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A simple solution to the word problem for virtual
braid groups
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June 17, 2015

Abstract

We show a simple and easily implementable solution to the word problem for virtual braid
groups.

AMS Subject Classification. Primary: 20F36. Secondary: 20F10, 57M25.

1 Introduction

Virtual braid groups were introduced by L. Kauffman in his seminal paper on virtual knots and
links [10]. They can be defined in several ways, such as in terms of Gauss diagrams [2, 7], in
terms of braids in thickened surfaces [7], and in terms of virtual braid diagrams. The latter will
be our starting point of view.

A wirtual braid diagram on n strands is a n-tuple § = (b1, ..., b,) of smooth paths in the plane
R? satisfying the following conditions.
(a) b;(0) = (¢,0) for all i € {1,...,n}.
(b) There exists a permutatlon g E S, such that b;(1) = (g(i),1) for all i € {1,...,n}.
(c) (p2ob)(t) =t foralli € {1,...,n} and all ¢t € [0,1], where ps : R? — R denotes the
projection on the second coordinate.
(d) The b;’s intersect transversely in a finite number of double points, called the crossings of
the diagram.
Fach crossing is endowed with one of the following attributes: positive, negative, virtual. In
the figures they are generally indicated as in Figure 1.1. Let VBD, be the set of virtual
braid diagrams on n strands, and let ~ be the equivalence relation on V BD, generated by
ambient isotopy and the virtual Reidemeister moves depicted in Figure 1.2. The concatenation
of diagrams induces a group structure on VBD,,/ ~. The latter is called virtual braid group on
n strands, and is denoted by V B,,.

X X X

positive negative  virtual

Figure 1.1. Crossings in a virtual braid diagram.



Figure 1.2. Virtual Reidemeister moves.

It was observed in [9, 15] that V B,, has a presentation with generators o1,...,0p_1,71,. ., Tn_1,
and relations

7—1.2:1 for1<i<n-1
0i05 = 040;, 0;Tj = Tj0;, andTiTj:TjTi for ’1—3’22
0i0j0; = 0005, O;TjT; = TjT;0j, and TiTjTi = T;TiTj for ’Z — ]| =1

A solution to the word problem for virtual braid groups was shown in [8]. However, this solution
is quite theoretical and its understanding requires some heavy technical knowledge on Artin
groups. Therefore, it is incomprehensible and useless for most of the potential users, including
low dimensional topologists. Moreover, its implementation would be difficult. Our aim here is
to show a new solution, which is simpler and easily implementable, and whose understanding
does not require any special technical knowledge. This new solution is in the spirit of the one
shown in [8], in the sense that one of the main ingredients in its proof is the study of parabolic
subgroups in Artin groups.

Acknowledgments. The research of the first author was partially supported by French grant
ANR-11-JS01-002-01.

2 The algorithm

Our solution to the word problem for V B, is divided into four steps. In Step 1 we define
a subgroup KB, of VB, and a generating set S for K B,,, and we show an algorithm (called
Algorithm A) which decides whether an element of V' B,, belongs to K B,, and, if yes, determines a
word over S*! which represents this element. For X C S, we denote by KB, (X) the subgroup
of KB, generated by X. The other three steps provide a solution to the word problem for
K B,,(X) which depends recursively on the cardinality of X. Step 2 is the beginning of the
induction. More precisely, the algorithm proposed in Step 2 (called Algorithm B) is a solution
to the word problem for KB, (X) when X is a full subset of S (the notion of ”full subset” will
be also defined in Step 2; for now, the reader just need to know that singletons are full subsets).



In Step 3 we suppose given a solution to the word problem for K B, (X), and, for a given subset
Y C X, we show an algorithm which solves the membership problem for KB, (Y) in KB, (X)
(Algorithm C). In Step 4 we show an algorithm which solves the word problem for K B, (X)
when X' is not a full subset, under the assumption that the group K B, ()) has a solvable word
problem for any proper subset ) of X (Algorithm D).

