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We show a simple and easily implementable solution to the word problem for virtual braid groups.

Introduction

Virtual braid groups were introduced by L. Kauffman in his seminal paper on virtual knots and links [START_REF] Kauffman | Virtual knot theory[END_REF]. They can be defined in several ways, such as in terms of Gauss diagrams [START_REF] Bar Natan | Finite Type Invariants of w-Knotted Objects I: w-Knots and the Alexander Polynomial[END_REF][START_REF] Bruno | Virtual braids from a topological viewpoint[END_REF], in terms of braids in thickened surfaces [START_REF] Bruno | Virtual braids from a topological viewpoint[END_REF], and in terms of virtual braid diagrams. The latter will be our starting point of view.

A virtual braid diagram on n strands is a n-tuple β = (b 1 , . . . , b n ) of smooth paths in the plane R 2 satisfying the following conditions.

(a) b i (0) = (i, 0) for all i ∈ {1, . . . , n}.

(b) There exists a permutation g ∈ S n such that b i (1) = (g(i), 1) for all i ∈ {1, . . . , n}.

(c) (p 2 • b i )(t) = t for all i ∈ {1, . . . , n} and all t ∈ [0, 1], where p 2 : R 2 → R denotes the projection on the second coordinate.

(d) The b i 's intersect transversely in a finite number of double points, called the crossings of the diagram. Each crossing is endowed with one of the following attributes: positive, negative, virtual. In the figures they are generally indicated as in Figure 1.1. Let V BD n be the set of virtual braid diagrams on n strands, and let ∼ be the equivalence relation on V BD n generated by ambient isotopy and the virtual Reidemeister moves depicted in Figure 1.2. The concatenation of diagrams induces a group structure on V BD n / ∼. The latter is called virtual braid group on n strands, and is denoted by V B n .

It was observed in [START_REF] Kamada | Braid presentation of virtual knots and welded knots[END_REF][START_REF] Vershinin | On homology of virtual braids and Burau representation[END_REF] that V B n has a presentation with generators σ 1 , . . . , σ n-1 , τ 1 , . . . , τ n-1 , and relations τ 2 i = 1 for 1 ≤ i ≤ n -1 σ i σ j = σ j σ i , σ i τ j = τ j σ i , and τ i τ j = τ j τ i for |i -j| ≥ 2 σ i σ j σ i = σ j σ i σ j , σ i τ j τ i = τ j τ i σ j , and τ i τ j τ i = τ j τ i τ j for |i -j| = 1 1 positive negative virtual A solution to the word problem for virtual braid groups was shown in [START_REF] Godelle | K(π, 1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups[END_REF]. However, this solution is quite theoretical and its understanding requires some heavy technical knowledge on Artin groups. Therefore, it is incomprehensible and useless for most of the potential users, including low dimensional topologists. Moreover, its implementation would be difficult. Our aim here is to show a new solution, which is simpler and easily implementable, and whose understanding does not require any special technical knowledge. This new solution is in the spirit of the one shown in [START_REF] Godelle | K(π, 1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups[END_REF], in the sense that one of the main ingredients in its proof is the study of parabolic subgroups in Artin groups.

We have not calculated the complexity of this algorithm, as this is probably at least exponential because of the inductive step 3 (see next section). Nevertheless, it is quite efficient for a limited number of strands (see the example at the end of Section 2), and, above all, it should be useful to study theoretical questions on V B n such as the faithfulness of representations of this group in automorphism groups of free groups and/or in linear groups. Note that the faithfulness of such a representation will immediately provide another, probably faster, solution to the word problem for V B n .

The Burau representation easily extends to V B n [START_REF] Vershinin | On homology of virtual braids and Burau representation[END_REF], but the question whether V B n is linear or not is still open. A representation of V B n in Aut(F n+1 ) was independently constructed in [START_REF] Bardakov | Virtual and welded links and their invariants[END_REF] and [START_REF] Manturov | On the recognition of virtual braids[END_REF], but such a representation has recently been proven to be not faithful for n ≥ 4 [8, Proposition 5.3] (see the example at the end of Step 1). So, we do not know yet any representation on which we can test our algorithm.

