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Abstract

We show a simple and easily implementable solution to the word problem for virtual braid
groups.
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1 Introduction

Virtual braid groups were introduced by L. Kauffman in his seminal paper on virtual knots and
links [10]. They can be defined in several ways, such as in terms of Gauss diagrams [2, 7], in
terms of braids in thickened surfaces [7], and in terms of virtual braid diagrams. The latter will
be our starting point of view.

A virtual braid diagram on n strands is a n-tuple β = (b1, . . . , bn) of smooth paths in the plane
R2 satisfying the following conditions.

(a) bi(0) = (i, 0) for all i ∈ {1, . . . , n}.
(b) There exists a permutation g ∈ Sn such that bi(1) = (g(i), 1) for all i ∈ {1, . . . , n}.
(c) (p2 ◦ bi)(t) = t for all i ∈ {1, . . . , n} and all t ∈ [0, 1], where p2 : R2 → R denotes the

projection on the second coordinate.
(d) The bi’s intersect transversely in a finite number of double points, called the crossings of

the diagram.
Each crossing is endowed with one of the following attributes: positive, negative, virtual. In
the figures they are generally indicated as in Figure 1.1. Let V BDn be the set of virtual
braid diagrams on n strands, and let ∼ be the equivalence relation on V BDn generated by
ambient isotopy and the virtual Reidemeister moves depicted in Figure 1.2. The concatenation
of diagrams induces a group structure on V BDn/ ∼. The latter is called virtual braid group on
n strands, and is denoted by V Bn.

positive negative virtual

Figure 1.1. Crossings in a virtual braid diagram.
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Figure 1.2. Virtual Reidemeister moves.

It was observed in [9, 15] that V Bn has a presentation with generators σ1, . . . , σn−1, τ1, . . . , τn−1,
and relations

τ2i = 1 for 1 ≤ i ≤ n− 1
σiσj = σjσi , σiτj = τjσi , and τiτj = τjτi for |i− j| ≥ 2

σiσjσi = σjσiσj , σiτjτi = τjτiσj , and τiτjτi = τjτiτj for |i− j| = 1

A solution to the word problem for virtual braid groups was shown in [8]. However, this solution
is quite theoretical and its understanding requires some heavy technical knowledge on Artin
groups. Therefore, it is incomprehensible and useless for most of the potential users, including
low dimensional topologists. Moreover, its implementation would be difficult. Our aim here is
to show a new solution, which is simpler and easily implementable, and whose understanding
does not require any special technical knowledge. This new solution is in the spirit of the one
shown in [8], in the sense that one of the main ingredients in its proof is the study of parabolic
subgroups in Artin groups.

Acknowledgments. The research of the first author was partially supported by French grant
ANR-11-JS01-002-01.

2 The algorithm

Our solution to the word problem for V Bn is divided into four steps. In Step 1 we define
a subgroup KBn of V Bn and a generating set S for KBn, and we show an algorithm (called
Algorithm A) which decides whether an element of V Bn belongs to KBn and, if yes, determines a
word over S±1 which represents this element. For X ⊂ S, we denote by KBn(X ) the subgroup
of KBn generated by X . The other three steps provide a solution to the word problem for
KBn(X ) which depends recursively on the cardinality of X . Step 2 is the beginning of the
induction. More precisely, the algorithm proposed in Step 2 (called Algorithm B) is a solution
to the word problem for KBn(X ) when X is a full subset of S (the notion of ”full subset” will
be also defined in Step 2; for now, the reader just need to know that singletons are full subsets).
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In Step 3 we suppose given a solution to the word problem for KBn(X ), and, for a given subset
Y ⊂ X , we show an algorithm which solves the membership problem for KBn(Y) in KBn(X )
(Algorithm C). In Step 4 we show an algorithm which solves the word problem for KBn(X )
when X is not a full subset, under the assumption that the group KBn(Y) has a solvable word
problem for any proper subset Y of X (Algorithm D).

