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Abstract

The aim of this work is to compute time optimal controls for micro-swimmers. The action of
swimming is seen as a control problem. More precisely, given an initial position and a target position,
can the swimmer move to the target by changing its shape. The motion of the swimmer in the fluid
results from the fluid-structure interaction. For micro-swimmers, the fluid equations in consideration
are the stationnary Stokes equations. The way of swimming can be described by the following steps:
1. the swimmer modifies its shape, 2. this modification creates a velocity field in the fluid, 3. the fluid
velocity acts on the swimmer as a force, 4. the fluid force moves the swimmer. Of course things are not
so distinct and the swimming is a highly coupled nonlinear control problem. In this note, we present
some key results for a fast numerical method to compute time optimal controls for axi-symmetric
micro-swimmers. This numerical method is based on explicit formulae of time optimal controls for the
Brockett integrator which is a system approaching the dynamic of the swimmer.

AMS subject classification: 34H05, 49J15, 49K15, 49K20, 93C15
Key words: Time optimal controllability, State constraints, Numerical resolution, Brockett integrator,
Micro-swimmers

1 Introduction

Understanding the motion of micro-organisms is a challenging issue since at their size the fluid forces are
only viscous forces and micro-organisms live in a world where inertia does not exist. Despite the pioneer
works modeling and analysing the motions of micro-swimmers (see for instance [26, 16, 15, 22, 9, 25, 24]),
the swimming of micro-organisms has only be recently tackled as a control problem. A lot of controllability
results for various swimmers has been obtained (see for instance [4, 5, 21, 23, 20] for axi-symmetric
swimmers, [3, 18] for general swimmers or [6, 10] when the fluid domain is not the whole space R3).

In this note, we will consider axi-symmetric micro-swimmers performing small shape changes. For
those swimmers, we will study the time optimal controllability of the dynamical system associated to the
swimming problem. In particular, this article links the work [20] to [19].

∗Email addresses: Jerome.Loheac@irccyn.ec-nantes.fr (J. Lohéac), jean-francois.scheid@univ-lorraine.fr (J.-
F. Scheid).
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2 Modeling and problem formulation

We consider a micro-swimmer performing axi-symmetric deformations. Let us denote (e1, e2, e3) the
canonical basis of R3 and assume that e1 represents the symmetry axis. At any time, the swimmer will
be diffeomorphic to the unit sphere of R3 and its shape at rest is the unit sphere S0.
The control problem is the following: starting from the initial location 0, reach the final position hfe1 by
shape changes such that at the initial and final positions, the swimmer is the unit sphere of R3.

2.1 Axi-symmetric coordinates

Since we are considering axi-symmetric swimmers, we introduce the spherical coordinate system (r, θ, φ) ∈
R+ × [0, π]× [0, 2π) which will be used all along this note. For every x = (x1 x2 x3)> ∈ R3, the spherical
coordinates (r, θ, φ) =

(
r(x), θ(x), φ(x)

)
are such that:

x = r

 cos θ
sin θ cosφ
sin θ sinφ

 (x ∈ R3 , (r, θ, φ) ∈ R+ × [0, π]× [0, 2π)) ,

with the associated local system of unit vectors (er, eθ, eφ) given by (see Figure 1):

er =

 cos θ
sin θ cosφ
sin θ sinφ

 , eθ =

 − sin θ
cos θ cosφ
cos θ sinφ

 and eφ =

 cos θ
− sin θ sinφ
sin θ cosφ

 .

Φ

e2

r

θ

x

eθ

er

eΦe3

e1

Figure 1: Spherical coordinates.

2.2 Swimmer’s deformations

The shape of the swimmer at rest is the unit ball of R3 which forms the reference shape denoted by S0.
We assume that the deformation of the swimmer is axi-symmetric with respect to the symmetry axis e1.

2



More precisely, we assume that the deformation X is built from two elementary deformations D1 and D2,
that is

X(t, x) = x+ α1(t)D1(x) + α2(t)D2(x) , (t > 0 , x ∈ R3) , (2.1)

where D1 and D2 are axi-symmetric and radial deformations, i.e.