In [START_REF]Virtual braids and virtual curve diagrams[END_REF], Chterental shows a faithful action of V B n on a set of objects that he calls "virtual curve diagrams". We have some hope to use this action to describe another explicit solution to the word problem for V B n . But, for now, we do not know any formal definition of this action, and how it could be encoded in an algorithm.
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The algorithm

Our solution to the word problem for V B n is divided into four steps. In Step 1 we define a subgroup KB n of V B n and a generating set S for KB n , and we show an algorithm (called Algorithm A) which decides whether an element of V B n belongs to KB n and, if yes, determines a word over S ±1 which represents this element. For X ⊂ S, we denote by KB n (X ) the subgroup of KB n generated by X . The other three steps provide a solution to the word problem for KB n (X ) which depends recursively on the cardinality of X . Step 2 is the beginning of the induction. More precisely, the algorithm proposed in Step 2 (called Algorithm B) is a solution to the word problem for KB n (X ) when X is a full subset of S (the notion of "full subset" will be also defined in Step 2; for now, the reader just need to know that singletons are full subsets). In Step 3 we suppose given a solution to the word problem for KB n (X ), and, for a given subset Y ⊂ X , we show an algorithm which solves the membership problem for KB n (Y) in KB n (X ) (Algorithm C). In Step 4 we show an algorithm which solves the word problem for KB n (X ) when X is not a full subset, under the assumption that the group KB n (Y) has a solvable word problem for any proper subset Y of X (Algorithm D).

Step 1

Recall that S n denotes the group of permutations of {1, . . . , n}. We denote by θ : V B n → S n the epimorphism which sends σ i to 1 and τ i to (i, i + 1) for all 1 ≤ i ≤ n -1, and by KB n the kernel of θ. Note that θ has a section ι : S n → V B n which sends (i, i + 1) to τ i for all 1 ≤ i ≤ n -1, and therefore V B n is a semi-direct product V B n = KB n S n . The following proposition is proved in Rabenda's master thesis [15] which, unfortunately, is not available anywhere. However, its proof can also be found in [START_REF] Bardakov | Combinatorial properties of virtual braids[END_REF]. Proposition 2.1 (Rabenda [15]). For 1 ≤ i < j ≤ n we set

δ i,j = τ i τ i+1 • • • τ j-2 σ j-1 τ j-2 • • • τ i+1 τ i , δ j,i = τ i τ i+1 • • • τ j-2 τ j-1 σ j-1 τ j-1 τ j-2 • • • τ i+1 τ i .
Then KB n has a presentation with generating set

S = {δ i,j | 1 ≤ i = j ≤ n} ,
and relations δ i,j δ k, = δ k, δ i,j for i, j, k, distinct δ i,j δ j,k δ i,j = δ j,k δ i,j δ j,k for i, j, k distinct
The virtual braids δ i,j and δ j,i are depicted in Figure 2.1.

i j i j δ i,j δ j,i Figure 2.1. Generators for KB n .
The following is an important tool in the forthcoming Algorithm A.

Lemma 2.2 (Bardakov, Bellingeri [START_REF] Bardakov | Combinatorial properties of virtual braids[END_REF]). Let u be a word over {τ 1 , . . . , τ n-1 }, let ū be the element of V B n represented by u, and let i, j ∈ {1, . . . , n}, i = j. Then ūδ i,j ū-1 = δ i ,j , where i = θ(ū)(i) and j = θ(ū)(j).

Note that τ

-1 i = τ i , since τ 2 i = 1, for all i ∈ {1, . . . , n -1}.
Hence, the letters τ -1 1 , . . . , τ -1 n-1 are not needed in the above lemma and below. Now, we give an algorithm which, given a word u over {σ ±1 1 , . . . , σ ±1 n-1 , τ 1 , . . . , τ n-1 }, decides whether the element ū of V B n represented by u belongs to KB n . If yes, it also determines a word u over S ±1 = {δ ± i,j | 1 ≤ i = j ≤ n} which represents ū. The fact that this algorithm is correct follows from Lemma 2.2.

Algorithm A. Let u be a word over {σ ±1 1 , . . . , σ ±1 n-1 , τ 1 , . . . , τ n-1 }. We write u in the form u = v 0 σ ε 1 i 1 v 1 • • • v -1 σ ε i v
, where v 0 , v 1 , . . . , v are words over {τ 1 , . . . , τ n-1 }, and ε 1 , . . . , ε ∈ {±1}. On the other hand, for a word

v = τ j 1 • • • τ j k over {τ 1 , . . . , τ n-1 }, we set θ(v) = (j 1 , j 1 + 1) • • • (j k , j k + 1) ∈ S n . Note that θ(ū) = θ(v 0 ) θ(v 1 ) • • • θ(v ). If θ(ū) = 1, then ū ∈ KB n . If θ(ū) = 1, then ū ∈ KB n , and ū is represented by u = δ ε 1 a 1 ,b 1 δ ε 2 a 2 ,b 2 • • • δ ε a ,b , where a k = θ(v 0 • • • v k-1 )(i k ) and b k = θ(v 0 • • • v k-1 )(i k + 1)
for all k ∈ {1, . . . , }.