Step 1

Recall that G,, denotes the group of permutations of {1,...,n}. We denote by 0 : VB, — &,
the epimorphism which sends o; to 1 and 7; to (i, + 1) for all 1 < ¢ < n — 1, and by KB,
the kernel of . Note that € has a section ¢ : &,, — VB, which sends (i,i + 1) to 7; for all
1 <i <n—1, and therefore VB, is a semi-direct product VB, = KB, x &,. The following
proposition is proved in a master thesis [12] which, unfortunately, is not available anywhere.
However, its proof can also be found in [3].

Proposition 2.1 (Rabenda [12]). For 1 <i < j <n we set

8ij = TiTit1' Tj—204-1Tj—2" " Ti+1Ti,
0ji = TiTitl " Tj—2Tjm10;-1Tj—1Tj—2 " Tit17i -
Then KB, has a presentation with generating set

S={0i;|1<i#j<n},

and relations
5i,j5k,é = 5k,45i,j fOT’ i,j, ]{Z,E distinct

5i,j5j,k5i,j = 5j,k5i,j5j,k fOT i,j, k distinct

The virtual braids d; ; and d;; are depicted in Figure 2.1.

0i,j

Figure 2.1. Generators for K B,,.

The following is an important tool in the forthcoming Algorithm A.



Lemma 2.2 (Bardakov, Bellingeri [3]). Let u be a word over {r1,...,T,—1}, let u be the element
of V By, represented by u, and let i,5 € {1,...,n}, i # j. Then ué;;u~! = Oy ji, where i =
0(u)(i) and j' = 0(u)(j).

Note that 7; ! = 7;, since 72 = 1, for all i € {1,...,n — 1}. Hence, the letters 7, ',..., 7, are

not needed in the above lemma and below.

Now, we give an algorithm which, given a word u over {afl, . ,inl,ﬁ, ..y Tn—1}, decides
whether the element @ of V B,, represented by u belongs to KB,. If yes, it also determines a
word v/ over St = {5;'[] | 1 <i# j < n} which represents u. The fact that this algorithm is
correct follows from Lemma 2.2.

Algorithm A. Let u be a word over {afl, e ,aﬁil, Tly.-yTn—1}. We write u in the form

— E1 &
U = ’U(]O'i1 vy - -’Ug_lo'iZ Ve ,

where vy, v1, ..., vp are words over {71,...,7,—1}, and €1,...,&¢ € {£1}. On the other hand, for
a word v = 7, -+, over {11,...,Th—1}, we set O(v) = (j1,j1 + 1) (Jr,Jk + 1) € S,. Note
that 6(u) = 6(vo) O(v1)---0(vg). If O(u) # 1, then u € KB,,. If 6(u) = 1, then u € KB,,, and @
is represented by

U= 0 b Oabe O
where

ap = 9(1)0 .. ~Uk_1)(ik) and bk = 9(1}0 .. ‘Uk—l)(ik + 1)
for all k € {1,...,¢}.

Step 2

Let S be a finite set. A Cozeter matriz over S is a square matrix M = (mg;)ses, indexed by
the elements of S, such that ms ¢ =1 for all s € S, and mgt = my s € {2,3,4,... } U {oo} for all
s,t € 5, s #t. We represent this Coxeter matrix with a labelled graph I' = 'y, called Cozeter
diagram. The set of vertices of I" is S. Two vertices s,t € S are connected by an edge labelled
by myg s if mg s # 00.

If a,b are two letters and m is an integer > 2, we set (a,b)™ = (ab)? if m is even, and
(a,b)™ = (ab)mT_la if m id odd. In other words, (a,b)™ denotes the word aba - -- of length m.
The Artin group of I is the group A = A(I") defined by the following presentation.

A= (5] (s, t)"=t = (t,s)"* for all s,t € S, s#t and mg; # 00).

The Coxeter group of T, denoted by W = W (T'), is the quotient of A by the relations s? = 1,
seSs.

Example. Let VI',, be the Coxeter diagram defined as follows. The set of vertices of VI, is S.
Ifi,5,k, 0 € {1,...,n} are distinct, then ¢; ; and dj ¢ are connected by an edge labelled by 2. If
i,j,k € {1,...,n} are distinct, then ¢; ; and J; 1, are connected by an edge labelled by 3. There
is no other edge in VI';,. Then, by Proposition 2.1, K B, is isomorphic to A(VT,,).