Di(x) = r(x)δi(θ(x))er(x) (t > 0 , x ∈ R3 , i ∈ {1, 2}) , (2.2)

with δi ∈ C1([0, π],R) and αi ∈ L∞(R+,R) such that:

α1(t)δ1(θ) + α2(t)δ2(θ) > −1 (t > 0 , θ ∈ [0, π]) , (2.3)

so that X(t, ·) is a C1-diffeomorphism on S0. We define the domain S(t) occupied by the deformed
swimmer at time t in the reference frame attached to the swimmer:

S(t) = X(t, S0) ⊂ R3 (t > 0) .

We also assume that the deformation X does not produce any translation. To this end, we introduce
the mass density ρ0(x) = 1 in the shape of the swimmer S0 at rest and we assume that the mass is locally
preserved during the deformation, that is to say that the density of the swimmer at any time t > 0 is
given by:

ρ(t,X(t, x)) =
1

|JacX(t, x)|
(t > 0 , x ∈ S0) ,

where JacX(t, ·) denotes the Jacobian of the mapping X(t, ·). According to (2.1), (2.2) we have:

ρ(t,X(t, x)) =
1

(1 + α1(t)δ1(θ(x)) + α2(t)δ2(θ(x)))3
(t > 0 , x ∈ S0) .

With this mass density, we have, for all t > 0:∫
S(t)

ρ(t, x) dx =

∫
S0

dx := m0 (2.4)

and the mass center of the swimmer is given by:∫
S(t)

xρ(t, x) dx =

∫
S0

(x+ α1(t)D1(x) + α2(t)D2(x)) dx

=

∫ π

0

∫ 1

0

∫ 2π

0
r (1 + α1(t)δ1(θ) + α2(t)δ2(θ)) er(θ, φ) r2 sin θdφdrdθ

=

(
α1(t)

π

2

∫ π

0
δ1(θ) cos θ sin θ dθ + α2(t)

π

2

∫ π

0
δ2(θ) cos θ sin θ dθ

)
e1 ,

Consequently, we assume: ∫ π

0
δi(θ) sin(2θ) dθ = 0 (i ∈ {1, 2}) , (2.5)

so that the mass center of the swimmer does not move with the deformation X.
Finally, let us consider the domain S†(t) occupied by the swimmer in the fluid at time t > 0, which is

given by
S†(t) = S(t) + h(t)e1. (2.6)

Since we have assumed that the deformation X does not introduce any translation, h(t)e1 is the mass
center position of the swimmer in the fluid domain at time t. The domains S0, S(t) and S†(t) are depicted
on Figure 2.
In term of the control theory, α = (α1, α2)> is the system’s input and h is its output we aim to control.
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S(t)S0

0 0 0 h(t)

X(t, ·) Id + h(t)e1

S†(t)

Figure 2: The deformation X and the translation he1 of the swimmer.

2.3 Fluid flow

At each time t > 0, the domain occupied by the fluid is F†(t) = R3 \ S†(t). The incompressible Navier-
Stokes equations reads as:

ρf

(
∂tu
† + u† · ∇u†

)
− µ∆u† +∇p† = 0 in F†(t) (2.7a)

divu† = 0 in F†(t) (2.7b)

where u† is the fluid velocity, p† is the pressure in the fluid, ρf is the mass density and µ is the viscosity
of the fluid. We also assume that the fluid is at rest at infinity, i.e.:

lim
|x|→∞

u†(t, x) = 0 , (2.7c)

and the fluid sticks to the swimmer’s boundary, that is to say, for all x ∈ ∂S†(t)):

u†(t, x) = ḣ(t)e1 + α̇1(t)D1

(
X(t, ·)−1 (x− h(t))

)
+ α̇2(t)D2

(
X(t, ·)−1 (x− h(t))

)
(2.8)

Let us note σ† = µ
(
∇u† + (∇u†)>

)
− p†I3 the Cauchy stress tensor, so that the force exerted by the

fluid on the swimmer is given by:

F†(t) =

∫
∂S†(t)

σ†n dΓ , (2.9)

where n is the normal directed inwards the domain S†(t), see Figure 3.

n
S†(t)

F †(t) = R3 \ S†(t)

Figure 3: Swimmer into the fluid domain.

