient for the assignment
of accents (which mainly reflects semantic focus).

Additionally, there is a large difference for the assignment
of prosodic events between read and spontaneous speech,
especially for major and intermediate phrase breaks. This
is principally due to the syntactic and prosodic variability
of spontaneous speech compared to that of read speech. In
particular, the syntactic parsing is less reliable in spontaneous
speech, and the prosodic structure depends less on the syn-
tactic information in spontaneous speech (e.g., pragmatics,
discourse).

D. Fusion of Linguistic and Metric Constraints

Tables V and VI summarize the mean performance and
95% confidence interval obtained for the assignment of major
phrase breaks (FM) for various combinations of linguistic
and metric constraints: individual contribution of the METRIC
constraint (γ = (α = 0, β = 1) = −1), individual contribution
of the LINGUISTIC constraint (γ = (α = 1, β = 0) = +1),
standard fusion of the METRIC/LINGUISTIC constraint (γ =
(α = 1, β = 1) = 0, as in the segmentation HMM), and the
optimal FUSION of metric/linguistic constraints.

TABLE V
FUSION OF METRIC/LINGUISTIC CONSTRAINTS ON READ SPEECH: MEAN
F-MEASURE (AND 95% CONFIDENCE INTERVAL) FOR THE ASSIGNMENT

OF MAJOR BREAKS (FM) OBTAINED WITH THE METRIC CONSTRAINT, THE
METRIC/LINGUISTIC CONSTRAINTS, THE LINGUISTIC CONSTRAINT, AND

THE FUSION OF METRIC/LINGUISTIC CONSTRAINTS.

READ
METRIC METRIC/ LINGUISTIC FUSION

LINGUISTIC

MDCA 62.1 (±2.5) 92.1 (±1.1) 94.8 (±0.9) 96.6 (±0.8)
MCA 62.1 (±2.5) 91.9 (±0.9) 94.2 (±0.7) 96.0 (±0.8)
MDA 62.1 (±2.5) 89.4 (±1.1) 91.8 (±1.1) 93.3 (±1.2)
MDC 62.1 (±2.5) 80.5 (±1.2) 83.7 (±1.1) 86.8 (±1.1)
CA 62.1 (±2.5) 92.0 (±1.5) 94.5 (±1.2) 95.9 (±0.9)
...

...
...

...
...

A 62.1 (±2.5) 87.2 (±1.4) 90.9 (±0.9) 92.7 (±1.2)
C 62.1 (±2.5) 80.7 (±1.2) 83.2 (±1.0) 87.3 (±1.4)
D 62.1 (±2.5) 58.1 (±1.5) 60.5 (±1.2) 63.2 (±1.2)
M 62.1 (±2.5) 72.2 (±1.4) 74.3 (±1.1) 78.5 (±1.1)

On the one hand, the standard fusion of the linguistic/metric
constraints does not outperform the linguistic constraint in
most of the cases. This indicates that a standard fusion of
the linguistic/metric constraints does not suffice to exploit
the information provided by the metric constraint. On the
other hand, the proposed fusion of linguistic/metric constraints
significantly outperforms the standard linguistic/metric con-
straints and the linguistic constraint in most of the cases.
This confirms that a proper fusion of the the linguistic/metric
constraints successfully improves the segmentation into major
phrases (i.e., under and over segmentations caused by the
linguistic constraint only).

E. Subjective Experiment

Finally, a subjective experiment was conducted to compare
the quality of the LINGUISTIC, METRIC/LINGUISTIC, and
FUSION OF METRIC/LINGUISTIC in speech synthesis. For
this purpose, 20 sentences were randomly selected from the
French fairy-tale “Le Petit Poucet” (“Little Tom Thumb”) by
Charles Perrault, and used to synthesize speech utterances for
each system. The IRCAMTTS unit-selection speech synthesis
system was used for the comparison [56], with the voice of
the French speaker of the READ database. The MDCA was
used as linguistic contexts, and the model parameters were
estimated on the read speech database.