Step 1

Recall that Sn denotes the group of permutations of {1, . . . , n}. We denote by θ : V Bn → Sn

the epimorphism which sends σi to 1 and τi to (i, i + 1) for all 1 ≤ i ≤ n − 1, and by KBn

the kernel of θ. Note that θ has a section ι : Sn → V Bn which sends (i, i + 1) to τi for all
1 ≤ i ≤ n − 1, and therefore V Bn is a semi-direct product V Bn = KBn o Sn. The following
proposition is proved in a master thesis [12] which, unfortunately, is not available anywhere.
However, its proof can also be found in [3].

Proposition 2.1 (Rabenda [12]). For 1 ≤ i < j ≤ n we set

δi,j = τiτi+1 · · · τj−2σj−1τj−2 · · · τi+1τi ,

δj,i = τiτi+1 · · · τj−2τj−1σj−1τj−1τj−2 · · · τi+1τi .

Then KBn has a presentation with generating set

S = {δi,j | 1 ≤ i 6= j ≤ n} ,

and relations
δi,jδk,` = δk,`δi,j for i, j, k, ` distinct

δi,jδj,kδi,j = δj,kδi,jδj,k for i, j, k distinct

The virtual braids δi,j and δj,i are depicted in Figure 2.1.

i j i j

δi,j δj,i

Figure 2.1. Generators for KBn.

The following is an important tool in the forthcoming Algorithm A.
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Lemma 2.2 (Bardakov, Bellingeri [3]). Let u be a word over {τ1, . . . , τn−1}, let ū be the element
of V Bn represented by u, and let i, j ∈ {1, . . . , n}, i 6= j. Then ūδi,j ū

−1 = δi′,j′, where i′ =
θ(ū)(i) and j′ = θ(ū)(j).

Note that τ−1i = τi, since τ2i = 1, for all i ∈ {1, . . . , n− 1}. Hence, the letters τ−11 , . . . , τ−1n−1 are
not needed in the above lemma and below.

Now, we give an algorithm which, given a word u over {σ±11 , . . . , σ±1n−1, τ1, . . . , τn−1}, decides
whether the element ū of V Bn represented by u belongs to KBn. If yes, it also determines a
word u′ over S±1 = {δ±i,j | 1 ≤ i 6= j ≤ n} which represents ū. The fact that this algorithm is
correct follows from Lemma 2.2.

Algorithm A. Let u be a word over {σ±11 , . . . , σ±1n−1, τ1, . . . , τn−1}. We write u in the form

u = v0σ
ε1
i1
v1 · · · v`−1σε`i` v` ,

where v0, v1, . . . , v` are words over {τ1, . . . , τn−1}, and ε1, . . . , ε` ∈ {±1}. On the other hand, for
a word v = τj1 · · · τjk over {τ1, . . . , τn−1}, we set θ(v) = (j1, j1 + 1) · · · (jk, jk + 1) ∈ Sn. Note
that θ(ū) = θ(v0) θ(v1) · · · θ(v`). If θ(ū) 6= 1, then ū 6∈ KBn. If θ(ū) = 1, then ū ∈ KBn, and ū
is represented by

u′ = δε1a1,b1δ
ε2
a2,b2
· · · δε`a`,b` ,

where
ak = θ(v0 · · · vk−1)(ik) and bk = θ(v0 · · · vk−1)(ik + 1)

for all k ∈ {1, . . . , `}.

Step 2

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S , indexed by
the elements of S, such that ms,s = 1 for all s ∈ S, and ms,t = mt,s ∈ {2, 3, 4, . . . } ∪ {∞} for all
s, t ∈ S, s 6= t. We represent this Coxeter matrix with a labelled graph Γ = ΓM , called Coxeter
diagram. The set of vertices of Γ is S. Two vertices s, t ∈ S are connected by an edge labelled
by ms,t if ms,t 6=∞.