2.4 Coupled problem

Without any additional external forces, the motion of the swimmer is given by the Newton law,

d

dt

∫
S†(t)

v(t, x) ρ(t, x)dx = F†(t) . (2.10)

4



where for every x ∈ S†(t), we have set:

v(t, x) = ḣ(t)e1 + α̇1(t)D1

(
X(t, ·)−1 (x− h(t))

)
+ α̇2(t)D2

(
X(t, ·)−1 (x− h(t))

)
and where F†(t) is given by (2.9). Under the assumption (2.5), the relation (2.10) becomes:

m0ḧ(t) = F†(t) · e1 , (2.11)

with m0 defined by (2.4).

2.5 Micro-swimmer approximation

For a micro-swimmer such as a protozoa in water, we have µ
ρf
' 10−2cm2s−1, its length L is of order

10−2cm, its speed U is of order 10−1cm s−1 and its characteristic time T is of order 10−1s (see [9]). We

introduce the Reynolds number Re =
ρfUL
µ , the time parameter τ = TU

L and the mass density contrast

C = 1
ρf

and using a rescaling of the variables, we obtain the following dimensionless system (see [17, § 5.3]

or [9] for technical computations):

• The dimensionless incompressible Navier-Stokes equations:

Re
(
τ−1∂tu

† + (u† · ∇)u†
)
−∆u† +∇p† = 0 in F†(t) ,

divu† = 0 in F†(t) ,

with
lim
|x|→∞

u†(t, x) = 0 ;

• The dimensionless boundary condition:

τu†(t, x) = ḣ(t)e1 + α̇1(t)D1

(
X(t, ·)−1 (x− h(t))

)
+ α̇2(t)D2

(
X(t, ·)−1 (x− h(t))

)
,

for every x ∈ ∂S(t)†;

• The dimensionless Newton law:
CRe

τ2
ḧ(t) = F†(t) · e1 .

For the characteristic values of a protozoa, we have Re ' 10−1, τ ' 1 and C ' 1. Thus taking the limit
Re→ 0, we formally obtain

• The Stokes equations:

−∆u† +∇p† = 0 in F†(t) , (2.12a)

divu† = 0 in F†(t) , (2.12b)

with
lim
|x|→∞

u†(t, x) = 0 ; (2.12c)
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• The boundary condition:

u†(t, x) = ḣ(t)e1 + α̇1(t)D1

(
X(t, ·)−1 (x− h(t))

)
+ α̇2(t)D2

(
X(t, ·)−1 (x− h(t))

)
(2.13)

for every x ∈ ∂S†(t);

• Quasi-static Newton law:
0 = F†(t) · e1 , (2.14)

where F†(t) =

∫
∂S†(t)

σ(u†, p†)n dΓ with σ(u†, p†) =
(
∇u† + (∇u†)>

)
− p†I3 is the Cauchy stress

tensor.

We define the velocity u and the pressure p with the relations
u†(x) = u(x − h(t)e1) and p(x − h(t)e1) = p†(x) for every x ∈ F†(t). The system (2.12)-(2.14) be-
comes

• The Stokes equation:

−∆u +∇p = 0 in F(t) , (2.15a)

divu = 0 in F(t) , (2.15b)

where F(t) = R3 \ S(t) and with
lim
|x|→∞

u(t, x) = 0 ; (2.15c)

• The boundary condition:

u(t, x) = ḣ(t)e1 +
(
α̇1(t)D1

(
X(t, ·)−1(x)

)
+α̇2(t)D2

(
X(t, ·)−1(x)

))
er
(
X(t, ·)−1(x)

)
; (2.16)

• Quasi-static Newton law:
0 = F(t) · e1 , (2.17)

where F(t) =

∫
∂S(t)

σ(u, p)n dΓ with σ(u, p) =
(
∇u + (∇u)>

)
− pI3.