For each sentence, the text was segmented into major
phrases according to the considered constraints, and then
synthesized with the IRCAMTTS speech synthesis system.
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TABLE IV
ROLE OF THE LINGUISTIC CONTEXT ON SPONTANEOUS SPEECH: MEAN F-MEASURE (AND 95% CONFIDENCE INTERVAL) FOR THE ASSIGNMENT OF

PROSODIC EVENTS (FM , Fm , P) DEPENDING ON THE LINGUISTIC CONTEXT (M/D/C/A).

CHURCH
FM Fm P

MDCA 79.8 (±1.3) 42.0 (±1.4) 30.2 (±1.4)
MCA 81.1 (±1.2) 43.3 (±1.2) 31.0 (±1.3)
MDA 75.6 (±1.4) 40.7 (±1.4) 30.0 (±1.4)
MDC 75.3 (±1.1) 39.6 (±1.5) 29.5 (±1.2)
CA 80.1 (±1.2) 42.5 (±1.3) 5.2 (±2.6)
...

...
...

...
A 71.5 (±1.1) 18.3 (±1.8) 1.2 (±2.3)
C 72.2 (±1.3) 36.8 (±1.5) 3.6 (±1.8)
D 42.1 (±1.9) 22.2 (±1.6) 4.1 (±2.0)
M 64.1 (±2.1) 27.3 (±1.5) 24.4 (±1.8)
PUNC. N/A - -

POLITICS
FM Fm P

MDCA 78.5 (±1.2) 40.5 (±1.6) 29.8 (±1.3)
MCA 79.9 (±1.2) 41.6 (±1.4) 30.4 (±1.5)
MDA 72.3 (±1.5) 39.6 (±1.5) 29.5 (±1.4)
MDC 74.2 (±1.4) 37.2 (±1.6) 28.9 (±1.4)
CA 80.1 (±1.1) 40.4 (±1.5) 4.7 (±1.8)
...

...
...

...
A 63.5 (±1.4) 21.4 (±1.3) 2.1 (±1.7)
C 73.1 (±1.5) 39.9 (±1.4) 4.7 (±1.8)
D 40.5 (±1.5) 30.2 (±1.1) 3.4 (±2.1)
M 62.5 (±1.3) 23.5 (±1.2) 25.3 (±1.6)
PUNC. N/A - -

JOURNAL
FM Fm P

MDCA 71.1 (±1.0) 46.2 (±1.5) 28.2 (±1.3)
MCA 68.5 (±1.4) 45.4 (±1.4) 27.8 (±1.4)
MDA 64.0 (±1.2) 42.1 (±1.4) 27.9 (±1.3)
MDC 64.4 (±1.4) 40.5 (±1.5) 27.5 (±1.2)
CA 64.9 (±1.3) 44.4 (±1.5) 4.3 (±1.4)

...
...

...
...

A 61.8 (±1.3) 23.2 (±1.5) 0.8 (±1.7)
C 63.1 (±1.1) 40.4 (±1.5) 5.5 (±1.5)
D 52.1 (±1.2) 17.8 (±1.4) 4.1 (±1.9)
M 56.4 (±1.6) 25.8 (±1.6) 20.2 (±1.5)
PUNC. N/A - -

SPORT
FM Fm P

MDCA 79.2 (±1.1) 37.3 (±1.4) 23.5 (±1.5)
MCA 79.1 (±1.4) 36.8 (±1.4) 23.3 (±1.5)
MDA 75.0 (±1.4) 32.4 (±1.5) 23.1 (±1.4)
MDC 71.2 (±1.3) 28.9 (±1.7) 23.2 (±1.6)
CA 80.2 (±1.1) 35.2 (±1.5) 3.1 (±1.8)
...

...
...