If a, b are two letters and m is an integer ≥ 2, we set 〈a, b〉m = (ab)
m
2 if m is even, and

〈a, b〉m = (ab)
m−1

2 a if m id odd. In other words, 〈a, b〉m denotes the word aba · · · of length m.
The Artin group of Γ is the group A = A(Γ) defined by the following presentation.

A = 〈S | 〈s, t〉ms,t = 〈t, s〉ms,t for all s, t ∈ S, s 6= t and ms,t 6=∞〉 .

The Coxeter group of Γ, denoted by W = W (Γ), is the quotient of A by the relations s2 = 1,
s ∈ S.

Example. Let VΓn be the Coxeter diagram defined as follows. The set of vertices of VΓn is S.
If i, j, k, ` ∈ {1, . . . , n} are distinct, then δi,j and δk,` are connected by an edge labelled by 2. If
i, j, k ∈ {1, . . . , n} are distinct, then δi,j and δj,k are connected by an edge labelled by 3. There
is no other edge in VΓn. Then, by Proposition 2.1, KBn is isomorphic to A(VΓn).
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Let Γ be a Coxeter diagram. For X ⊂ S, we denote by ΓX the subdiagram of Γ spanned by
X, by AX the subgroup of A = A(Γ) generated by X, and by WX the subgroup of W = W (Γ)
generated by X. By [11], AX is the Artin group of ΓX , and, by [5], WX is the Coxeter group of
ΓX .

For X ⊂ S, we denote by KBn(X ) the subgroup of KBn generated by X . By the above,
KBn(X ) has a presentation with generating set X and relations
• st = ts if s and t are connected in VΓn by an edge labelled by 2,
• sts = tst if s and t are connected in VΓn by an edge labelled by 3.

Definition. We say that a subset X of S is full if any two distinct elements s, t of X are
connected by an edge of VΓn. Recall that the aim of Step 2 is to give a solution to the word
problem for KBn(X ) when X is full.

We denote by Fn = F (x1, . . . , xn) the free group of rank n freely generated by x1, . . . , xn. For
i, j ∈ {1, . . . , n}, i 6= j, we define ϕi,j ∈ Aut(Fn) by

ϕi,j(xi) = xixjx
−1
i , ϕi,j(xj) = xi , and ϕi,j(xk) = xk for k 6∈ {i, j} .

It is easily checked from the presentation in Proposition 2.1 that the map S → Aut(Fn), δi,j 7→
ϕi,j , induces a representation ϕ : KBn → Aut(Fn). For X ⊂ S, we denote by ϕX : KBn(X )→
Aut(Fn) the restriction of ϕ to KBn(X ). The following will be proved in Section 3.

Proposition 2.3. If X is a full subset of S, then ϕX : KBn(X )→ Aut(Fn) is faithful.

Remark. The whole representation ϕ : KBn → Aut(Fn) is not faithful. Indeed, we have
ϕ1,3ϕ3,2ϕ3,1 = ϕ2,3ϕ1,3ϕ3,2, whereas δ1,3δ3,2δ3,1 6= δ2,3δ1,3δ3,2. In order to show that these two
elements of KBn are different, the reader may use the solution to the word problem given in
the present paper. (Actually, Algorithm C of Step 3 suffices.)

Notation. From now on, if u is a word over S±1, then ū will denote the element of KBn

represented by u.

Algorithm B. Let X be a full subset of S, and let u = sε11 · · · s
ε`
` be a word over X±1. We have

ϕ(ū) = ϕ(s1)
ε1 · · ·ϕ(s`)

ε` . If ϕ(ū) = Id, then ū = 1. Otherwise, ū 6= 1.

Step 3

Let G be a group, and let H be a subgroup of G. A solution to the membership problem for H in
G is an algorithm which, given g ∈ G, decides whether g belongs to H or not. In the present step
we will assume that KBn(X ) has a solution to the word problem, and, from this solution, we will
give a solution to the membership problem for KBn(Y) in KBn(X ), for Y ⊂ X . Furthermore,
if the tested element belongs to KBn(Y), then this algorithm will determine a word over Y±1
which represents this element.