Example. In [START_REF]Virtual braids and virtual curve diagrams[END_REF] it was proven that the Bardakov-Manturov representation of V B n in Aut(F n+1 ) (see for instance [START_REF] Bardakov | Virtual and welded links and their invariants[END_REF] for the definition) is not faithful, showing that the element ω = (τ 3 σ 2 τ 1 σ -1 2 ) 3 is non-trivial in V B 4 while the corresponding automorphism of F 5 is trivial. In [START_REF]Virtual braids and virtual curve diagrams[END_REF] the nontriviality of ω is shown by means of an action on some curve diagrams, but this fact can be easily checked with Algorithm A. Indeed,

θ(ω) = ((3, 4)(1, 2)) 3 = (3, 4)(1, 2) = 1, hence ω = 1.

Step 2

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (m s,t ) s,t∈S , indexed by the elements of S, such that m s,s = 1 for all s ∈ S, and m s,t = m t,s ∈ {2, 3, 4, . . . } ∪ {∞} for all s, t ∈ S, s = t. We represent this Coxeter matrix with a labelled graph Γ = Γ M , called Coxeter diagram. The set of vertices of Γ is S. Two vertices s, t ∈ S are connected by an edge labelled by m s,t if m s,t = ∞. A = S | s, t ms,t = t, s ms,t for all s, t ∈ S, s = t and m s,t = ∞ .

The Coxeter group of Γ, denoted by W = W (Γ), is the quotient of A by the relations s 2 = 1, s ∈ S.

Example. Let VΓ n be the Coxeter diagram defined as follows. The set of vertices of VΓ n is S. If i, j, k, ∈ {1, . . . , n} are distinct, then δ i,j and δ k, are connected by an edge labelled by 2. If i, j, k ∈ {1, . . . , n} are distinct, then δ i,j and δ j,k are connected by an edge labelled by 3. There is no other edge in VΓ n . Then, by Proposition 2.1, KB n is isomorphic to A(VΓ n ).

Let Γ be a Coxeter diagram. For X ⊂ S, we denote by Γ X the subdiagram of Γ spanned by X, by A X the subgroup of A = A(Γ) generated by X, and by W X the subgroup of W = W (Γ) generated by X. By [START_REF] Van Der Lek | The homotopy type of complex hyperplane complements[END_REF], A X is the Artin group of Γ X , and, by [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines[END_REF], W X is the Coxeter group of Γ X .

For X ⊂ S, we denote by KB n (X ) the subgroup of KB n generated by X . By the above, KB n (X ) has a presentation with generating set X and relations

• st = ts if s and t are connected in VΓ n by an edge labelled by 2,

• sts = tst if s and t are connected in VΓ n by an edge labelled by 3.

Definition. We say that a subset X of S is full if any two distinct elements s, t of X are connected by an edge of VΓ n . Recall that the aim of Step 2 is to give a solution to the word problem for KB n (X ) when X is full.

We denote by F n = F (x 1 , . . . , x n ) the free group of rank n freely generated by x 1 , . . . , x n . For i, j ∈ {1, . . . , n}, i = j, we define ϕ i,j ∈ Aut(F n ) by

ϕ i,j (x i ) = x i x j x -1 i , ϕ i,j (x j ) = x i , and ϕ i,j (x k ) = x k for k ∈ {i, j} .
It is easily checked from the presentation in Proposition 2.1 that the map S → Aut(F n ), δ i,j → ϕ i,j , induces a representation ϕ : KB n → Aut(F n ). For X ⊂ S, we denote by ϕ X : KB n (X ) → Aut(F n ) the restriction of ϕ to KB n (X ). The following will be proved in Section 3.

Proposition 2.3. If X is a full subset of S, then ϕ X : KB n (X ) → Aut(F n ) is faithful.
Notation. From now on, if u is a word over S ±1 , then ū will denote the element of KB n represented by u.

Algorithm B. Let X be a full subset of S, and let

u = s ε 1 1 • • • s ε be a word over X ±1 . We have ϕ X (ū) = ϕ X (s 1 ) ε 1 • • • ϕ X (s ) ε . If ϕ(ū) = Id, then ū = 1. Otherwise, ū = 1.