...
A 71.1 (±1.2) 15.5 (±1.6) 0.5 (±1.7)
C 70.1 (±1.1) 31.8 (±1.5) 2.5 (±2.1)
D 62.0 (±1.4) 18.5 (±1.8) 1.3 (±1.8)
M 65.2 (±1.8) 25.6 (±1.5) 19.8 (±2.3)
PUNC. N/A - -

TABLE VI
FUSION OF METRIC/LINGUISTIC CONSTRAINTS ON SPONTANEOUS SPEECH: MEAN F-MEASURE (AND 95% CONFIDENCE INTERVAL) FOR THE

ASSIGNMENT OF MAJOR BREAKS (FM) OBTAINED WITH THE METRIC CONSTRAINT, THE METRIC/LINGUISTIC CONSTRAINTS, THE LINGUISTIC
CONSTRAINT, AND THE FUSION OF METRIC/LINGUISTIC CONSTRAINTS.

CHURCH
METRIC METRIC/ LINGUISTIC FUSION

LINGUISTIC

MDCA 35.8 (±3.6) 77.9 (±2.0) 79.8 (±1.3) 83.7 (±1.4)
MCA 35.8 (±3.6) 79.3 (±1.6) 81.1 (±1.2) 84.0 (±1.4)
MDA 35.8 (±3.6) 72.4 (±1.1) 75.6 (±1.4) 77.3 (±1.2)
MDC 35.8 (±3.6) 74.9 (±1.2) 75.3 (±1.1) 78.1 (±1.4)
CA 35.8 (±3.6) 70.0 (±1.5) 80.1 (±1.2) 81.8 (±1.1)
...

...
...

...
...

A 35.8 (±3.6) 70.4 (±1.5) 71.5 (±1.1) 73.3 (±1.3)
C 35.8 (±3.6) 70.7 (±1.0) 72.2 (±1.3) 74.0 (±1.2)
D 35.8 (±3.6) 38.2 (±2.1) 42.1 (±1.9) 42.4 (±1.7)
M 35.8 (±3.6) 61.8 (±2.4) 64.1 (±2.1) 64.7 (±1.5)

POLITICS
METRIC METRIC/ LINGUISTIC FUSION

LINGUISTIC

MDCA 33.8 (±2.8) 74.3 (±1.6) 78.5 (±1.2) 81.0 (±1.3)
MCA 33.8 (±2.8) 75.9 (±1.4) 79.9 (±1.2) 82.1 (±1.1)
MDA 33.8 (±2.8) 69.1 (±1.2) 72.3 (±1.5) 74.5 (±1.4)
MDC 33.8 (±2.8) 72.3 (±1.4) 74.2 (±1.4) 77.8 (±1.3)
CA 33.8 (±2.8) 73.9 (±1.4) 80.1 (±1.1) 81.5 (±1.2)
...

...
...

...
...

A 33.8 (±2.8) 58.6 (±1.5) 63.5 (±1.4) 65.2 (±1.2)
C 33.8 (±2.8) 70.1 (±1.3) 73.1 (±1.5) 76.3 (±1.3)
D 33.8 (±2.8) 43.4 (±1.3) 40.5 (±1.5) 43.1 (±1.3)
M 33.8 (±2.8) 59.1 (±1.5) 62.5 (±1.3) 62.8 (±1.2)

JOURNAL
METRIC METRIC/ LINGUISTIC FUSION

LINGUISTIC

MDCA 50.1 (±5.1) 69.0 (±1.3) 71.1 (±1.0) 74.3 (±1.1)
MCA 50.1 (±5.1) 65.7 (±1.5) 68.5 (±1.4) 71.4 (±1.2)
MDA 50.1 (±5.1) 62.8 (±1.2) 64.0 (±1.2) 66.5 (±1.1)
MDC 50.1 (±5.1) 63.9 (±1.3) 64.4 (±1.4) 67.8 (±1.3)
CA 50.1 (±5.1) 61.1 (±1.2) 64.9 (±1.3) 67.0 (±1.1)
...

...
...

...
...