Let u be a word over S. (Attention: here the alphabet is S, and not S±1.)
• Suppose that u is written in the form u1ssu2, where u1, u2 are words over S and s is an

element of S. Then we say that u′ = u1u2 is obtained from u by an M -operation of type I.
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• Suppose that u is written in the form u1stu2, where u1, u2 are words over S and s, t are
two elements of S connected by an edge labelled by 2. Then we say that u′ = u1tsu2 is
obtained from u by an M -operation of type II(2).
• Suppose that u is written in the form u1stsu2, where u1, u2 are words over S and s, t are

two elements of S connected by an edge labelled by 3. Then we say that u′ = u1tstu2 is
obtained from u by an M -operation of type II(3).

Let Y be a subset of S.
• Suppose that u is written in the form tu′, where u′ is a word over S and t is an element of
Y. Then we say that u′ is obtained from u by an M -operation of type IIIY .

We say that u is M -reduced (resp. MY-reduced) if its length cannot be shortened by M -
operations of type I, II(2), II(3) (resp. of type I, II(2), II(3), IIIY). An M -reduction (resp. MY-
reduction) of u is anM -reduced word (resp. MY -reduced word) obtained from u byM -operations
(resp. MY -operations). We can easily enumerate all the words obtained from u by M -operations
(resp. MY -operations), hence we can effectively determine an M -reduction and/or an MY -
reduction of u.

Let Y be a subset of S. From a word u = sε11 · · · s
ε`
` over S±1, we construct a word πY(u) over

Y±1 as follows.
• For i ∈ {0, 1, . . . , `} we set u+i = s1 · · · si (as ever, u+0 is the identity).
• For i ∈ {0, 1, . . . , `} we calculate an MY -reduction v+i of u+i .
• For a word v = t1 · · · tk over S, we denote by op(v) = tk · · · t1 the anacycle of v. Let i ∈
{1, . . . , `}. If εi = 1, we set w+

i = v+i−1 ·si ·op(v+i−1). If εi = −1, we set w+
i = v+i ·si ·op(v+i ).

• For all i ∈ {1, . . . , `} we calculate an M -reduction gi of w+
i .

• If gi is of length 1 and gi = ti ∈ Y, we set Ti = gεii = tεii . Otherwise we set Ti = 1.
• We set πY(u) = T1T2 · · ·T`.

The proof of the following is given in Section 4.

Proposition 2.4. Let Y be a subset of S. Let u, v be two words over S±1. If ū = v̄, then
πY(u) = πY(v). Moreover, we have ū ∈ KBn(Y) if and only if ū = πY(u).

Algorithm C. Take two subsets X and Y of S such that Y ⊂ X , and assume given a solution
to the word problem for KBn(X ). Let u be a word over X±1. We calculate v = πY(u). If
uv−1 6= 1, then ū 6∈ KBn(Y). If uv−1 = 1, then ū ∈ KBn(Y) and v is a word over Y±1 which
represents the same element as u.

Step 4

Now, we assume that X is a non-full subset of S, and that we have a solution to the word problem
for KBn(Y) for any proper subset Y of X (induction hypothesis). We can and do choose two
elements s1, s2 ∈ X that are not connected by an edge in VΓn, and we set X1 = X \ {s1},
X2 = X \ {s2}, and X0 = X \ {s1, s2}. It follows from the presentations of the KBn(Xi)’s given
in Step 2 that we have the amalgamated product

KBn(X ) = KBn(X1) ∗KBn(X0) KBn(X2) .
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Our last algorithm is based on the following result. This is well-known and can be found for
instance in [13, Chap. 5.2].

Proposition 2.5. Let A1 ∗B A2 be an amalgamated product of groups. Let g1, . . . , g` be a
sequence of elements of A1 tA2 different from 1 and satisfying the following condition:

if gi ∈ A1 (resp. gi ∈ A2), then gi+1 ∈ A2\B (resp. gi+1 ∈ A1\B), for all i ∈ {1, . . . , `−1}.