Let ' be a Coxeter diagram. For X C S, we denote by I'x the subdiagram of I' spanned by
X, by Ax the subgroup of A = A(T") generated by X, and by Wx the subgroup of W = W (I")
generated by X. By [11], Ax is the Artin group of I'x, and, by [5], Wx is the Coxeter group of
I'x.

For X C S, we denote by KB, (X) the subgroup of KB, generated by X. By the above,
K B,,(X) has a presentation with generating set X and relations

e st =ts if s and t are connected in VI'), by an edge labelled by 2,

e sts = tst if s and ¢ are connected in VI';, by an edge labelled by 3.

Definition. We say that a subset X of S is full if any two distinct elements s,t of X are
connected by an edge of VI',,. Recall that the aim of Step 2 is to give a solution to the word
problem for K B,,(X) when X is full.

We denote by F,, = F(x1,...,x,) the free group of rank n freely generated by z1,...,z,. For
i,j €{1,...,n}, i # j, we define ¢; ; € Aut(F;,) by

@i (1) = mzjx;t, @i (x;) = 2, and ¢; j(zy) = o for k & {i, 5} .

It is easily checked from the presentation in Proposition 2.1 that the map S — Aut(F,), d;; —
©i j, induces a representation ¢ : KB, — Aut(F},). For X C S, we denote by ¢y : KB, (X) —
Aut(F,) the restriction of ¢ to KB, (X). The following will be proved in Section 3.

Proposition 2.3. If X is a full subset of S, then px : KBy (X) — Aut(F,) is faithful.

Remark. The whole representation ¢ : KB, — Aut(F,) is not faithful. Indeed, we have
©1,393,203,1 = ¥2,3¥1,3¥3,2, whereas 51’3(53726371 75 5273517353,2. In order to show that these two
elements of K B,, are different, the reader may use the solution to the word problem given in
the present paper. (Actually, Algorithm C of Step 3 suffices.)

Notation. From now on, if u is a word over S*!, then @ will denote the element of KB,
represented by u.

Algorithm B. Let X be a full subset of S, and let u = s' - - - s;* be a word over X+, We have
o(u) = @(s1)t -+ p(sp)®. If p(u) =1d, then u = 1. Otherwise, u # 1.

Step 3

Let G be a group, and let H be a subgroup of G. A solution to the membership problem for H in
G is an algorithm which, given g € G, decides whether g belongs to H or not. In the present step
we will assume that K B, (X) has a solution to the word problem, and, from this solution, we will
give a solution to the membership problem for KB, ()) in KB,(X), for Y C X. Furthermore,
if the tested element belongs to K B,()), then this algorithm will determine a word over Y*!
which represents this element.

Let u be a word over S. (Attention: here the alphabet is S, and not S*!.)
e Suppose that w is written in the form wu;ssus, where uy, us are words over S and s is an
element of S. Then we say that v’ = ujus is obtained from u by an M -operation of type 1.



e Suppose that u is written in the form wqstus, where uq,us are words over S and s,t are
two elements of S connected by an edge labelled by 2. Then we say that v’ = ujtsus is
obtained from w by an M -operation of type 1.

e Suppose that v is written in the form wjstsug, where uy, us are words over S and s, t are
two elements of S connected by an edge labelled by 3. Then we say that v/ = wujtstus is
obtained from u by an M -operation of type I1().

Let YV be a subset of S.

e Suppose that u is written in the form tu’, where v is a word over S and t is an element of

Y. Then we say that ' is obtained from u by an M -operation of type IIIy.

We say that w is M-reduced (resp. My-reduced) if its length cannot be shortened by M-
operations of type I, 11?113 (resp. of type 1,11(2),11(3)71113)). An M -reduction (resp. My-
reduction) of u is an M-reduced word (resp. My-reduced word) obtained from u by M-operations
(resp. My-operations). We can easily enumerate all the words obtained from u by M-operations
(resp. Mjy-operations), hence we can effectively determine an M-reduction and/or an M-
reduction of w.