A 50.1 (±5.1) 60.8 (±1.5) 61.8 (±1.3) 64.2 (±1.3)
C 50.1 (±5.1) 62.7 (±1.3) 63.1 (±1.1) 65.2 (±1.2)
D 50.1 (±5.1) 54.2 (±1.4) 52.1 (±1.2) 57.3 (±1.8)
M 50.1 (±5.1) 56.5 (±2.1) 56.4 (±1.6) 58.9 (±1.8)

SPORT
METRIC METRIC/ LINGUISTIC FUSION

LINGUISTIC

MDCA 59.2 (±2.3) 75.1 (±2.1) 79.2 (±1.1) 83.2 (±1.2)
MCA 59.2 (±2.3) 75.2 (±1.2) 79.1 (±1.4) 82.1 (±1.1)
MDA 59.2 (±2.3) 72.3 (±1.5) 75.0 (±1.4) 77.8 (±1.3)
MDC 59.2 (±2.3) 72.5 (±1.6) 71.2 (±1.3) 74.9 (±1.4)
CA 59.2 (±2.3) 76.4 (±1.4) 80.2 (±1.1) 81.8 (±1.2)
...

...
...

...
...

A 59.2 (±2.3) 71.7 (±1.2) 71.1 (±1.2) 73.4 (±1.1)
C 59.2 (±2.3) 69.8 (±1.4) 70.1 (±1.1) 71.5 (±1.3)
D 59.2 (±2.3) 65.3 (±1.2) 62.0 (±1.4) 66.2 (±1.1)
M 59.2 (±2.3) 67.2 (±2.1) 65.2 (±1.8) 67.8 (±2.3)
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10 native French speakers participated in the experiment.
The evaluation was conducted according to a crowd-sourcing
technique using social networks. Pairs of synthesized speech
utterances were randomly presented to the participants who
were asked to attribute a preference score according to the
naturalness of the speech utterances on the comparison
mean opinion score (CMOS) scale [57]. Participants were
encouraged to use headphones.

The preference score obtained for the comparison of the
LINGUISTIC, METRIC/LINGUISTIC, and FUSION OF MET-
RIC/LINGUISTIC in text-to-speech synthesis are presented in
Figure 6. The preference scores obtained are 41.0% for the
FUSION OF METRIC/LINGUISTIC constraints, 28.5% for the
LINGUISTIC constraint, 20.5% for the METRIC/LINGUISTIC
constraints, and 10% for no preference. This confirms that
the fusion of the metric/linguistic constraints constitutes a
qualitative advance for text-to-speech synthesis.

0 20 40

NO PREF.

LINGUISTIC

METRIC/LINGUISTIC

OPTIMAL FUSION 41.0

20.5

28.5

10.0

0 20 40

NO PREF.

LINGUISTIC

METRIC/LINGUISTIC

OPTIMAL FUSION 41.0

20.5

28.5

10.0

0 20 40

NO PREF.

LINGUISTIC

METRIC/LINGUISTIC

OPTIMAL FUSION 41.0

20.5

28.5

10.0

FUSION 
METRIC/LINGUISTIC

Fig. 6. Mean preference score and 95% confidence interval obtained for: the
fusion of the linguistic/metric constraints, the linguistic/metric constraints, the
linguistic constraint, and no preference.

V. CONCLUSION

This paper explored the fusion of linguistic and metric
constraints for the assignment of prosodic events for text-
to-speech synthesis. Firstly, a linguistic processing chain was
presented in order to provide the surface/deep syntactic struc-
ture of a text for the assignment of prosodic events. Secondly,
a hierarchical HMM (HHMM) was introduced to model the
prosodic structure of a text: the root layer represents the text,
each intermediate layer a sequence of intermediate phrases, the
pre-terminal layer the sequence of accents, and the terminal
layer the sequence of linguistic contexts. For each intermediate
layer, a segmental HMM and Dempster-Shafer fusion are
used to combine linguistic and metric constraints for the
segmentation of a text into major phrases. A set of experiments
conducted on multi-speaker databases with various speaking
styles confirms: the role of a deep linguistic representation of
a text for the assignment of prosodic events, and the role of the
fusion of linguistic and metric constraints for the segmentation
of a text into major phrases. This constitutes a substantial
advance for the modeling of the speech prosody for text-to-
speech synthesis.
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