2.6 Control problem

Let us first notice that in the full system (2.15)–(2.17) the time does not appear directly but only through
the parameter α(t). Consequently, we define S(α) as the image of S0 by the map X(α) : x ∈ R3 7→
x+ α1D1(x) + α2D2(x) ∈ R3, for α ∈ R2 such that:

α1δ1(θ) + α2δ2(θ) > −1 (θ ∈ [0, π]) , (2.18)

which is exactly the condition (2.3) with D1 and D2 defined by (2.2). For convenience, we also define the
corresponding fluid domain F(α) = R3 \ S(α).
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For every α ∈ R2 satisfying (2.18), we define (uα0 , p
α
0 ) the solution of:

−∆uα0 +∇pα0 = 0 in F(α) , (2.19a)

divuα0 = 0 in F(α) , (2.19b)

lim
|x|→∞

uα0 (x) = 0 , (2.19c)

uα0 (x) = e1, for all x ∈ ∂S(α) (2.19d)

and for i ∈ {1, 2}, (uαi , p
α
i ) is the solution of:

−∆uαi +∇pαi = 0 in F(α) , (2.20a)

divuαi = 0 in F(α) , (2.20b)

lim
|x|→∞

uαi (x) = 0 , (2.20c)

uαi (x) = Di

(
X(α)−1(x)

)
, for all x ∈ ∂S(α) (2.20d)

Then the solution (u(t, ·), p(t, ·)) of (2.15)–(2.16) can be decomposed as

u(t, ·) = ḣ(t)u
α(t)
0 + α̇1(t)u

α(t)
1 + α̇2(t)u

α(t)
2 ,

p(t, ·) = ḣ(t)p
α(t)
0 + α̇1(t)p

α(t)
1 + α̇2(t)p

α(t)
2 .

By linearity of the Cauchy stress tensor with respect to u and p, the relation (2.17) becomes:

ḣ(t)F0(α(t)) · e1 = − (α̇1(t)F1(α(t)) + α̇2(t)F2(α(t))) · e1 , (2.21)

where for every i ∈ {0, 1, 2} and every α ∈ R2 satisfying (2.18), we have set:

Fi(α) =

∫
∂S(α)

σ(uαi , p
α
i )n dΓ (2.22)

with σ(uαi , p
α
i ) =

(
∇uαi + (∇uαi )>

)
− pαi I3.

Thus the control problem can be recast as:

ḣF0(α) · e1 = − (λ1F1(α) + λ2F2(α)) · e1 , (2.23a)

α̇ = λ , (2.23b)

where λ = (λ1, λ2)> ∈ R2 represents the control of the system whereas (h, α1, α2)> ∈ R3 is the system’s
state. Even if α represents the physical control of the swimming system, it is more convenience for analysis
to consider λ = α̇ as the control variable since this will allow to control both the shape of the swimmer
and its position.

Let us also set the initial conditions for the system (2.23):

h(0) = 0 and α(0) = 0 , (2.24)

and the target position to be reached in a time T > 0:

h(T ) = hf 6= 0 and α(T ) = 0 . (2.25)
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These initial and final conditions mean that the micro-swimmer is the unit sphere located at the origin
at initial time and a unit sphere located in hfe1 at final time T .

We point out that a state constraint on α is needed to be able to well define Fi(α(t)) for every
time t > 0. This constraint is given by (2.3). But since δ1 and δ2 are assumed to be C1-functions on
[0, π], we assume the following stronger condition:

|α| :=
√
α2

1 + α2
2 6 ς , (2.26)

with ς > 0 is a given small enough parameter so that if α satisfies (2.26) then the constraint (2.3) is also
satisfied

3 Stokes system

In this section, we give some well-posedness and regularity properties on exterior Stokes problem which
will be useful for controllability purpose. We first define the weighted Sobolev space W 1

0 (F(α)).

Definition 3.1. Let S ⊂ R3 a compact set with Lipschitz continuous boundary and F = R3 \ S. We
define the space

W 1
0 (F) =

{
ϕ ∈ L2

loc(F) , ∇ϕ ∈ L2(F)3 ,
√

1 + |x|2ϕ ∈ L2(F)
}
, (3.1)

endowed with the norm

‖ϕ‖W 1
0 (F) =

∥∥∥√1 + |x|2ϕ
∥∥∥
L2(F)

+ ‖∇ϕ‖L2(F)3 ϕ ∈W 1
0 (F) .

The following result is borrowed from [11].