Then g1g2 · · · g` is different from 1 in A1 ∗B A2.

Algorithm D. Let u be a word over X±1. We write u in the form u1u2 · · ·u`, where
• ui is either a word over X±11 , or a word over X±12 ,
• if ui is a word over X±11 (resp. over X±12 ), then ui+1 is a word over X±12 (resp. over X±11 ).

We decide whether ū is trivial by induction on `. Suppose that ` = 1 and u = u1 ∈ KBn(Xj)
(j ∈ {1, 2}). Then we apply the solution to the word problem for KBn(Xj) to decide whether ū

is trivial or not. Suppose that ` ≥ 2. For all i we set vi = πX0(ui). If uiv
−1
i 6= 1 for all i, then

ū 6= 1. Suppose that there exists i ∈ {1, . . . , `} such that uiv
−1
i = 1. Let u′i = v1u2 if i = 1,

u′i = u`−1v` if i = `, and u′i = ui−1viui+1 if 2 ≤ i ≤ `− 1. Set v = u1 · · ·ui−2u′iui+2 · · ·u`. Then
ū = v̄ and, by induction, we can decide whether v represents 1 or not.

3 Proof of Proposition 2.3

Recall that Fn = F (x1, . . . , xn) denotes the free group of rank n freely generated by x1, . . . , xn,
and that we have a representation ϕ : KBn → Aut(Fn) which sends δi,j to ϕi,j , where

ϕi,j(xi) = xixjx
−1
i , ϕi,j(xj) = xi , and ϕi,j(xk) = xk for k 6∈ {i, j} .

For X ⊂ S, we denote by ϕX : KBn(X ) → Aut(Fn) the restriction of ϕ to KBn(X ). In this
section we prove that ϕX is faithful if X is a full subset of S.

Consider the following groups.

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| ≥ 2

〉
,

B̃n =

〈
σ1, . . . , σn

∣∣∣∣ σiσjσi = σjσiσj if i ≡ j ± 1 mod n
σiσj = σjσi if i 6= j and i 6≡ j ± 1 mod n

〉
, n ≥ 3 .

The group Bn is the classical braid group, and B̃n is the affine braid group.

We define representations ψn : Bn → Aut(Fn) and ψ̃n : B̃n → Aut(Fn) in the same way as ϕ as
follows.

ψn(σi)(xi) = xixi+1x
−1
i , ψn(σi)(xi+1) = xi , ψn(σi)(xk) = xk if k 6∈ {i, i+ 1}

ψ̃n(σi)(xi) = xixi+1x
−1
i , ψ̃n(σi)(xi+1) = xi , ψ̃n(σi)(xk) = xk if k 6∈ {i, i+ 1} , for i < n

ψ̃n(σn)(xn) = xnx1x
−1
n , ψ̃n(σn)(x1) = xn , ψ̃n(σn)(xk) = xk if k 6∈ {1, n}
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The key of the proof of Proposition 2.3 is the following.

Theorem 3.1 (Artin [1], Bellingeri, Bodin [4]). The representations ψn : Bn → Aut(Fn) and
ψ̃n : B̃n → Aut(Fn) are faithful.

The support of a generator δi,j is defined to be supp(δi,j) = {i, j}. The support of a subset X
of S is supp(X ) = ∪s∈X supp(s). We say that two subsets X1 and X2 of S are perpendicular1 if
supp(X1) ∩ supp(X2) = ∅. Note that this condition implies that X1 ∩ X2 = ∅. More generally,
we say that a family X1, . . . ,X` of subsets of S is perpendicular if supp(Xi) ∩ supp(Xj) = ∅ for
all i 6= j. In that case we write X1 ∪ · · · ∪ X` = X1 � · · · � X`. We say that a subset X of S
is indecomposable if it is not the union of two perpendicular nonempty subsets. The following
observations will be of importance in what follows.