Step 3

Let G be a group, and let H be a subgroup of G. A solution to the membership problem for H in G is an algorithm which, given g ∈ G, decides whether g belongs to H or not. In the present step we will assume that KB n (X ) has a solution to the word problem, and, from this solution, we will give a solution to the membership problem for KB n (Y) in KB n (X ), for Y ⊂ X . Furthermore, if the tested element belongs to KB n (Y), then this algorithm will determine a word over Y ±1 which represents this element.

Let u be a word over S. (Remark: here the alphabet is S, and not S ±1 .)

• Suppose that u is written in the form u 1 ssu 2 , where u 1 , u 2 are words over S and s is an element of S. Then we say that u = u 1 u 2 is obtained from u by an M -operation of type I.

• Suppose that u is written in the form u 1 stu 2 , where u 1 , u 2 are words over S and s, t are two elements of S connected by an edge labelled by 2. Then we say that u = u 1 tsu 2 is obtained from u by an M -operation of type II (2) .

• Suppose that u is written in the form u 1 stsu 2 , where u 1 , u 2 are words over S and s, t are two elements of S connected by an edge labelled by 3. Then we say that u = u 1 tstu 2 is obtained from u by an M -operation of type II (3) . Let Y be a subset of S.

• Suppose that u is written in the form tu , where u is a word over S and t is an element of Y. Then we say that u is obtained from u by an M -operation of type III Y .

We say that u is M -reduced (resp. M Y -reduced ) if its length cannot be shortened by Moperations of type I, II (2) , II (3) (resp. of type I, II (2) , II (3) , III Y ). An M -reduction (resp. M Yreduction) of u is an M -reduced word (resp. M Y -reduced word) obtained from u by M -operations (resp. M Y -operations). We can easily enumerate all the words obtained from u by M -operations (resp. M Y -operations), hence we can effectively determine an M -reduction and/or an M Yreduction of u.

Let Y be a subset of S. From a word u = s ε 1 1 • • • s ε over S ±1 , we construct a word π Y (u) over Y ±1 as follows.

• For i ∈ {0, 1, . . . , } we set u + i = s 1 • • • s i (as ever, u + 0 is the identity).

• For i ∈ {0, 1, . . . , } we calculate an M Y -reduction v + i of u + i . • For a word v = t 1 • • • t k over S, we denote by op(v) = t k • • • t 1 the anacycle of v. Let i ∈ {1, . . . , }. If ε i = 1, we set w + i = v + i-1 •s i •op(v + i-1 ). If ε i = -1, we set w + i = v + i •s i •op(v + i ). • For all i ∈ {1, . . . , } we calculate an M -reduction r i of w + i . • If r i is of length 1 and r i ∈ Y, we set T i = r ε i i . Otherwise we set T i = 1. • We set π Y (u) = T 1 T 2 • • • T .
The proof of the following is given in Section 4. Algorithm C. Take two subsets X and Y of S such that Y ⊂ X , and assume given a solution to the word problem for KB n (X ). Let u be a word over X ±1 . We calculate v = π Y (u). If uv -1 = 1, then ū ∈ KB n (Y). If uv -1 = 1, then ū ∈ KB n (Y) and v is a word over Y ±1 which represents the same element as u.

We can use Algorithm C to show that the representation ϕ : KB n → Aut(F n ) of Step 2 is not faithful. Indeed, let α = δ 1,3 δ 3,2 δ 3,1 and β = δ 2,3 δ 1,3 δ 3,2 . A direct calculation shows that ϕ(α) = ϕ(β). Now, set X = S and Y = {δ 1,3 , δ 3,2 , δ 3,1 }. We have π Y (δ 1,3 δ 3,2 δ 3,1 ) = δ 1,3 δ 3,2 δ 3,1 , hence α ∈ KB n (Y), and we have π Y (δ 2,3 δ 1,3 δ 3,2 ) = 1 and β = 1, hence β ∈ KB n (Y). So, α = β.

Step 4

Now, we assume that X is a non-full subset of S, and that we have a solution to the word problem for KB n (Y) for any proper subset Y of X (induction hypothesis). We can and do choose two proper subsets X 1 , X 2 ⊂ X satisfying the following properties.

(a

) X = X 1 ∪ X 2 . (b) Let X 0 = X 1 ∩ X 2 .
There is no edge in VΓ n connecting an element of X 1 \ X 0 to an element of X 2 \ X 0 . It is easily seen from the presentations of the KB n (X i )'s given in Step 2 that we have the amalgamated product

KB n (X ) = KB n (X 1 ) * KBn(X 0 ) KB n (X 2 ) .
Our last algorithm is based on the following result. This is well-known and can be found for instance in [START_REF] Serre | Arbres, amalgames[END_REF]Chap. 5.2].