Let Y be a subset of S. From a word u = s}' -+ - s;* over S*!, we construct a word my(u) over
Y+ as follows.

e Forie{0,1,...,0} weset u =s;---s; (as ever, uj is the identity).

e Forie€ {0,1,...,¢} we calculate an My-reduction v;" of u;'.

e For a word v = ¢; -- -t over S, we denote by op(v) = ti - - - t; the anacycle of v. Let i €
{1,...,0}. Ifg; = 1, we set w;” = v)" |- s;-0p(v;h ). If g, = —1, we set w;” = v} -s;-0op(v;").

e Foralli € {1,...,£} we calculate an M-reduction g; of w; .

If g; is of length 1 and g; = t; € Y, we set T; = ¢;* = t;*. Otherwise we set T; = 1.
We set my(u) =TTy - Ty.

The proof of the following is given in Section 4.

Proposition 2.4. Let Y be a subset of S. Let u,v be two words over ST'. If i = ¥, then
my(u) = my(v). Moreover, we have u € KBy (Y) if and only if u = my(u).

Algorithm C. Take two subsets X and Y of S such that Y C X, and assume given a solution
to the word problem for KB, (X). Let u be a word over X*!. We calculate v = my(u). If
uv=1 # 1, then 4 € KB, (V). If uv=! = 1, then @ € KB,()) and v is a word over Y*! which

represents the same element as u.

Step 4

Now, we assume that X is a non-full subset of S, and that we have a solution to the word problem
for KB, (Y) for any proper subset ) of X (induction hypothesis). We can and do choose two
elements s1,s2 € X that are not connected by an edge in VI, and we set X1 = X\ {s1},
Xo =X\ {s2}, and Xy = X' \ {s1, s2}. It follows from the presentations of the K B, (X;)’s given
in Step 2 that we have the amalgamated product

KB, (X) = KBy(X1) *k B, (x,) K Bn(X2) .



Our last algorithm is based on the following result. This is well-known and can be found for
instance in [13, Chap. 5.2].

Proposition 2.5. Let Ay xg As be an amalgamated product of groups. Let g1,...,g90 be a
sequence of elements of A1 U As different from 1 and satisfying the following condition:

if gi € Ay (resp. g; € Aa), then gi11 € A2\ B (resp. git1 € A1\B), foralli € {1,...,0—1}.

Then g1go - - - ge 1s different from 1 in Ay xp As.

Algorithm D. Let u be a word over X+l We write u in the form ujus - - - uyg, where

e w; is either a word over Xlﬂ, or a word over X;l,

o if u; is a word over X! (resp. over X5), then uiy is a word over X5 (resp. over A1),
We decide whether @ is trivial by induction on £. Suppose that ¢ = 1 and u = u; € KB, (X))
(7 € {1,2}). Then we apply the solution to the word problem for K B,,(X;) to decide whether u

is trivial or not. Suppose that ¢ > 2. For all i we set v; = mx, (u;). If uivi_1 # 1 for all ¢, then

@ # 1. Suppose that there exists ¢ € {1,...,¢} such that uivi_l = 1. Let v} = vjug if i = 1,
w, = up_qvg if i = £, and u, = u;_qvjuipq if 2 <i <L—1. Set v = uy - uj—ouuiqo - - - up. Then
% = v and, by induction, we can decide whether v represents 1 or not.

3 Proof of Proposition 2.3
Recall that F,, = F(x1,...,x,) denotes the free group of rank n freely generated by z1,..., =y,
and that we have a representation ¢ : KB, — Aut(F,) which sends d; ; to ¢; ;, where

i (i) = xiatjwi_l . ij(z;) =z, and @; j(x) = xp for k & {3, j}.

For X C S, we denote by px : KBy, (X) — Aut(F),) the restriction of ¢ to KB, (X). In this
section we prove that ¢y is faithful if X is a full subset of S.

Consider the following groups.