Theorem 3.1. Let S ⊂ R3 a compact set with Lipschitz continuous boundary and F = R3 \ S. For

every v ∈ H
1
2 (∂S)3, there exists a unique weak solution (u, p) ∈ W 1

0 (F)3 × L2(F) of the exterior Stokes
problem:

−∆u +∇p = 0 in F , (3.2a)

divu = 0 in F , (3.2b)

u = v on ∂S . (3.2c)

In addition, there exists a constant c(F) > 0 such that:

‖u‖W 1
0 (F)3 + ‖p‖L2(F) 6 c(F)‖v‖

H
1
2 (∂S)3

.

The limit lim
|x|→∞

u(x) = 0 has to be understood in a weak sense,
√

1 + |x|2u(x) ∈ L2(F)3. In addition,

for every u ∈ W 1
0 (F), u|∂F ∈ H

1
2 (F). Consequently, the expression

∫
∂F
σ(u, p)n dΓ is seen as a duality

product (since σ(u, p)n ∈ H
−1
2 (∂F)3 and 1 ∈ H

1
2 (∂F)) and by Green formula (to gather with divu =

divu0), we also have:

e1 ·
∫
∂F
σ(u, p)n dΓ = 2

∫
F

D(u) : D(u0) dx , (3.3)
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where (u, p) ∈ W 1
0 (F)3 × L2(F) solves (3.2) with boundary condition v ∈ H

1
2 (∂F) and (u0, p0) ∈

W 1
0 (F)3 × L2(F) solves (3.2) with boundary condition u0 = e1 ∈ H

1
2 (∂F) and where D(u) is the

symmetric strain tensor,

D(u) = 1
2

(
∇u + (∇u)⊥

)
.

In particular, we have:

e1 ·
∫
∂F
σ(u0, p0)n dΓ = 2

∫
F

D(u0) : D(u0) dx > 0 , (3.4)

As a consequence of (3.4) and [18, Lemma 1] or [20, Theorem 2.6], we have the following:

Proposition 3.1. For ς > 0 small enough, the mapping:

α ∈ R2 7→ Fi(α) · e1

F0(α) · e1
∈ R3 (i ∈ {1, 2}) ,

with Fi defined by (2.22), is of class C∞ on the ball B0(ς) ⊂ R2 centered at 0, with radius ς.

Remark 3.1. In fact, it is proved in [18, Lemma 1] that this mapping is analytical but in this note we
only need the C∞ regularity.

4 Controllability and time optimal controllability

Let ς > 0 small enough so that the result of Proposition 3.1 holds. For every α ∈ B0(ς), we define

V (α) =
−1

F0(α) · e1

(
F1(α) · e1

F2(α) · e1

)
. The control system (2.23) can be written as:

ḣ = V (α) · λ , (4.1a)

α̇ = λ , (4.1b)

with the initial condition (2.24), the final target (2.25) and the state constraint (2.26). Due to Proposition
3.1, V ∈ C∞(B0(ς),R2) for ς > 0 small enough. The following controllability result holds.

Proposition 4.1. Let ς > 0 and V ∈ C∞(B0(ς),R2) be given. Assume that ∇V (0) 6= (∇V (0))>. Then,
for every hf ∈ R∗ and every T > 0, there exists λ ∈ C0([0, T ],R2) such that the solution of (4.1) with the
initial condition (2.24) satisfies the final condition (2.25) together with the state constraint (2.26) on α.

Proof. Let us write f1(h, α) =

V1(α)
1
0

 and f2(h, α) =

V2(α)
0
1

 for V (α) = (V1(α), V2(α))>. The

system (4.1) becomes:
d

dt

(
h
α

)
= λ1f1(h, α) + λ2f2(h, α) .

The Lie bracket of f1 and f2 at the point 0 is given by:

[f1, f2]0 = ∂α1V2(0)− ∂α2V1(0) ,

which does not vanishes if ∇V (0) is not a symmetric matrix. Thus, under this assumption, the Lie
algebra generated by {f1, f2} and evaluated at the point 0 is of dimension 3. In addition, this lie algebra
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is independent of h and the fist order Lie bracket is continuous with respect to α. Therefore, there exists
ε > 0 such that for every (h, α) ∈ R × B0(ε), the Lie algebra generated by {f1, f2} evaluated at the
point (h, α) is of dimension 3. The result follows from Chow’s Theorem (see for instance [27, chap. 5,
Proposition 5.14], [1] or [14]).