Proposition 2.5. Let A 1 * B A 2 be an amalgamated product of groups. Let g 1 , . . . , g be a sequence of elements of A 1 A 2 different from 1 and satisfying the following condition:

if g i ∈ A 1 (resp. g i ∈ A 2 ), then g i+1 ∈ A 2 \B (resp. g i+1 ∈ A 1 \B
), for all i ∈ {1, . . . , -1}.

Then g 1 g 2 • • • g is different from 1 in A 1 * B A 2 .
Algorithm D. Let u be a word over X ±1 . We write u in the form u 1 u 2 • • • u , where

• u i is either a word over X ±1 1 , or a word over X ±1 2 , • if u i is a word over X ±1 1 (resp. over X ±1
2 ), then u i+1 is a word over X ±1 2 (resp. over X ±1 1 ). We decide whether ū is trivial by induction on . Suppose that = 1 and u = u 1 ∈ KB n (X j ) (j ∈ {1, 2}). Then we apply the solution to the word problem for KB n (X j ) to decide whether ū is trivial or not. Suppose that ≥ 2. For all i we set

v i = π X 0 (u i ). If u i v -1 i = 1 for all i, then ū = 1. Suppose that there exists i ∈ {1, . . . , } such that u i v -1 i = 1. Let u i = v 1 u 2 if i = 1, u i = u -1 v if i = , and u i = u i-1 v i u i+1 if 2 ≤ i ≤ -1. Set v = u 1 • • • u i-2 u i u i+2 • • • u . Then ū = v
and, by induction, we can decide whether v represents 1 or not.

VΓ 4 (X (1)) VΓ 4 (X (2)) VΓ 4 (X (3)) VΓ 4 (X (4)) VΓ 4 (X (5)) VΓ 4 (X (6)) VΓ 4 (X (7)) VΓ 4 (X (8)) Figure 2.3. Coxeter graph VΓ 4 (X (k)).
We solve the word problem for KB 4 (X (k)) successively for k = 1, 2, . . . , 8, thanks to the following observations. Since X (8) = S, this will provide a solution to the word problem for KB 4 .

(

) Let k ∈ {1, . . . , 8}. Set X 0 (k) = X 1 (k) ∩ X 2 (k). 1 
Observe that there is no edge in VΓ 4 connecting an element of X 1 (k) \ X 0 (k) to an element of X 2 (k) \ X 0 (k). Hence, we can solve with Algorithm D the word problem for KB 4 (X (k)) from solutions to the word problem for KB 4 (X 1 (k)) and for KB 4 (X 2 (k)).

(2) The subsets X 1 (1) and X 2 (1) are full, hence we can solve the word problem for KB 4 (X 1 (1)) and for KB 4 (X 2 (1)) with Algorithm B.

(3) Let k ≥ 2. On the one hand, we have X 1 (k) = X (k-1). On the other hand, it is easily seen that there is an injective morphism VΓ 4 (X 2 (k)) → VΓ 4 (X (k -1)). Hence, by the remark given at the beginning of the subsection, we can solve the word problem for KB 4 (X 1 (k)) and for KB 4 (X 2 (k)) from a solution to the word problem for KB 4 (X (k -1)).

Proof of Proposition 2.3

Recall that F n = F (x 1 , . . . , x n ) denotes the free group of rank n freely generated by x 1 , . . . , x n , and that we have a representation ϕ : KB n → Aut(F n ) which sends δ i,j to ϕ i,j , where ϕ i,j (x i ) = x i x j x -1 i , ϕ i,j (x j ) = x i , and ϕ i,j (x k ) = x k for k ∈ {i, j} .

For X ⊂ S, we denote by ϕ X : KB n (X ) → Aut(F n ) the restriction of ϕ to KB n (X ). In this section we prove that ϕ X is faithful if X is a full subset of S.

Moreover, if X 1 and X 2 are disjoint subsets of {x 1 , . . . , x n }, then the homomorphism

(ι X 1 × ι X 2 ) : Aut(F (X 1 )) × Aut(F (X 2 )) → Aut(F n ) (α 1 , α 2 ) → ι X 1 (α 1 ) ι X 2 (α 2 )
is well-defined and injective. From now on, we will assume Aut(F (X)) to be embedded in Aut(F n ) via ι X , for all X ⊂ {x 1 , . . . , x n }.