Remark. Let X1 and X2 be two perpendicular subsets of S, and let X = X1 � X2.
(1) X is a full subset if and only if X1 and X2 are both full subsets.
(2) KBn(X ) = KBn(X1)×KBn(X2).

Indeed, if δi,j ∈ X1 and δk,` ∈ X2, then i, j, k, ` are distinct, and therefore δi,j and δk,` are
connected by and edge labelled by 2, and δi,jδk,` = δk,`δi,j .

Lemma 3.2. Let X1 and X2 be two perpendicular subsets of S, and let X = X1 � X2. Then
ϕX : KBn(X ) → Aut(Fn) is faithful if and only if ϕX1 : KBn(X1) → Aut(Fn) and ϕX2 :
KBn(X2)→ Aut(Fn) are both faithful.

Proof. For X ⊂ {x1, . . . , xn}, we denote by F (X) the subgroup of Fn generated by X. There
is a natural embedding ιX : Aut(F (X)) ↪→ Aut(Fn) defined by

ιX(α)(xi) =

{
α(xi) if xi ∈ X
xi otherwise

Moreover, if X1 and X2 are disjoint subsets of {x1, . . . , xn}, then the homomorphism

(ιX1 × ιX2) : Aut(F (X1))×Aut(F (X2)) → Aut(Fn)
(α1, α2) 7→ ιX1(α1) ιX2(α2)

is well-defined and injective. From now on, we will assume Aut(F (X)) to be embedded in
Aut(Fn) via ιX , for all X ⊂ {x1, . . . , xn}.

By abuse of notation, for X ⊂ S, we will also denote by supp(X ) the set {xi | i ∈ supp(X )}. Set
X1 = supp(X1) and X2 = supp(X2). We have Im(ϕXi) ⊂ Aut(F (Xi)) for i = 1, 2, X1 ∩X2 = ∅,
and KBn(X ) = KBn(X1)×KBn(X2). Hence, Lemma 3.2 follows from the following claim whose
proof is left to the reader.

Claim. Let f1 : G1 → H1 and f2 : G2 → H2 be two group homomorphisms. Let (f1 × f2) :
(G1 × G2) → (H1 ×H2) be the homomorphism defined by (f1 × f2)(u1, u2) = (f1(u1), f2(u2)).
Then (f1 × f2) is injective if and only if f1 and f2 are both injective.

1This terminology is derived from the theory of Coxeter groups.
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For 2 ≤ m ≤ n we set

Zm = {δ1,2, . . . , δm−1,m} , Z̃m = {δ1,2, . . . , δm−1,m, δm,1} .

Note that the map {σ1, . . . , σm−1} → Zm, σi 7→ δi,i+1, induces an isomorphism fm : Bm →
KBn(Zm). This follows from the presentation of KBn(Zm) given in Step 2 of Section 2. Simi-
larly, for m ≥ 3, the map {σ1, . . . , σm} → Z̃m, σi 7→ δi,i+1 for 1 ≤ i ≤ m−1, σm 7→ δm,1, induces
an isomorphism f̃m : B̃m → KBn(Z̃m).

Recall that the symmetric group Sn acts on S by g δi,j = δg(i),g(j), and that this action induces
an action of Sn on KBn. On the other hand, there is a natural embedding Sn ↪→ Aut(Fn),
where g ∈ Sn sends xi to xg(i) for all i ∈ {1, . . . , n}, and this embedding induces by conjugation
an action of Sn on Aut(Fn). It is easily seen that the homomorphism ϕ : KBn → Aut(Fn) is
equivariant under these actions of Sn.

Lemma 3.3. If X is a full and indecomposable nonempty subset of S, then there exist g ∈ Sn

and m ∈ {1, . . . , n} such that either X = gZm, or X = g Z̃m and m ≥ 3.