Remark 4.1. From [20], there exists δ1, δ2 ∈ C1([0, π],R) such that ∇V (0) is not symmetric. Moreover,
using the arguments of [18], this situation is generic.

This result combined with the Filipov Theorem (see for instance [1, 8, 13]) leads to the following
optimal control result:

Proposition 4.2. Let ς > 0 and V ∈ C∞(B0(ς),R2) such that ∇V (0) 6= (∇V (0))>. Then, the set of
times T such that there exists λ ∈ BV (0, T )2 with |λ(t)| 6 1 for almost every time t ∈ [0, T ] and such
that the solution (h, α) of (4.1) with the initial condition (2.24) satisfies the final condition(2.25) together
with the state constraint (2.26) on α, admits a minimum value T ? = T ?(hf , ς).

Remark 4.2. The constraint |λ(t)| 6 1 on the deformation velocity λ is necessary to make the time
minimal control problem relevant. Without any constraint on the control λ, the minimal time tends to 0
and the corresponding time optimal control does not make sense.

5 Approximations for small deformations

For a small parameter ς > 0, we have V (α) = V (0) + ∇V (0)α + o(ς) for every α ∈ B0(ς). Instead of
considering the time optimal controllability of the system (4.1), we first consider the approximated linear
system:

ḣ = (V (0) +∇V (0)α) · λ , (5.1a)

α̇ = λ , (5.1b)

with the initial condition (2.24), the final target (2.25) and with the state constraint (2.26) on α. We
assume that the Jacobian matrix of V at α = 0 is not symmetric that is ∇V (0) 6= (∇V (0))>. Then,
applying Proposition 4.2 we deduce that there exists a minimal time T ? such that the solution (h, α, λ)
of the control problem (5.1) with the initial condition (2.24) satisfies h(T ?) = hf , α(T ?) = 0 with the
state constraint (2.26) on α. In addition, according to [19, Proposition 7], this optimal time T ? and time
optimal controls can be computed.

Proposition 5.1. Let hf 6= 0, ς > 0 and V ∈ C∞(B0(ς),R2) with ∇V (0) 6= (∇V (0))>. Let γ 6= 0 such

that γJ = 1
2

(
∇V (0)− (∇V (0))>

)
with J =

(
0 −1
1 0

)
and

d? =

√
2|hf |
π|γ|

and τ =
πς

2
.

Then, the minimal time T ? of the control problem (5.1),(2.24),(2.25),(2.26) is given by:

T ? =

πd
? if ς > d? ,

π(d?)2

2ς
+ τ otherwise.

Moreover, the time optimal control λ? is continuous and given by:
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• If ς > d?,

λ?(t) = R

(
sign(hf )

2π t

T ?

)
λ0 (t ∈ [0, T ?]) ;

• if ς < d?,

λ?(t) =



R

(
sign(hf )

ς
2t

)
λ0 if t ∈ [0, τ) ,

−R
(

sign(hf )

ς
(t− τ)

)
λ0 if t ∈ [τ, T ? − τ ] ,

−R
(

sign(hf )

ς
(2t− T ?)

)
λ0 if t ∈ (T ? − τ, T ?] .

In the above, λ0 ∈ R2 is any vector such that |λ0| = 1 and for every θ ∈ R,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
denotes the rotation matrix of angle θ.

Proof. Since the initial and final conditions on α are the same, that is α(0) = α(T ), it can be easily
proved that λ is a control on [0, T ] for the system (5.1), (2.24)–(2.26) if and only if λ is a control on [0, T ]
for the following system:

ḣ =
(

1
2

(
∇V (0) + (∇V (0))>

)
α
)
· λ , (5.2a)

α̇ = λ , (5.2b)

together with (2.24)–(2.26). The result follows from [19, Proposition 7].