By abuse of notation, for X ⊂ S, we will also denote by supp(X ) the set {x i | i ∈ supp(X )}. Set X 1 = supp(X 1 ) and X 2 = supp(X 2 ). We have Im(ϕ

X i ) ⊂ Aut(F (X i )) for i = 1, 2, X 1 ∩ X 2 = ∅,
and KB n (X ) = KB n (X 1 )×KB n (X 2 ). Hence, Lemma 3.2 follows from the following claim whose proof is left to the reader.

Claim. Let f 1 : G 1 → H 1 and f 2 : G 2 → H 2 be two group homomorphisms. Let (f 1 × f 2 ) : (G 1 × G 2 ) → (H 1 × H 2 ) be the homomorphism defined by (f 1 × f 2 )(u 1 , u 2 ) = (f 1 (u 1 ), f 2 (u 2 )). Then (f 1 × f 2 )
is injective if and only if f 1 and f 2 are both injective.

For 2 ≤ m ≤ n we set

Z m = {δ 1,2 , . . . , δ m-1,m } , Zm = {δ 1,2 , . . . , δ m-1,m , δ m,1 } . Note that the map {σ 1 , . . . , σ m-1 } → Z m , σ i → δ i,i+1 , induces an isomorphism f m : B m → KB n (Z m
). This follows from the presentation of KB n (Z m ) given in Step 2 of Section 2. Similarly, for m ≥ 3, the map {σ 1 , . . . , σ m } → Zm ,

σ i → δ i,i+1 for 1 ≤ i ≤ m -1, σ m → δ m,1
, induces an isomorphism fm : Bm → KB n ( Zm ).

Recall that the symmetric group S n acts on S by g δ i,j = δ g(i),g(j) , and that this action induces an action of S n on KB n . On the other hand, there is a natural embedding S n → Aut(F n ), where g ∈ S n sends x i to x g(i) for all i ∈ {1, . . . , n}, and this embedding induces by conjugation an action of S n on Aut(F n ). It is easily seen that the homomorphism ϕ : KB n → Aut(F n ) is equivariant under these actions of S n .

Lemma 3.3. If X is a full and indecomposable nonempty subset of S, then there exist g ∈ S n and m ∈ {2, . . . , n} such that either X = g Z m , or X = g Zm and m ≥ 3.

Proof. An oriented graph Υ is the data of two sets, V (Υ), called set of vertices, and E(Υ), called set of arrows, together with two maps sou, tar : E(Υ) → V (Υ). We associate an oriented graph Υ X to any subset X of S as follows. The set of vertices is V (Υ X ) = supp(X ), the set of arrows is E(Υ X ) = X , and, for δ i,j ∈ X , we set sou(δ i,j ) = i and tar(δ i,j ) = j. Assume that X is a full and indecomposable nonempty subset of S. Since X is indecomposable, Υ X must be connected. Since X is full, if s, t ∈ X are two different arrows of Υ X with a common vertex, then there exist i, j, k ∈ {1, . . . , n} distinct such that either s = δ j,i and t = δ i,k , or s = δ i,j and t = δ k,i . This implies that Υ X is either an oriented segment, or an oriented cycle with at least 3 vertices (see Figure 3.1). If Υ X is an oriented segment, then there exist g ∈ S n and m ∈ {2, . . . , n} such that X = g Z m . If Υ X is an oriented cycle, then there exist g ∈ S n and m ∈ {3, . . . , n}, such that X = g Zm .

Proof of Proposition 2.3. Let X be a full nonempty subset of S. Write X = X 1 • • • X , where X j is an indecomposable nonempty subset. As observed above, each X j is also a full subset. Moreover, by Lemma 3.2, in order to show that ϕ X is faithful, it suffices to show that ϕ X j is faithful for all j ∈ {1, . . . , }. So, we can assume that X is a full and indecomposable nonempty subset of S. By Lemma 3.3, there exist g ∈ S n and m ∈ {2, . . . , n} such that either X = g Z m , or X = g Zm and m ≥ 3. Since ϕ is equivariant under the actions of S n , upon conjugating by g -1 , we can assume that either Let Γ be a Coxeter diagram, let S be its set of vertices, let A be the Artin group of Γ, and let W be its Coxeter group. Since we have s 2 = 1 in W for all s ∈ S, every element g in W can be represented by a word over S. Such a word is called an expression of g. The minimal length of an expression of g is called the length of g and is denoted by lg(g). An expression of g of length lg(g) is a reduced expression of g. Let Y be a subset of S, and let g ∈ W . We say that g is Y -minimal if it is of minimal length among the elements of the coset W Y g. The first ingredient in our proof of Proposition 2.4 is the following. Remark. For g ∈ W and s ∈ S, we always have either lg(sg) = lg(g) + 1, or lg(sg) = lg(g) -1. This is a standard fact on Coxeter groups that can be found for instance in [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines[END_REF]. So, the inequality lg(sg) > lg(g) means lg(sg) = lg(g)+1 and the inequality lg(sg) ≤ lg(g) means lg(sg) = lg(g)-1.