Proof. An oriented graph Υ is the data of two sets, V (Υ), called set of vertices, and E(Υ),
called set of arrows, together with two maps sou, tar : E(Υ)→ V (Υ). We associate an oriented
graph ΥX to any subset X of S as follows. The set of vertices is V (ΥX ) = supp(X ), the set of
arrows is E(ΥX ) = X , and, for δi,j ∈ X , we set sou(δi,j) = i and tar(δi,j) = j. Assume that X
is a full and indecomposable nonempty subset of S. Since X is indecomposable, ΥX must be
connected. Since X is full, if s, t ∈ X are two different arrows of ΥX with a common vertex,
then there exist i, j, k ∈ {1, . . . , n} distinct such that either s = δj,i and t = δi,k, or s = δi,j
and t = δk,i. This implies that ΥX is either an oriented segment, or an oriented cycle with at
least 3 vertices (see Figure 3.1). If ΥX is an oriented segment, then there exist g ∈ Sn and
m ∈ {1, . . . , n} such that X = gZm. If ΥX is an oriented cycle, then there exist g ∈ Sn and
m ∈ {1, . . . , n}, m ≥ 3, such that X = g Z̃m.

Figure 3.1. Oriented segment and oriented cycle.

Proof of Proposition 2.3. Let X be a full nonempty subset of S. Write X = X1 � · · ·� X`,
where Xj is an indecomposable nonempty subset. As observed above, each Xj is also a full subset.
Moreover, by Lemma 3.2, in order to show that ϕX is faithful, it suffices to show that ϕXj is
faithful for all j ∈ {1, . . . , `}. So, we can assume that X is a full and indecomposable nonempty
subset of S. By Lemma 3.3, there exist g ∈ Sn and m ∈ {1, . . . , n} such that either X = gZm,
or X = g Z̃m and m ≥ 3. Since ϕ is equivariant under the actions of Sn, upon conjugating by
g−1, we can assume that either X = Zm, or X = Z̃m. Set Zm = {x1, . . . , xm} = supp(Zm) =
supp(Z̃m), and identify Fm with F (Zm). Then ϕZm = ψm ◦ f−1m and ϕZ̃m

= ψ̃m ◦ f̃−1m , hence
ϕX is faithful by Theorem 3.1.
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4 Proof of Proposition 2.4

Proposition 2.4 will be proved in the general setting of Artin groups. Let S be a finite set. Recall
that a Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S , indexed by the elements of S,
such that ms,s = 1 for all s ∈ S, and ms,t = mt,s ∈ {2, 3, 4, . . . }∪ {∞} for all s, t ∈ S, s 6= t. We
represent this Coxeter matrix with a labelled graph Γ = ΓM , called Coxeter diagram. The set of
vertices of Γ is S. Two vertices s, t ∈ S are connected by an edge labelled by ms,t if ms,t 6=∞.

If a, b are two letters and m is an integer ≥ 2, we set 〈a, b〉m = (ab)
m
2 if m is even, and

〈a, b〉m = (ab)
m−1

2 a if m id odd. The Artin group of Γ is the group A = A(Γ) defined by the
following presentation.

A = 〈S | 〈s, t〉ms,t = 〈t, s〉ms,t for all s, t ∈ S, s 6= t and ms,t 6=∞〉 .

The Coxeter group of Γ, denoted by W = W (Γ), is the quotient of A by the relations s2 = 1,
s ∈ S.

For Y ⊂ S, we denote by ΓY the subdiagram of Γ spanned by Y , by AY the subgroup of
A = A(Γ) generated by Y , and by WY the subgroup of W = W (Γ) generated by Y . By [11],
AY is the Artin group of ΓY , and, by [5], WY is the Coxeter group of ΓY .

Let u be a word over S.
• Suppose that u is written in the form u1ssu2, where u1, u2 are words over S and s is an

element of S. Then we say that u′ = u1u2 is obtained from u by an M -operation of type I.
• Suppose that u is written in the form

u = u1〈s, t〉ms,tu2 ,

where u1, u2 are words over S and s, t are two elements of S connected by an edge labelled
by ms,t. Then we say that

u′ = u1〈t, s〉ms,tu2 ,

is obtained from u by an M -operation of type II.
Let Y be a subset of S.
• Suppose that u is written in the form tu′, where u′ is a word over S and t is an element of
Y . Then we say that u′ is obtained from u by an M -operation of type IIIY .