By, = <0'17---50'n—1

oiojo; = ojoi0; if |i—jl=1 >
]

O'Z‘O'j:O'jO'i 1f‘l—]’22
~ oiojo; =0;0;0; ifi=j7+1 modn
B, = T I . L, > 3.
" <Ul’ "I oioj =00, fi#jandiZj£1 modn>’ nz3

The group B, is the classical braid group, and B,, is the affine braid group.

We define representations v, : B, — Aut(F,) and Un : Bn — Aut(F},) in the same way as ¢ as
follows.

Un(03) () = imipra; ", Yn(03)(@it1) = 23, Ynl(oi)(ap) =z if k & {i,6+ 1}

Un(03) (@) = Tizipax; ", Yn(00)(@ig1) = @0, Pnlog)(wp) = ap if kb & {i,i+1}, fori<n
Un(on)(@n) = zpzra L, Yn(0p)(21) = Tn s (o) (x) = xp if k & {1,n}



The key of the proof of Proposition 2.3 is the following.

Theorem 3.1 (Artin [1], Bellingeri, Bodin [4]). The representations iy, : B, — Aut(Fy,) and
U+ By, — Aut(Fy,) are faithful.

The support of a generator d; ; is defined to be supp(d; ;) = {i,7}. The support of a subset X
of S is supp(X) = Uscxsupp(s). We say that two subsets X7 and X of S are perpendicular! if
supp(X7) Nsupp(Xz) = (. Note that this condition implies that X3 N Xy = (). More generally,
we say that a family X7,..., Xy of subsets of S is perpendicular if supp(X;) N supp(X;) = 0 for
all ¢ # j. In that case we write X1 U---U X, = X1 H---H X,. We say that a subset X of S
is indecomposable if it is not the union of two perpendicular nonempty subsets. The following
observations will be of importance in what follows.

Remark. Let X; and X5 be two perpendicular subsets of S, and let X = A} H AXb.

(1) X is a full subset if and only if X} and A5 are both full subsets.

(2) KB,(X) = KB,(X1) x KBp(Xs).
Indeed, if §;; € X7 and d;, € A», then 1,7, k,¢ are distinct, and therefore ¢; ; and d, are
connected by and edge labelled by 2, and d; ;o ¢ = 0 ¢0; ;.

Lemma 3.2. Let X7 and Xo be two perpendicular subsets of S, and let X = X1 H Xy, Then
vx : KBy(X) — Aut(F,) is faithful if and only if px, : KBp(X1) — Aut(F,) and vy, :
KB, (X)) — Aut(F,) are both faithful.

Proof. For X C {zi,...,2,}, we denote by F'(X) the subgroup of F,, generated by X. There
is a natural embedding tx : Aut(F (X)) < Aut(F),) defined by

N a(xz) ifx; € X
ex (o) (z) = { i otherwise

Moreover, if X; and X are disjoint subsets of {z1,...,x,}, then the homomorphism

(bx, X tx,): Aut(F (X)) x Aut(F(X2)) — Aut(F,)
(a1, ag) = (@) ex,(ag)

is well-defined and injective. From now on, we will assume Aut(F(X)) to be embedded in
Aut(F,) via vy, for all X C {z1,...,2,}.

By abuse of notation, for X C S, we will also denote by supp(X') the set {x; | i € supp(X)}. Set
X1 = supp(AX;) and Xy = supp(X2). We have Im(py,) C Aut(F(X;)) for i = 1,2, X1 N Xy =0,
and K B, (X) = KB, (X1) x KB, (X>2). Hence, Lemma 3.2 follows from the following claim whose
proof is left to the reader.

Claim. Let fi1 : G1 — Hp and fy : Go — Hj be two group homomorphisms. Let (f; x fa2) :
(G1 x Gg) — (H1 x H3) be the homomorphism defined by (f1 X f2)(u1,u2) = (f1(u1), fo(uz)).
Then (f1 X f2) is injective if and only if fi and fo are both injective. O

!This terminology is derived from the theory of Coxeter groups.



For 2 < m < n we set

Zm = {51,27 cee 75m—1,m} ) 2’;m = {61,27 v 75m—1,m; 5m,1} .