X = Z m , or X = Zm . Set Z m = {x 1 , . . . , x m } = supp(Z m ) = supp ( 
Let u be a word over S.

• Suppose that u is written in the form u 1 ssu 2 , where u 1 , u 2 are words over S and s is an element of S. Then we say that u = u 1 u 2 is obtained from u by an M -operation of type I.

Figure 1 . 1 .

 11 Figure 1.1. Crossings in a virtual braid diagram.

Figure 1 . 2 .

 12 Figure 1.2. Virtual Reidemeister moves.

  If a, b are two letters and m is an integer ≥ 2, we set a, b m = (ab) m 2 if m is even, and a, b m = (ab) m-1 2 a if m id odd. In other words, a, b m denotes the word aba • • • of length m. The Artin group of Γ is the group A = A(Γ) defined by the following presentation.

Proposition 2 . 4 .

 24 Let Y be a subset of S. Let u, v be two words over S ±1 . If ū = v, then π Y (u) = π Y (v). Moreover, we have ū ∈ KB n (Y) if and only if ū = π Y (u).

Figure 3 . 1 .

 31 Figure 3.1. Oriented segment and oriented cycle.

  Zm ), and identify F m with F (Z m ). Thenϕ Zm = ψ m • f -1 m and ϕ Zm = ψm • f -1 m , hence ϕ X isfaithful by Theorem 3.1. 4 Proof of Proposition 2.4 The proof of Proposition 2.4 is based on some general results on Coxeter groups and Artin groups. Recall that the definitions of Coxeter diagram, Artin group and Coxeter group are given at the beginning of Step 2 in Section 2. Recall also that, if Y is a subset of the set S of vertices of Γ, then Γ Y denotes the full subdiagram spanned by Y , A Y denotes the subgroup of A = A(Γ) generated by Y , and W Y denotes the subgroup of W = W (Γ) generated by Y .

Proposition 4 . 1 .

 41 (Bourbaki [6, Chap. IV,Exercise 3]). Let Y ⊂ S, and let g ∈ W . There exists a unique Y -minimal element lying in the coset W Y g. Moreover, the following conditions are equivalent.(a) g is Y -minimal, (b) lg(sg) > lg(g) for all s ∈ Y , (c) lg(hg) = lg(h) + lg(g) for all h ∈ W Y .

This terminology is derived from the theory of Coxeter groups.

Example

In order to illustrate our solution to the word problem for KB n , we turn now to give a more detailed and efficient version of the algorithm for the group KB 4 . We start with the following observation.

Remark. For X ⊂ S, we denote by VΓ n (X ) the full subgraph of VΓ n spanned by X . Let X , Y be two subsets of S. Note that an injective morphism of Coxeter graphs VΓ n (Y) → VΓ n (X ) induces an injective homomorphism KB n (Y) → KB n (X ). So, if we have a solution to the word problem for KB n (X ), then such a morphism would determine a solution to the word problem for KB n (Y).

The Coxeter graph VΓ 4 is depicted in Figure 2.2. Our convention in this figure is that a full edge is labelled by 3 and a dotted edge is labelled by 2. Note that there are two edges that go through "infinity", one connecting δ 2,1 to δ 4,3 , and one connecting δ 1,4 to δ 3,2 .

Coxeter graph VΓ 4 .

Consider the following subsets of S.

X

In this figure the elements of X 1 (k) are represented by punctures, while the elements of X 2 (k) are represented by small circles.

Consider the following groups.

The group B n is the classical braid group, and Bn is the affine braid group.

We define representations ψ n : B n → Aut(F n ) and ψn : Bn → Aut(F n ) in the same way as ϕ as follows.

The key of the proof of Proposition 2.3 is the following.

Theorem 3.1 (Artin [START_REF] Artin | Theory of braids[END_REF], Bellingeri, Bodin [START_REF] Bellingeri | The braid group of a necklace[END_REF]). The representations

The support of a generator δ i,j is defined to be supp(δ i,j ) = {i, j}. The support of a subset X of S is supp(X ) = ∪ s∈X supp(s). We say that two subsets X 1 and X 2 of S are perpendicular 1 if supp(X 1 ) ∩ supp(X 2 ) = ∅. Note that this condition implies that X 1 ∩ X 2 = ∅. More generally, we say that a family X 1 , . . . , X of subsets of S is perpendicular if supp(X i ) ∩ supp(X j ) = ∅ for all i = j. In that case we write

We say that a subset X of S is indecomposable if it is not the union of two perpendicular nonempty subsets. The following observations will be of importance in what follows.