Remark 5.1. Let us explain the formulae of the optimal solution given in Proposition 5.1. The optimal
deformation α?(t) =

∫ t
0 λ

?(s) ds possesses the following characteristics (see Figure 4):

• If ς > d?, the optimal trajectory t 7→ α?(t) is a circle of diameter d?, starting from 0;

• if ς < d?, the optimal trajectory t 7→ α?(t) is composed by three arcs of circle. The first arc of circle
is an half-circle of diameter ς, starting from 0 . The second one lies on the circle of diameter 2ς,
centred on the origin 0. Finally, the third arc of circle is an half-circle of diameter ς, reaching the
origin 0 at the final time t = T ? .
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0

α2

α1

|α| = ς

λ0

d?

0

α2

α1

|α| = ς

λ0
α(T ? − τ )

α(τ )

(a) Case ς > d?. (b) Case ς < d?.

Figure 4: Typical time optimal trajectories of α = (α1 α2)>.

6 Numerical computation of a time optimal trajectory

Let us consider the deformations D1 and D2 given by (2.2) with δ1(θ) = P2(cos θ) and δ2(θ) = P3(cos θ)
where P2 (resp. P3) is the Legendre polynomial of order 2 (resp. 3). With these two elementary defor-
mations, we obtain from [24],

V (0) = 0 and ∇V (0) =

(
0 6

35
4
15 0

)
.

These expressions allow us to compute the explicit form of the time optimal controls for the approximate
linearized system (5.1).

In order to numerically compute the fluid forces Fi(α) · e1 for i ∈ {0, 1, 2}, we use the spherical
harmonics expansion of the exterior Stokes solution given in [7] (see also [12] or [24]). Then, we compute
the time optimal controls by using a direct method inspired from [27, Chap. 9, Part II, § 1] which is based
on the time discretization of the differential equations for h, α and λ. As a result, the time optimal control
problem with state constraint is approximated by a nonlinear optimization problem of finite dimension.
The initial guess for the discrete nonlinear optimization problem is chosen as the explicit solution of
the approximate linear control problem (5.1) given in Proposition 5.1. We expect that the approximate
optimal deformation for the linearized problem is close to the optimal solution for the nonlinear problem,
so that the direct method will converge quickly.

We apply this computational method with the deformation D1 and D2 given above through Legendre
polynomials and we choose ς = 0.3 and hf = 1

2 . The optimal trajectories for h and α are depicted on
Figure 5. The optimal time is T ? ' 48.9.

We numerically observe on Figure 5 that the optimal trajectory for α is mainly periodic. On Figure 6,
we also give the optimal trajectory of h during a period in time and finally we plot on Figure 7 the
different shapes of the swimmer under the optimal deformation for different instants in the time period .
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Figure 5: Optimal trajectories for the system (4.1), (2.24)–(2.26) with deformations D1 = rP2(cos θ)er
and D2 = rP3(cos θ)er, ς = 0.3 and hf = 1
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Figure 6: Optimal trajectory of h between t0 = 0.5384 and t1 = 2.3002 corresponding to one period of
α.

13



(a) t = 0.5383 (b) t = 0.7331 (c) t = 0.9299 (d) t = 1.1256

(e) t = 1.3213 (f) t = 1.5172 (g) t = 1.7129 (h) t = 1.9087

(i) t = 2.1035 (j) t = 2.3002

Figure 7: Optimal shapes of the swimmer between t0 = 0.5384 and t1 = 2.3002.
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7 Conclusion

In this note we have presented some arguments and results to tackle the numerical resolution of the time
optimal swimmer problem when the shapes of the swimmer are small deformations of the unit sphere.
Mainly, our strategy is based on the explicit computation of time optimal controls for a state constraint
Brockett system which approximates the original nonlinear control problem. This idea could also be
applied to the work of F. Alouges, A. DeSimone and L. Heltai [2].

The work presented here is based on two elementary deformations and the swimmer’s shapes are close
to the unit sphere. However, it is easy to extend this work to the case of a finite number of elementary
deformations and where the swimmer’s shapes are close to any reference shape.

Finally, we observe numerically that the trajectory for α is mainly periodic. It would be interesting
to prove rigorously this property. For instance, one could expect the following result : for |hf | large
enough and for α ∈ A with A a compact set of R2, the trajectory of α is composed by one starting curve
followed by a periodic curve and ending with a final curve. Such a result would be a real improvement
for numerical computations since we would only have to solve three simpler (but coupled) time optimal
control problems. In addition, with such a strategy, numerical errors would be reduced.
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