Note that the map {o1,...,0m—1} = Zm, 0i = 41, induces an isomorphism fp, : By, —
KB, (Z,,). This follows from the presentation of K B, (Z,,) given in Step 2 of Section 2. Simi-
larly, for m > 3, the map {01,...,0m} = Zm, 0i = 041 for 1 <i <m—1, oy, = 1, induces

an isomorphism fp, : By, = KBp(Z,,).

Recall that the symmetric group &, acts on § by gd; ;j = d4(s),4(;), and that this action induces
an action of &,, on KB,. On the other hand, there is a natural embedding &,, — Aut(F},),
where g € 6, sends z; to zy(;) for all i € {1,...,n}, and this embedding induces by conjugation
an action of &,, on Aut(F,). It is easily seen that the homomorphism ¢ : KB,, — Aut(F},) is
equivariant under these actions of &,,.

Lemma 3.3. If X is a full and indecomposable nonempty subset of S, then there exist g € &,
and m € {1,...,n} such that either X = g Z,,, or X = g Z,, and m > 3.

Proof. An oriented graph T is the data of two sets, V(T), called set of vertices, and E(Y),
called set of arrows, together with two maps sou, tar : E(T) — V(Y). We associate an oriented
graph Ty to any subset X of S as follows. The set of vertices is V(Y x) = supp(X), the set of
arrows is E(Tx) = X, and, for 6; ; € X, we set sou(d; ;) = ¢ and tar(d; ;) = j. Assume that X
is a full and indecomposable nonempty subset of S. Since X is indecomposable, T » must be
connected. Since X is full, if s,t € X are two different arrows of Ty with a common vertex,
then there exist 4,4,k € {1,...,n} distinct such that either s = §;, and t = 9,4, or s = 0; ;
and ¢t = 0 ;. This implies that Yy is either an oriented segment, or an oriented cycle with at
least 3 vertices (see Figure 3.1). If Ty is an oriented segment, then there exist g € &,, and
m € {1,...,n} such that X = g Z,,,. If Ty is an oriented cycle, then there exist g € &,, and
me{1,...,n}, m >3, such that X = g Z,,,. O

Figure 3.1. Oriented segment and oriented cycle.

Proof of Proposition 2.3. Let X be a full nonempty subset of S. Write X = X1 H--- B &),
where X is an indecomposable nonempty subset. As observed above, each X; is also a full subset.
Moreover, by Lemma 3.2, in order to show that ¢y is faithful, it suffices to show that px; is
faithful for all j € {1,...,£}. So, we can assume that X is a full and indecomposable nonempty
subset of S. By Lemma 3.3, there exist g € &,, and m € {1,...,n} such that either X = g Z,,,
or X = g}:’m and m > 3. Since ¢ is equivariant under the actions of &,,, upon conjugating by
g1, we can assume that either X = Z,,, or X = Z,,. Set Z,, = {z1,...,xm} = supp(Zn) =
supp(Zp), and identify Fy,, with F(Zy). Then ¢z, = tmo f;' and @5 = o f,!, hence
px is faithful by Theorem 3.1. O



4 Proof of Proposition 2.4

Proposition 2.4 will be proved in the general setting of Artin groups. Let S be a finite set. Recall
that a Cozeter matriz over S is a square matrix M = (msy)s tes, indexed by the elements of S,
such that mgs =1 for all s € S, and mgss = my s € {2,3,4,... }U{oo} for all s,t € S, s #t. We
represent this Coxeter matrix with a labelled graph I' = I'y;, called Cozxeter diagram. The set of
vertices of I' is S. Two vertices s,t € S are connected by an edge labelled by my; if m,; # oo.

m
2

If a,b are two letters and m is an integer > 2, we set (a,b)™ = (ab)2 if m is even, and
(a,b)™ = (ab)mT_la if m id odd. The Artin group of T is the group A = A(T") defined by the
following presentation.

A= (5] (s, t)"=t = (t,s)"* for all s,t € S, s#t and mg; # 00).

The Coxeter group of T, denoted by W = W (T'), is the quotient of A by the relations s? = 1,
seSs.