Remark. Let X 1 and X 2 be two perpendicular subsets of S, and let X = X 1 X 2 .

(1) X is a full subset if and only if X 1 and X 2 are both full subsets.

(2) KB n (X ) = KB n (X 1 ) × KB n (X 2 ). Indeed, if δ i,j ∈ X 1 and δ k, ∈ X 2 , then i, j, k, are distinct, and therefore δ i,j and δ k, are connected by an edge labelled by 2, and δ i,j δ k, = δ k, δ i,j . Lemma 3.2. Let X 1 and X 2 be two perpendicular subsets of S, and let

Proof. For X ⊂ {x 1 , . . . , x n }, we denote by F (X) the subgroup of F n generated by X. There is a natural embedding ι X : Aut(F (X)) → Aut(F n ) defined by

• Suppose that u is written in the form u = u 1 s, t ms,t u 2 , where u 1 , u 2 are words over S and s, t are two elements of S connected by an edge labelled by m s,t . Then we say that u = u 1 t, s ms,t u 2 is obtained from u by an M -operation of type II. We say that a word u is M -reduced if its length cannot be shortened by M -operations of type I, II. The second ingredient in our proof is the following. Theorem 4.2 (Tits [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF]). Let g ∈ W .

(1) An expression w of g is a reduced expression if and only if w is M -reduced.

(2) Any two reduced expressions w and w of g are connected by a finite sequence of Moperations of type II.

Let Y be a subset of S. The third ingredient is a set-retraction ρ Y : A → A Y to the inclusion map ι Y : A Y → A, constructed in [START_REF] Godelle | K(π, 1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups[END_REF][START_REF] Charney | Convexity of parabolic subgroups in Artin groups[END_REF]. This is defined as follows. Let α be an element of A.

• Choose a word α = s 1 ε 1 • • • s ε over S ±1 which represents α.

, and write g i in the form g i = h i k i , where We turn now to apply these three ingredients to our group KB n and prove Proposition 2.4. Let KW n denote the quotient of KB n by the relations δ 2 i,j = 1, 1 ≤ i = j ≤ n. Note that KW n is the Coxeter group of the Coxeter diagram VΓ n . For Y ⊂ X , we denote by KW n (Y) the subgroup of KW n generated by Y. Lemma 4.4. Let g ∈ KW n .

(1) An expression w of g is a reduced expression if and only if w is M -reduced.

(2) Any two reduced expressions w and w of g are connected by a finite sequence of Moperations of type II (2) and II (3) .

(3) Let Y be a subset of S, and let w be a reduced expression of g. Then g is Y-minimal (in the sense given above) if and only if w is M Y -reduced.

Proof. Part (1) and Part (2) are Theorem 4.2 applied to KW n . So, we only need to prove Part (3).

Suppose that g is not Y-minimal. By Proposition 4.1, there exists s ∈ Y such that lg(sg) ≤ lg(g), that is, lg(sg) = lg(g) -1. Let w be a reduced expression of sg. The word sw is an expression of g and lg(sw ) = lg(w) = lg(g), hence sw is a reduced expression of g. By Theorem 4.2, w and sw are connected by a finite sequence of M -operations of type II (2) and II (3) . On the other hand, w is obtained from sw by an M -operation of type III Y . So, w is obtained from w by M -operations of type I, II (2) , II (3) and III Y , and we have lg(w ) < lg(w), hence w is not M Y -reduced.

Suppose that w is not M Y -reduced. Let w be an M Y -reduction of w, and let g be the element of KW n represented by w . Since w is an M Y -reduction of w, the element g lies in the coset KW n (Y) g. Moreover, lg(g ) = lg(w ) < lg(w) = lg(g), hence g is not Y-minimal. 

). Note that w + i is an expression ofz i . • Let i ∈ {1, . . . , }. Let r i be an M -reduction of w + i . By Lemma 4.4, r i is a reduced expression of z i . Note that we have z i ∈ Y if and only if r i is of length 1 and r i ∈ Y.

• Let i ∈ {1, . . . , }. If r i is of length 1 and r i ∈ Y, we set T i = r ε i i . Otherwise we set T i = 1. • By construction, we have ρY (α) = π Y (u) = T 1 T 2 • • • T .