We say that a word u is M -reduced (resp. MY -reduced) if its length cannot be shortened by
M -operations of type I, II (resp. of type I, II, IIIY ). An M -reduction (resp. MY -reduction) of
a word u is an M -reduced word (resp. MY -reduced word) obtained from u by M -operations
(resp. MY -operations).

Let Y be a subset of S. From a word u = sε11 · · · s
ε`
` over S±1, we construct a word πY (u) over

Y ±1 as follows.
• For i ∈ {0, 1, . . . , `} we set u+i = s1 · · · si.
• For all i ∈ {0, . . . , `} we calculate an MY -reduction v+i of u+i .
• Let i ∈ {1, . . . , `}. If εi = 1, we set w+

i = v+i−1 · si · op(v+i−1). If εi = −1, we set
w+
i = v+i · si · op(v+i ).
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• For all i ∈ {1, . . . , `} we calculate an M -reduction gi of w+
i .

• If gi is of length 1 and gi = ti ∈ Y , we set Ti = gεii = tεii . Otherwise we set Ti = 1.
• We set πY (u) = T1T2 · · ·T`.

Now, Proposition 2.4 is a straightforward consequence of the following.

Proposition 4.1. Let Y be a subset of S. Let u, v be two words over S±1. If ū = v̄, then
πY (u) = πY (v). Moreover, we have ū ∈ AY if and only if ū = πY (u).

The rest of the section is dedicated to the proof of Proposition 4.1.

Since we have s2 = 1 in W for all s ∈ S, every element g in W can be represented by a word
over S. Such a word is called an expression of g. The minimal length of an expression of g is
called the length of g and is denoted by lgS(g). An expression of g of length lgS(g) is a reduced
expression of g. Let Y be a subset of S, and let g ∈ W . We say that g is Y -minimal if it is of
minimal length among the elements of the coset WY g.

Proposition 4.2. (Bourbaki [5]). Let Y ⊂ S, and let g ∈W . There exists a unique Y -minimal
element in the coset WY g. Moreover, the following conditions are equivalent.

(a) g is Y -minimal,
(b) lgS(sg) > lgS(g) for all s ∈ Y ,
(c) lgS(hg) = lgS(h) + lgS(g) for all h ∈WY .

A “nice” set-retraction ρY : A → AY to the inclusion ιY : AY → A is constructed in [8, 6].
This is defined as follows (we refer to [6] for its correctness). Let α be an element of A.
Let α̂ = s1

ε1 · · · s`ε` be a word over S±1 which represents α. Let i ∈ {1, . . . , `}. Set gi =
sε11 s

ε2
2 · · · s

εi
i = s1s2 · · · si ∈ W . Write gi in the form gi = hiki, where hi ∈ WY and ki is

Y -minimal. If εi = 1, set xi = ki−1sik
−1
i−1. If εi = −1, set xi = kisik

−1
i . Set

τi =

{
xi

εi if xi ∈ Y
1 otherwise

τ̂ = τ1τ2 · · · τ` .

Then ρY (α) is the element of AY represented by τ̂ .

So, in order to prove Proposition 4.1, it suffices to prove the following.

Proposition 4.3. Let g ∈W .
(1) An expression w of g is a reduced expression if and only if w is M -reduced.
(2) Any two reduced expressions w and w′ of g are connected by a finite sequence of M -

operations of type II.
(3) Let w be an reduced expression of g. Then g is Y -minimal if and only if w is MY -reduced.

Proof. (1) and (2) are the celebrate Tits solution to the word problem for Coxeter groups (see
[14]). (3) easily follows from (1), (2), and Proposition 4.2.
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