For Y C S, we denote by I'y the subdiagram of I" spanned by Y, by Ay the subgroup of
A = A(T") generated by Y, and by Wy the subgroup of W = W(I") generated by Y. By [11],
Ay is the Artin group of 'y, and, by [5], Wy is the Coxeter group of I'y.

Let u be a word over S.
e Suppose that u is written in the form uissuo, where uq,us are words over S and s is an
element of S. Then we say that v’ = ujus is obtained from u by an M -operation of type 1.
e Suppose that w is written in the form

u=wui(s,t)y"st

uz,
where u1, uo are words over S and s, ¢ are two elements of S connected by an edge labelled
by ms ;. Then we say that

Ms,t

u' = up(t, s)" >ty

is obtained from u by an M -operation of type II.
Let Y be a subset of S.
e Suppose that u is written in the form tu’, where v’ is a word over S and ¢ is an element of
Y. Then we say that v’ is obtained from w by an M -operation of type 111y .

We say that a word u is M-reduced (resp. My -reduced) if its length cannot be shortened by
M-operations of type L II (resp. of type III,11Iy). An M -reduction (resp. My -reduction) of
a word u is an M-reduced word (resp. My-reduced word) obtained from u by M-operations
(resp. My-operations).

Let Y be a subset of S. From a word u = s7* - -- s, over S*! we construct a word 7y (u) over
Y*! as follows.

e Foric {0,1,...,0} weset u =s1---s;.
e For alli € {0,...,£} we calculate an My-reduction v;" of u; .
o Let i € {1,....0}. If g = 1, we set wj = v, s -op(v; ). If g = —1, we set

w;r = U;L -8 op(vz*).
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e Foralli€ {1,...,£} we calculate an M-reduction g; of w; .
o If g; is of length 1 and g; =¢; € Y, we set T; = g;" = t;*. Otherwise we set T; = 1.
o We set y(u) =T Ts--- Ty

Now, Proposition 2.4 is a straightforward consequence of the following.

Proposition 4.1. Let Y be a subset of S. Let u,v be two words over ST'. If i = v, then
my (u) = my (v). Moreover, we have u € Ay if and only if u = wy (u).

The rest of the section is dedicated to the proof of Proposition 4.1.

Since we have s> = 1 in W for all s € S, every element g in W can be represented by a word
over S. Such a word is called an expression of g. The minimal length of an expression of g is
called the length of g and is denoted by lgg(g). An expression of g of length lgg(g) is a reduced
expression of g. Let Y be a subset of S, and let g € W. We say that g is Y -minimal if it is of
minimal length among the elements of the coset Wyg.

Proposition 4.2. (Bourbaki [5]). Let Y C S, and let g € W. There ezists a unique Y -minimal
element in the coset Wy g. Moreover, the following conditions are equivalent.

(a) g is Y -minimal,

(b) lgs(sg) > lgg(g) for all s €Y,

(c) lgs(hg) =lgg(h) +1gs(g) for all h € Wy.

A “nice” set-retraction py : A — Ay to the inclusion ty : Ay — A is constructed in [8, 6].
This is defined as follows (we refer to [6] for its correctness). Let a be an element of A.

Let @ = 51! ---5,° be a word over S*! which represents a. Let i € {1,...,¢}. Set g; =
§7'85% -8 = s189---8; € W. Write g; in the form g; = h;k;, where h; € Wy and k; is
Y -minimal. If E; — 1, set x; = ki—lsiki__ll- If &, — —1, set x; = ]{?ZSZ,ICZ_I Set

r;f ifx, €Y
T = )
¢ 1 otherwise
T=TiTy- " T¢.

Then py («) is the element of Ay represented by 7.
So, in order to prove Proposition 4.1, it suffices to prove the following.

Proposition 4.3. Let g €¢ W.
(1) An expression w of g is a reduced expression if and only if w is M -reduced.
(2) Any two reduced expressions w and w' of g are connected by a finite sequence of M-
operations of type I1.
(8) Let w be an reduced expression of g. Then g is Y -minimal if and only if w is My -reduced.

Proof. (1) and (2) are the celebrate Tits solution to the word problem for Coxeter groups (see
[14]). (3) easily follows from (1), (2), and Proposition 4.2. O
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